# **Combinatorial Chemistry**

## **Drug discovery process**

|                   | Target<br>Discovery                                                                                                                                                                                                                                              | Target<br>Validation                                                                                                                                                                                                | Lead Compound<br>Identification                                                                                                                                                                                                   | Lead Compound<br>Optimization                                                                                                                                                                                                                                             | Preclinical<br>Development                                                                                                                                                                                                                                                                               | Clinical<br>Triais                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Average<br>Length |                                                                                                                                                                                                                                                                  | 1-3 y                                                                                                                                                                                                               | <b>e</b> ars                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                           | 1.5 years                                                                                                                                                                                                                                                                                                | 6-7 years                                                                                                                                                                                                                                                 |
| Average<br>Cost   | \$196 million                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           | \$122 million                                                                                                                                                                                                                                                                                            | \$1-2.5 billion*                                                                                                                                                                                                                                          |
| Goal(s)           | Identification of a mole-<br>cule involved in a disease<br>Identify the target: a<br>molecule integral to<br>gene regulation or<br>intracellular signaling<br>Ensure the target is<br>"druggable" and its<br>actifity can be<br>modulated by another<br>compound | <ul> <li>Validate initial<br/>hypothesis through<br/>gene knockdowns</li> <li>Test antibody<br/>interactions</li> <li>Modulate the drug's<br/>affinity to target by<br/>changing molecular<br/>structure</li> </ul> | Generation of molecule(s)<br>that can interact with the<br>target previously identified<br>Test drug mechanism of<br>action<br>Initial safety tests<br>conducted in cell culture<br>Test pharmacokinetics<br>and pharmacodynamics | Compound modifications<br>for increased effectiveness<br>and safety<br>Alter design of molecule<br>to prevent off-target<br>effects<br>Optimize dosage and<br>introduction route (oral,<br>injection)<br>Conduct tests for drug's<br>uptake by 3D cell<br>culture systems | <ul> <li>Drug testing <i>in vivo</i> for side effects and safety</li> <li>Test drug in alternate cell lines, and <i>in vivo</i>: most commonly mouse and rat research models</li> <li>Plan for either small- or large-scale production if approved</li> <li>Document and mediate side effects</li> </ul> | <ul> <li>New drug approval by the FDA or EMA</li> <li>File IND to begin trials</li> <li>Includes three phases of human testing</li> <li>FDA conducts reviews and approvals after phase III</li> <li>Continued monitoring for dosage and safety</li> </ul> |

https://www.taconic.com/taconic-insights/quality/drug-development-process.html

# Drug discovery process

- Lead compound: A lead compound is a representative of a compound series with sufficient potential to progress to a full drug development programme
- □ Lead discovery: Lead discovery is the process of identifying active new chemical entities (NCEs), which by subsequent modification may be transformed into a clinically useful drug.
- Lead optimization: The synthetic modification of a biologically active compound, to fulfil all stereoelectronic, physicochemical, pharmacokinetic and toxicological properties required for clinical usefulness.

# What is Combinatorial Chemistry?

Combinatorial Chemistry is a synthetic strategy which, utilising different techniques, aims at the rapid synthesis of large collections (libraries) of compounds

□ The goal of the combinatorial chemistry is to synthesize, purify, chemically analyze & biologically test the all the structures in the library using few synthetic experiments

# **Basic characteristics of Combichem:**

#### **Combinatorial Chemistry prepares**

- a large number of different compounds
- simultaneously
- under identical reaction
- in a systematic manner

# **Conventional Vs combinatorial Conventional Synthesis:**

#### $A + B \longrightarrow AB$

one reactant (A) reacts with another reactant (B) to yield one product AB



$$\mathbf{A}_{1-n} + \mathbf{B}_{1-n} \longrightarrow \mathbf{A}_{1-n} \mathbf{B}_{1-n}$$

Different building blocks of type A react <u>combinatorially</u> with different building blocks of type B to yield a <u>combinatorial library</u>

#### **Combinatorial Synthesis:**





Why Combinatorial Chemistry?

- large numbers of compounds promise to increase the chance of finding hits/leads
- Faster lead generation
- Low risk of failure
- systematic variations in parent structure increase the chance to find Structure-Activity Relationships (SAR)
- hits can be followed up more rapidly

# **Combinatorial Libraries:**

- Library refers to a collection of molecules.
- Two common types of chemical libraries-
  - 1) A generic library (scaffold based):-

-based on a single parent or scaffold sructure & multiple substituents or residues

2) A mixture based (Backbone-based) libraries :-

-Containg a variety of structure types

# **Scaffold-based libraries:**

#### (Example: benzodiazepines)



# **Backbone-based (mixture) libraries:** (Example: peptides)



# LIBRARY SYNTHESIS

Two Major Approaches

• Split & Mix

"Real Combinatorial Chemistry"

Array Synthesis

"Parallel Synthesis"

# **Array-based Synthesis Stratergy:**

#### **Parallel synthesis**

→Use array of plastic pins → (8 x 12 array)  $\rightarrow$ 20 reagents →within 1 or 2 reactions →gives 96 different products.





## parallel synthesis

- Synthesis is carried out on polystyrene pins(act as solid-phase support)
- Pins are compatible with 96 well micro titer plates.
- Each individual well could contain a different amino acid and coupling reagent.
- Syntheses on pins are carried out in parallel (by immersing these pins into individual reaction vessel)
- Washing & protecting group removal can be performed in a reaction bath
- Adv :- Useful for epitope mapping and overlapping peptide sequences.





# Houghton's Tea Bag procedure

Alternative approach to parallel synthesis.

≻Initially, the resin (~100 mg) is distributed into individual polypropylene meshed bags & each bag is sealed & labeled

➤The tea bag are then distributed in to individual reaction vessel & resin is acylated with special Amino acid.

The tea bag can then redistributed into fresh reaction vessel for the addition of next amino acid

≻The cycle repeated until the desire peptide length is achieved

## **The Split-mix Synthesis Strategy:**



19

## **The Split-mix Synthesis Strategy**

## **The Split-mix Synthesis Strategy:**

A more rigorous approach to generating libraries. Resin is split into n equal portions.

- To create library with 3 possible amino acids at a position, split resin into 3 equal portions.
- Each aliquot of resin is coupled separately with 1 of the 3 different amino acids.

•Aliquots are then recombined after coupling reaction.

•Resin is split again into 3 equal aliquots. Each aliquot containing an equimolar mixture of the 3 different amino-acyl resins.

- A second round of coupling reactions similar to the first.
- The process can be repeated until the peptides in the library have reached the desired size.