Chapter-1
Basic Laser Theory and Optical Resonators

1.1 Introduction

The name ‘Laser’ is an acronym for light amplification by stimulated emission of
radiation. A laser is a device that produces an intense, concentrated and highly parallel beam of
coherent light. Historically the laser is an outgrowth of maser (microwave amplification by
stimulated emission of radiation), a similar device using microwaves instead of visible light.

The basic principle involved in the lasing action is the phenomenon of stimulated
emission which was predicted by Einstein in 1917. The first successful laser was built by T H
Maiman in 1960.

The three kinds of transitions involving E. o E.
electromagnetic radiation between two energy V- T
levels in an atom are, hv o E: E:
1. Induced absorption Fig.a: Induced absorption
An atom which is initially in a lower state _
can go to the higher state by absorbing a photon of i = l Efz\%\*
energy E = E>—E1 = hv. This process is called Es 4 Es
induced absorption. Fig.b: Spontaneous emission
2. Spontaneous emission hv . E. E;hv
If the atom is initially in the higher state E;, "N\
it can drop to the lower level by emitting a photon E: . E: hv

of energy hv. This is called the spontaneous  Fi9-C: Stimulated (induced) emission
emission.

3. Induced (stimulated) emission

Einstein pointed out that a third possibility, called induced emission, in which an
incident photon of energy hv, causes in an atom, a transition from a higher level to a lower level,
producing two photons in coherence (i.e. in the same phase). Einstein showed that the induced
emission has the same probability as the induced absorption. The rate of stimulated emission
depends on the intensity of the external field and also on the number of atoms in the upper state.

In this chapter we mainly deal with the Einstein coefficients governing the above-
mentioned processes, how light amplification takes place in presence of population inversion,
the quantum theory for transition rates and the line broadening mechanisms.

*Principle and requirements of a laser

The three main components of any laser device are the active medium, the pumping
source and the optical resonator. The active medium consists of a collection of atoms, molecules
or ions (in solid, liquid or gaseous form) which is capable of amplifying light waves. The laser
may be a three level laser or a four level laser.

The simplest kind is a three level laser, which uses an assembly of atoms (or molecules)
that have three states- a ground state, a metastable state and a higher excited state that can decay
to the metastable state. For lasing action, we want more atoms in the higher energy state Ef than
atoms in the lower state E;. If this is achieved by some method and a photon of energy
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hv=E, —E, is passed through the assembly, there will be more induced emissions from the

atoms in the higher level than induced absorptions by atoms in the lower level. The result will
be an amplification of the incident original light. This is the concept that underlies the operation
of a laser.

In a three level laser more than half the atoms must be in the metastable state for induced
emission. In a four level laser there are four levels- excited state, metastable state, intermediate
state and the ground state. The intermediate state is unstable. The laser transition is from
metastable state to

mterrln(:_dlate . state_. Th_e Ywwi Ez@:\&’ﬂ‘ E. E2
opulation inversion is
pop : E; E; oo oo[; E;
required between VY- Metastable state Metastable state v
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achieve population inversion.

Population inversion: Under ordinary conditions of thermal equilibrium the number of atoms
in the higher levels is considerably smaller than the number of atoms in the lower energy states.
For laser action, by some means, the atoms in the assembly are excited such that there is more
number of atoms in the higher state Er than in the lower state E;. This is known as population
inversion and is essential for laser action.

Optical pumping: This is a method to produce population inversion. In this method an external
source of light is used to excite atoms in the ground state to higher state. Atoms first absorb
photons from the external source and get excited to the higher states from which they finally
decay into metastable state.

Y E; Excited state
Metastable state: Laser action cannot occur if there are XMetastable state

state. When half the atoms are in each state, the rate of
induced emission will be equal to the rate of induced
absorption. So the assembly cannot ever have more than
half its atoms in the higher state.

c
only two states. This is because the process of optical :% Ez Ave
pumping induces transitions from ground state to the & hr\/\E/uE N>
. . s v=E£2—k1 N\N>
higher state as well as from the higher state to the lower 2 | EAYlYNe

£

a

Es /Intermediate state
E, Ground state

The lifetime of the excited atoms in the higher levels is of the order of nanoseconds.
Therefore the population inversion is usually not possible in higher levels. In order the
population inversion to takes place, the lifetime in a higher state is sufficiently large. Such long
lived excited state is known as metastable state.
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1.2 The Einstein’s A&B coefficients

Consider a system of atoms having two energy states E1 and E2. Let N1 and N2 be the
number of atoms per unit volume in the states 1 and 2 respectively. An atom which is initially
in a lower state can go to the higher state by absorbing a photon of energy,

E =E»-E1 = hv ZLZTC\/ = ho
27

E,-E 1) N2

h E,—e ¢¢ 00 e

Or, o =

Now we define the energy density u(w) such that u(w)dw
represents the radiation energy per unit volume within the frequency
interval ® and o + dw. The rate of induced (stimulated) absorption N
per unit volume is proportional to the energy density u(w) at a El_ao.o.o.aaloaao.o_
frequency o of the radiation field due to the external photons and the

number of atoms per unit volume in the lower state. © Ground state atom
® Excited atom
: dN
e (—QJ < Niu(w)
dt induced absorption
i.e.  Number of absorptions per unit time per unit volume, T2 = B2 Niu(w) (2

where, B2 is the coefficient of proportionality and is a characteristic of the energy levels. Now
let us consider the transitions from higher level to lower level. Einstein postulated that these
transitions are radiative. Atom goes to the lower level either through spontaneous emission or
through induced (stimulated) emission. The spontaneous emission takes place in the absence of
any external photon and is hence independent of the energy density u(w) of the radiation field.
So, the rate of spontaneous emission,

(% oC N2

dt
i.e. Uz = AaN2 (3)

But the induced emission depends on the energy density u(w) of the radiation field also. Thus
the rate of transition to the lower level,

[%J = Nou(o)
dt induced emission
i.e. Number of stimulated emissions per unit time per unit volume, T21 = B2iNou(w) (4)

The coefficients Az1, B21 and Biz are known as Einstein'’s coefficients. At thermal equilibrium
the rate of upward transition is equal to the rate of net downward transition. That is,

jspontaneous emission

B2 Niwu(w) = ANz + BaNou(w)
i.e. U(®)[Bi2 N1 —B21N2] = AaN:
u(o) — AuN, — Ax (5)
B,,N,-BxN, B &—B
12 N2 21
According to Boltzmann’s distribution formula,
BB o

& = e kgT = ekBT (6)
NZ

where, kg is the Boltzmann’s constant and ho = hv = E; — Ex.
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Then eqgn.5 becomes,

A 1
uw) = —x*— = Tm o ")
B12ekBT - le £ekBT -2
A21 A21

Treating a system of photons as a gas obeying Bose-Einstein statistic, the Planck’s law for
energy density of radiation in a medium of refractive index po can be calculated as,

ho’u’ 1 1
u((D) = 2 l.;o ho = 2 3 ho 2 3 (8)
e el n°C 7 T
ew -1 3 3¢ o 3 3
ho’ug hog

[In a radiation chamber or cavity with free space po = 1].
Comparing eqns.7 and 8 we get,

2.3 3.3
B, _ mc 3C ~ o, An  _ _h(‘)z P;O (9a)
Ay ho’u, B Tc
2.3 3.3
And By o T o, Au Dol (9b)
Ay ho g B, Tc
Fromegns.9aand 9b, Bi» = B2 = B. Also, we write A1 = A. (10)

Thus, the probabilities of stimulated absorption and stimulated emission are the same. The ratio
between A and B coefficients is given by eqn.9. In the absence of stimulated emission the correct
expression for u(w) would not have been derived. So in order to obtain the correct form of u(),
Einstein, in 1917, predicted the existence of stimulated emission.

At thermal equilibrium, using egn.10 in eqns.7, we get,
A, A

u((o) = I = o
B, —B,, B[e"BT —1}
ho
i.e. A DT (11)
Bu(o)

By eqn.11 it is clear that at thermal equilibrium at a temperature T, if o << klE;T , the number

of stimulated emissions (B) far exceeds the number of spontaneous emissions (A), while for

kT - .
® >> g the number of spontaneous emissions far exceeds the number of stimulated

emissions. For normal optical sources the temperature T ~ 10% K, then
keT _ 1.38x10%2J/Kx10°K
h 1.054x107**J.sec

For optical region, [wavelength 400nm to 700 nm;

8 15
For 400 nm, o = Z;SC = 2x3.14x3x10 = 4.71)(1015' O _ 4,71x10 _

400x10°° "k, T/ 1.31x10%
4

= 1.31x10% secL.
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o ~ 4x10%. That is, ©>> kB?T . Thus we find that at optical frequencies the emission is

predominantly due to the spontaneous transition and hence the emission from usual light
sources is incoherent.

2.3 2.3

_ TcC _ mc
By eqn.9b, B, = h_of’AZl = ho't, (12)
where, t, = irepresents the spontaneous lifetime of the upper level. (12a)

21

[The line-shape function *

The line-shape function is a real, nonnegative and usually normalized function. It is
used for the mathematical description of the line shape for an absorptive transition. The
transition may be electronic, rotational, or vibrational (i.e. visible, microwave or infrared
radiation). Spectral line shape describes the form of a feature, observed in spectroscopy,
corresponding to an energy change in anatom, molecule orion. Ideal line shapes
include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position,
maximum height and half-width. For each system the half-width of the shape function varies
with temperature, pressure (or concentration) and phase.

The Lorentzian line shape function centered about any arbitrary frequency wo, is given
by,

r

1t[1"2 +((o—(00)2}

where T is the energy width. Note that
the Lorentzian line shape function is a
normalized function SO that

TL(m)dQ):l.

—00

L(w) =

A Gaussian function is also a
useful line-shape function. Any source
of inhomogneous broadening such as
the Doppler shift or site differences of
molecules in crystals or solution can be
described as a Gaussian line-shape.

Gaussian

~
S -

7("’*‘”0)2
G(o) = L e v

I\

The third line shape that has a theoretical basis is the Voigt function, which is
a convolution of a Gaussian and a Lorentzian,

V(o) = TG (0')L(0-0")do’

The computation of a VVoigt function and its derivatives is more complicated than a Gaussian or
Lorentzian].
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1.2.1 Further discussion of Einstein coefficients

In our discussion so far, we have assumed that the atom is capable of interacting with
radiation of a particular frequency w. In general, the atom can interact with radiation over a wide
range of frequencies. The strength of interaction is a function of frequency, known as line-shape
function. Let g(w) represents the normalized line-function corresponding to the transition
between levels 1 and 2. The function is usually normalized according to,

Jo(0)do =1 (13)

Then, the number of atoms per unit volume in level-1 capable of interacting with
radiations of frequency range o and o+dm is

Nedo® = Nig(w)do

and the number corresponding to level-2 is
N2odo® = N2 g(w)do

Now taken into account of the line-function, the number of stimulated emissions per unit time
per unit volume is given by (modifying eqn.4),

[ = szleu(m)g(o))dm

. n’c’ ru(o)
Using eqn.12, = N o)do 14
g eq Zhugtspj 5 9(0) (14)
Now we consider two specific cases.
A A
(@)
u(w) s
g(w) u(®
co: >
Fig.a Fig.b

1. If the atoms are interacting with radiation whose spectrum is very broad compared to
that of g(w) as shown in fig.a, then we assume that over the region of integration where

. : u(m) . _ : . .
g(w) is appreciable # is essentially constant and can be taken outside the integral in
®

eqn.14. Then, using egn.13, eqn 14 becomes

2.3

TC

where, ® now represents the transmon frequency. Eqn.15 is consistent with eqn.4. Thus
eqn.15 represents the rate of stimulated emission per unit volume when the atom
interacts with the broad radiation.

F21—N
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2. In the other case, the atom is interacting with near monochromatic radiation. If the
frequency of the incident radiation is ', the u(w) curve will be sharply peaked at ® = ®’
as compared to g(w) as shown in fig.b. Then, we can take M :i?;) outside the

®° ®

integral of eqn.14. Thus,

el 9(0)') et
Iy = N, — 2/ do= N,—~ g(o')U 16
a = N (@)= Neaaee)u 9
where, U = Iu(m)dm (17)

where, U is the energy density of the near monochromatic field. [U is the energy density by all
frequencies, whereas u(w) is the energy per unit volume per unit frequency range.

Similarly, for interaction with near monochromatic radiation, the number of stimulated
absorptions per unit time per unit volume is given by (modifying eqn.2),
N 2.3
M = —5—g(o/)U (18)
ho ot
Absorption and emission cross sections: We know that the intensity and energy density of the
electromagnetic wave are related by,

I = Uy,
where, v = < is the wave velocity in the medium. Thus,
Ho
I
U= 1 = Rl (19)
Vv c

If n is the number of photons crossing a unit area per unit time (also known as flux of photons)
the intensity | is given by,

| = nho (20)
Using eqgns.18 and 19, eqn.18 becomes, (since, o =®'),

N,r?c? \ Lonhe' nc?
e = 113 3 (w)uo - 22 g(m)Nln = o,N;n (21)
h(l) Motsp c @ ”Otsp
n°c?
where, o, = —9(o 22
0 Moty () 2

o, has the dimensions of area and is known as the absorption cross section. Similarly, eqn.15
can be written as,

2.3 2.3
_ mc _ n°c’  p,nho
[21 = Ny ( ) - M2 7353 -
ho ugt,, ho'ut, ¢
2.2
m°c
= ———9g(o)N,n = o,N,n (23)
O Hots
n’c?
where, o, = ——0(o 24
. mzuéts,,g( ) (24)

Eqgns.22. and 24 show that the absorption and emission cross sections are equal and they are
functions of frequency w. They are related to the line broadening function g ((o) and the lifetime

tsp.
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1.3 Light amplification

Consider a collection of
atoms of a particular medium.
A near monochromatic beam of

frequency o is allowed to S S

propagate in the Z-direction EE— >

through the medium. In orderto ———— —— Z
lo(2) lo(z+dZ2)

obtain the expression for the
rate of change of intensity of
the beam as it propagates
through the medium, we < dz >

imagine two parallel plane

surfaces of equal area S such that the surfaces are perpendicular to the Z-axis, which passes
through their centers. Let dz be the separation between the two planes.

VVolume of the medium between the planes = Sdz
Number of stimulated absorptions per unit time = T'12 Sdz
Energy absorbed per unit time in the volume element Sdz = TI'12 Sdz ho
Energy gain by stimulated emission = I'21 Sdz ho

We can neglect the gain in energy due to spontaneous emissions because the radiations arising
out of it propagate in random directions. We assume that half of them propagate in the positive
z-direction and remaining half in the negative z-direction. Thus,

Net amount of energy absorbed per unit time in the volume
element Sdz and in the frequency interval ® and w+de = (I',, —I', )ho Sdz
Let lo(z) and lo(z+dz), respectively, be the intensities of the radiation entering the volume

element and that leaving it. Then,

Energy entering into the volume element per unit time lo(z) S
lo(z+dz) S

Assuming the change in energy of the radiation is linear as it propagates in the Z-direction,
we can write,

Energy leaving the volume element per unit time

ol,

|w(Z+dZ)S =1oS + Sdz
0z
Energy leaving the volume element per unittime = 1o S + 56'20, Sdz (25)
Net amount of energy leaving the volume element per unit time = a;z‘” Sdz

This must be equal to the negative of the net energy absorbed by the medium in between z and
z+dz per unit time. Thus,
aa'm Sdz = —(I,,-T,)ho Sdz
z
Using eqn.16 and 18 (with ' = ® and energy density U),

al, N,n’c? n’c’
P Sdz = - thg((D)U—Nthg((D)U ho Sdz
z O Koty O oty
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nic?
= mzugtspg(m)U(Nl—Nz)Sdz
al 2.3
or, o= —ﬁg(m)u(Nl—Nz) (26)
0'sp

The energy density U and the intensity |l are related through the equation,

o= VU ZLU (27)

Ko
where, v is the velocity of propagation of the wave through the medium and o is the
refractive index of the medium. Then eqn.26 becomes,

ol nc’ ol
e = — 2(N,—N
0z mzugtspg(m) c (N.-N.)
2.2
or, e - (@) (NN, )dz = oz (28)
® 0%sp
n’c’
where, amzmg((,l))(Nl—Nz) = = (29)
0'sp

Figure below is a typical plot of o with .
Integrating eqn.28, we get,

Inlo(z) = —0wz +C Go
Whenz =0, lo(z) = ls(0).
Then, C =Inls(0). Thus, we get,

In lo(z) = —awz + In 16(0)

Aw
i.e. In I“’(Z) = —0OeZ
1, (0)
Taking exponential and rearranging, we get,
lo(z) = 1,(0)e™™" (30) CIOO (0>

Now we consider the two cases.

Case (a): N,>N, . In this case aw is positive. Then by eqn.30 it is clear that the intensity of the

beam decreases exponentially. Hence at thermal equilibrium, if the number of atoms in the lower
level is greater than the number of atoms in the higher level, the energy of the beam decreases
exponentially as it propagates through the medium.

Case (b) : N,>N,. This case is known as population inversion. In this case a. is negative and

the intensity increases exponentially. That is, at thermal equilibrium if there are more atoms in
the excited states than the atoms in the lower level, the intensity of the beam increases
exponentially as it propagates through the medium. This is known as light amplification.



10 Lasers and Fibre Optics MCT

1.3.1 Threshold conditions for laser action

In an actual laser system, the active medium, which produces the light amplification, is
placed in between two parallel mirrors facing each other. This arrangement is known as an
optical resonator. The region between the mirrors is known as cavity. In order to produce laser
beam the oscillations must be sustained in the
cavity. This is possible only if the net losses
suffered by the beam must be compensated by M
the gain of the medium. The threshold and ! M,
under steady state operation of the laser system
they are exactly equal.

Let ‘d’ be the length of the active
medium. Let R1 and Rz, respectively, are the Active medium
reflectivities of the mirrors M1 and M at the
two ends of the laser resonator. The intensity
of the beam at one of the mirrors, say M is
represented by I. While travelling through the active medium the beam gets gain in energy due
to light amplification or suffers loss in energy due to absorption, scattering etc. in the laser
medium. By eqn.23 the beam gets amplified by the factor e “. The diminishing of the beam
depends on the passive parameters of the medium. The beam gets diminished by the factor e *.
Here, o represents the average loss per unit length due to all loss mechanisms (other than the
finite reflectivity) such as scattering loss, diffraction loss due to finite mirror size, etc. Now we
use a, =—y. Then,

Intensity of the beam when it reaches the mirror M; after travelling a distance ‘d’ in the
laser medium, I = elra)

P

—> Laser peam

A

d >

Intensity of the beam after reflection at the mirror Mz, 11 = I'R, = IR, e e ™

- |Rle(vfac)d
Intensity of the beam when it reaches the mirror M after traversing a further distance
‘d” in the laser medium, 1”7 = 1"} = |R gl glee) = IRV

Intensity of the beam after reflection at the mirror M2, I = I'R, IRlRZeZ(V’“‘”d

. . | .
The laser action takes place only if 1,>1 or, Tzzl. From the above equation we get, the

condition for the laser oscillation to begin is RleeZ”'%)d >1 (31)
The equality sign would correspond to the threshold value for oscillation. Remember for light
amplification population inversion is needed. Egn.31 can be written as,

N L 1,
Condition for laser oscillation is, ¥ > ———g%*¢

RlRZ
Taking exponential of eqn.32, we get,
2yd > 20, d-InR,R,
. 1
I.e. Y > a —ElanR2 (32)

[The RHS, which depends on the passive cavity parameters, is related to the quality factor Q of
the passive resonator. Later we will show that
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20.d = INRR,+Hd
or, NRR, = 20d—2PHod 5y g 2Hd (33)
cQ ct,
where, tc = 9:2& is the passive cavity lifetime of the resonator. (34)
® 2mv
Then, by eqn.33,
1 c
— = 20.d—-InR,R 35a
o g 2R, INEED
1 1
Or, a, ——InRR, = =2 35b
cad P ct, (35b)
Using eqgn.29 in eqn.32, we get,
nec? 1
———0(w)(N,—N,) > a.——InR,R
wzugtspg( )( 2 1) c 2d 1%2
Using eqgn.35b,
nec? i
———g(w)(N,-N,) > =%
wzuétspg( )(N,-N,) o
3.2 t 3.3 t
ie. TR VIS 1 N Sy Ol (36a)
n’c’ ( t, )g(w) n°c’ ( Q Jg(w)

3,,2
or, > Hov [t—J ! (36b)
c t. )g(w)

where, v is the oscillation frequency at the centre of the resonator mode, o is the refractive
index of the medium and c is the velocity of the electromagnetic wave in free space. Eqn.36
gives the threshold population inversion required for the laser action. The minimum threshold
value (corresponding to the equality) correspond to centre of the line where g(®) is maximum.

The method to produce population inversion is known as optical pumping. As the laser
medium is pumped harder and harder, the population inversion between the two levels goes on
increasing. The mode that lies nearest to the resonance frequency of the atomic system reaches
threshold first and begins to oscillate. As the pumping is still further increased the nearby modes
may also reach threshold and start oscillating.

By eqn.36, we can state the following conditions required to have the low threshold
value of population inversion.

Q

1. The value of, tc = P should be large. That is, Q must be large or cavity losses must be
v

small.

2. The value of g(») at the centre of line should be large. For a Lorentzian line g(w) =

T A®
2(n In2)’?
T A®

to smaller values of threshold population inversion.

3. Small values of tsp lead small values of threshold population inversion. That is the
relaxation times of transitions corresponding to spontaneous emission should be short. In
general, population inversion is more easily obtained on transitions which have longer
relaxation times.

and for a Gaussian line g(m) = . Thus, smaller values of line width A® lead
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4. By egn.36a it is clear that the value of threshold population inversion is approximately
(frequency dependence of other terms should be considered) proportional to w®. Hence it
IS much easier to obtain laser action at longer wavelengths (infrared region) as compared
to the shorter wavelengths (ultraviolet region).
Ruby laser as an example: In order to get an idea of the magnitude of population inversion
required for laser action we consider ruby laser. Ruby is a crystal of aluminum oxide Al20s
(corundum) doped with approximately 0.05 percent of chromium ions in the form of Cr.0g, so
that some Al atoms in the crystal lattice are replaced by Cr3* ions. We consider the laser to be
oscillating at the frequency corresponding to the peak of the emission line.

Population of Cr3* ions, percm®, N = Ni+ N2 = 1.6x10°

Value of g(w) at the peak of the line, = i (Lorentzian line shape)
T A®
2t 2t
.. Threshold population inversion density, N,—N, = 34V -+ = A
c’g(w) t, G2t
T A®
2.3 t 2 t
- 4“3" Avly _ 4%&& (37)
c vt Aot
[For Gaussian line shape Av in eqn.37 must be replaced by L}/]
(m1n2)"2
For ruby laser transition
Wavelength of ruby laser, Asree space = 694.3 nm
Refractive index of ruby rod nn = 1.76
}L —7
. Wavelength of light in the ruby rod A = —re = 694.3x10 ~4x10°cm
n, 1.76
10
v & = 30 sa0sect.
A 694.3x10

free space
Since frequency of light in the medium is same as the frequency in the free space. But
wavelengths are different.

Av ~ 1.5x10"sec.
tsp ~ 3x107° sec (38)
If “d’ is the length of the optical cavity, no is the refractive index of the medium filling
the cavity and ‘x’ is the fractional loss per round trip it can be shown that (later we see it),

2n,d

te = (—1) (39)
cln| ——
1-x
If length of the cavity is 5 cm and x = 10%, then
te 2x1.76x5 6x10°° sec (40)

3x10%“ In L )
1-0.1
4% Av tsp

Then, threshold population density in ruby laser, N, - N, = PER—
v C

4x3.14> 15x10" 3x10°

=X X — 1.1x10" Cr®* ions/cm?®.
(4><10’5) 4.3x10" 6x10

Q
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1.4 Line broadening mechanisms

The radiation coming out of a collection of atoms making transitions between two
energy levels is never perfectly monochromatic. Thus, there is broadening of spectral lines. This

line broadening is described in terms of line shape function g(w). Now we discuss some

important line-broadening mechanisms and the corresponding line shape functions. A study of
this is of great importance as it determines the operation characteristics of the laser, e.g. the
threshold population inversion, the number of oscillating modes etc. There are three types of
line broadening mechanisms and a convolution of all these three mechanisms.

(1) Collision/pressure broadening: This is due to the finite lifetime in quantum states owing
to collision.

We first consider the line-shape function
corresponding to the collisions that occur in a
collection of atoms in the gaseous form. There
are random collisions between atoms. Thus, an
atom when interacting with the incident
electromagnetic wave sees a field which
changes its phase abruptly at each collision.
Thus, the atom no longer sees a monochromatic
wave but instead a wave like that shown in the R
figure. If © is the average time between two
collisions, there is abrupt change in phase of the wave at time intervals t as shown in the figure.
Thus, in this case the line-shape function would be given by (apart from some proportionality
constant) the power spectrum of the field shown in the figure. The field of this type can be
written in the form,

E(t) = E,'™" (1)
where the phase constant ¢ remains constant for t, <t<t,+t 2

At each collision the phase ¢ changes abruptly. The frequency spread of such a wave is obtained
by a Fourier transform as given below.

1
I
1
I
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
I

to+t l to+t

E(u)) = 2_];1: '[ Eoei(wot+¢)e—iwtdt - Z J‘ Eoei{(wo—m)Hq)}dt
t :

Here o is the radiation (absorption or emission) frequency.

0

Put if(w,—o)t+o} = x
i.e. i(0,—w)dt = dx
E to+t E tot
Then, E - 0 xg - 0 X
u () 27i (0, — o) ;[ e 2mi (0, — ) [e :Ito
_ By [giflono)) T
2mi(w, —o)L o
_ E, _ei{(mo—m)(t0+r)+¢} B ei{(wo—m)t0+¢}i|
2mi (0, —o)L
_ EO _ei{(wo ~0)tg+(0y—0)T+o} . ei{(wo ~0)to+¢} :|
2mi(w, —o)L

= B gilloope (e 1]
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Thus, the frequency distribution of intensity (power spectrum) such a wave is given by,
@)« |[E(0) = E'(0)E(o)

EO —i{(0g-0)tg+o} [ ~i(y-w)t 1 Eo i{(wo—0)to+0} [ Li(wo—w)
- -0 0 1| 0 -1
” 2mi (0, — ) © [e } 2mi(w, — ) ° [e }
ES ~i(0g-o)t i(wp—o)t
o« ————|e " =1|lev -1
47* (o, —03)2 [ }[ }
o Eg _ |:1_ e—i(u)o—m)r _ ei(mo—w)r +1:|
47 (0, — )
2
o B0 . [2—008(0)0 — o) T+isin (0, —®)T—cos(w, —®)T—isin (o, —(D)‘L']
4n’ (co0 -
o E—g[Z—Zcos(w ~0)1] = E—S[Z—Zcos(w—m )]
4712(0)0—(0 ? ’ 4712(0)—(00 ? ’
2
. L{Z—Z{l—%inz(m}ﬂ
4 (0 —,) 2
B (o), ®
n° (0—oy) 2

Let P(t)dt represents the probability that the atom suffers a collision after a time interval
between t and t + dt. By kinetic theory of gases P(t)dr is given by,

T

1 -

P(t)dt = —e ™drt (4)

To
with, Tp(r)dr =1 ()
and T’EP(T)dT = 10 (6)

0
At any instant the radiation is from atoms that have different values of t. Thus, in order
to obtain the spectral density we must multiply I(®) by P(t)dt and integrate from 0 to c. Thus,
the frequency distribution of the radiation causing the transition is given by,

o0

g(w) oc I'((D)P(’l?)d’l?
0
2 T B
o B Lo e[ 2%
n’ (0—0,) To o 2
2 o T 3
= injle TDSinz(Hde’C,
nz((o—oao) To % 2

where, K is the proportionality constant. Put U = sinz(%jr and dV = e gdr, then

integrate using IUdV =UV - IVdU . Applying the limits first term reduces to zero.
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ax
Then using formulae, 2 sinA cosA = sin2A and Ieax sinbx dx = ﬁ[asin bx —bcos bx],
+
we get,
© T 2
je%sinz(—w_mojrdr S| _(0-0)
0 2 2 isz((’J_‘DO)Z
To
2 . 2 2.2
Then, g(w) = ——"— 1% —1(w %) = ok e ;
T ((D_(’OO) Ty 2 724‘(0)_(00)2 27 1+((D—(DO) Ty

To

The proportionality constant and hence the constant factor is adjusted such that jg(m)dm =1

Thus, we get,
T 1 T 1
glo) = = —~| =2 — (7)
T 1+(0-0,) T4 T 1+(0,—0) 14
The distribution g() given by egn.7 is known as a Lorentzian and is plotted in the figure below
(page 28). The peak of g(w) can be determined by the condition ;i_g =0.The peak liesat ® = o,
Q)
and has a value, Yo We can also find out the width at the half maximum, ;—0 That is,
T T
I 1
21 T | 1+ (o, —0))2 T
2 1
(0, —0)" = E
1
(0p—w) or (0—0w,) = =
To
Full width at half maximum, A® = 2 (8)
Ty

The mean time between collisions depends on the mean free path and average speed of
atoms in the gas. Hence, they depend upon pressure, temperature and mass of atoms. The
approximate expression for average collision time for monatomic gas is,

1 (2 %2

T, = 5 (— I\/IkBTj
8mpa“® \ 3

where, p is the pressure of the gas, a is the atomic radius, M is the atomic mass, kg is the

Boltzmann’s constant and T is the temperature.

2. Doppler broadening: This is due to thermal motion of atoms. Now we calculate the effect
of the thermal motions of the gas atoms. According to Kinetic theory, gas atoms undergo random
motions. When such a moving atom interacts with radiation, the apparent frequency of the
incident wave is different from the frequency seen from a stationary atom. This is called Doppler
Effect. Due to this effect there is shifting of the resonance frequency of the atom. Let ® be the
frequency of the incident wave. Also, we assume that the wave is travelling along the Z-axis. If
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Vv is the component of velocity of the atom in the z-direction, the relative velocity of the wave
with respect to the atom is ¢ — vz. Then the

Apparent frequency, Vv = C;Vz
Original frequency, v = %
v c
Or, v = v(l— v, j
c
i.e. 2nv' = 2nv(L_YAj
C
Thus, the apparent angular frequency as seen by the atom is given by,
o m(l_ﬁj (93)
C

-1

or, ® m'(l—ﬁj ~ m'(1+ﬁj (9b)
C C

Let wo be the resonant frequency (transition frequency) of the atom. (w21 = ®"). In order that

the incident radiation may interact strongly with the atom, the resonant frequency of the atom

must be equal to the apparent frequency of the wave, i.e. ®, =®". Then by eqn.9b,

® = m0(1+%j (10)

Thus, the effect of motion of the atom is to change the resonant frequency of the atom.
According to the Maxwell-Boltzmann distribution, the probability of an atom having z-
component of velocity lying between v; and v; + dv; is given by,

% B va
P(v,)dv, :[ M ] e[ZKBTJde (11)
2nk,T

where, M is the mass of the atom, T is the temperature of the gas and kg is the Boltzmann’s
constant.

By eqn.10, 2 = 1+£
o, c
ie. Y. o9 4 - 97%
C (O} ®,
Or, v, = (m_w"]c (12a)
W,
c
and, dv; = —do (12b)
®,

The probability g(o)dm that the transition frequency lies between © and o + dw is same as the
probability that the z-component of velocity lies between v; and v; + dv.. Using eqns.12a and b
in eqn.11 we get,
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Mcz(oo—oao)2 MCZ(‘”_(’JO)Z
C M % { KoTal ] Mc? % [ KTl J
g(w)do = — e do = | —— | € do (13)
2nk Ty
This corresponds to the Gaussian distribution. The distribution curve is plotted in the figure

below (page 19). At the peak g_g =0. Then we get the peak is obtained for o = ®,. For this
®

2

b
frequency, the maximum value of g() is [ j . For half maximum,

2nk T
M(:Z((Jlk(no)2
Mc? %1 _ Me2 )2 e‘[ 2aTof J
2nk ,Tw} ) 2 2nk  To;
2 _ 2
In2 = M
2k T,
o m(szTlnzj%
° U Mc?
el
.. Full width at half maximum Ao = 2((0—0)0) = 2030(%%;2) (14)
Me2 )2 2 (In2)?
Peak value of g(w) = | —— = Z|=
2nk Ty Ao\ =

Thus, in terms of Aw, the Gaussian line-shape function can be written as,

g) = i(

_4(In (”3—0)0)2
In2 %e 4(in2) (o)
A®

) (15)
T

3. Natural broadening: This is the inherent line width as a result of the finite lifetime of the
excited states corresponding to the spontaneous emission. The rate of transition from the level
2 to 1corresponding to spontaneous emission is given by eqn.3 sec.1.2.

(dNZJ = —AxuN>
dt spontaneous emission
Rearranging and integrating, we get,
N, = Ny (16)
The energy of the photon emitted is given by,
ho, = E,—E,

Then the energy emitted per unit time per unit volume is given by,
(dNﬂj

dt spontaneous emission
AN, e ho, = A,N,hoe a7

This equation gives the variation of intensity of the spontaneously emitted radiation. So, the
electric field associated with the spontaneous emission can be assumed to be of the form,

W(t) = ha, = A,,N,ho,
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t
E(t) = Ee “ve (18)
where, tsp spontaneous emission lifetime and o, is the emission frequency. Let ® be the

frequency of the incident radiation. Then the frequency spectrum corresponding to the field
given by egn.18 is obtained by the Fourier transform of the form

© -t ) ) o {i(mo—m)—i}t
E(@)= [Ee "e™e™dt = [Ege o) dt
0 0

e
[
o+
—
—_
e
IS}
|
e
~—
|
a
—
N —
-+
1
X

dt = dx
. 1
{|(0)0—O))—2t}
sp
© i(wy-0)- L )
Then E(w) = Eo 1 Iexdx = E e{ Zt”}

|
m
o
®
—_
=
§
e
$
<
=
|
—
5

= S [0-1] = S (19)
i(m —0))—i i(m—w )Jri
’ 2t,, vty
Thus, the frequency distribution of intensity (power spectrum) is given by,
@) « [E(o) = E(0)E (o)
EO EO
) i(0-o )Jri —i(0—0 )+i
vt vt
2
oc E, >
1
((’3“’30)2+(2th
42 K
- Kz 1 = 2 > 2 (20)
(0-aw,) o 1+4t (0 —wy)

sp
By applying the normalization condition, (refer eqn.13 sec.1.2.1)
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Ig (0)do =1
the proportionality constant K can be evaluated as,
K= 1 (21)
2mt,
Then the normalized lineshape function is
2t, 1
g(o) = =2 — (22)
T 1+4(c0—030) to
dg

This is again Lorentzian. Using G =0, we get the peak of g(w) lies at ® = w,and is equal to
®

2t
—=L  Then the frequency ' corresponds to the half maximum is obtained by,

T
t, _ 2, 1
n T | 1+4(0' ~w,) 5
. a 1
Then, ' ~®, = Ao = 2, (23) Lo} 9(e—00) A

Thus, full width at half maximum
(FWHM) is given by,
Aoy = ti (24)

sp
Then egn.22 becomes,

Gaussian

1

TA® —o. Y
“1144) O %0
Ao,

J(w) = (25)

Lorentzian

4. Voigt profile: In general, all the
three mechanisms may be present
simultaneously and the resultant line-
shape function can be obtained by , , , , , ,
performing a convolution of the _15 1 g5 0 05 1 15 (0-0,)

different line shapes, known as voigt  gyym: Full width at half maximum Ao,
profile.

[

If any one of the broadening mechanisms dominates over the others, then the line-shape
function would correspond to the dominant mechanism. For example, the Doppler-broadened
line width corresponding to the 6328A transition of Ne in He-Ne laser can be calculated using
eqn.14. It is about 1700 MHz. For this transition the line width due to collision broadening at a
pressure of 0.5 Torr is about 0.64 MHz, whereas that for natural broadening is about 20 MHz.
Thus for He-Ne laser the Doppler broadening dominates over natural and collision broadening.

The line broadening mechanisms we have seen is again broadly classified under
homogeneous and inhomogeneous broadening. In the case of homogeneous broadening the
response of each atom is identical. Certain line broadening mechanisms like collision
broadening or natural broadening come under the class of homogeneous broadening, which have
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Lorentzian line shape. In the case of inhomogeneous broadening the response of different atoms
are different. Doppler broadening or broadening produced by local inhomogeneities in a crystal
lattice come under the class of inhomogeneous broadening and their line shapes are Gaussian.
[For further study refer chapter-4: Radiative transitions and emission line width: Laser
fundamentals- second edition by William T Silfvast].

1.5 Laser rate equations

The laser rate equations govern the rate at which the populations of various levels change
under the action of a pump (refer optical pumping) and in presence of the laser radiation. It
provides a convenient means of studying the time dependence of the atomic populations of
various levels under the presence of radiation at frequencies corresponding to the different
transitions of the atoms. It also gives the steady state population difference between the actual
levels involved in the laser transition. This helps one to know whether an inversion of population
is achievable in a transition. If the population inversion is achievable one can find out the
minimum pumping rate required for the continuous wave operation of the laser.

1.5.1 The Two-Level System

We first consider a two-level system E: — N2
consisting of energy levels E; and E». Let Ny and
N2, respectively, be the number of atoms per unit Pump
volume. Let a monochromatic radiation of anno N>
frequency o with energy density u be incident on
the system. Then the number of induced 1
absorptions per unit volume per unit time is given E:
by egn.18 sec.1.2.1.

N1

71:2C3
I = hm3—ugtspg((D)UN1 = W,,N, 1)
h n’c’
where, W = ———g(o)u 2
12 hof’uf,tsp g( ) (2)
The number of stimulated emissions from E> to E: per unit time per unit volume is given by
egn. 16 sec.1.2.1.

2
n°c?

Iy = WQ(W)UNZ = W21N2 = W12N2 (3)
0'sp
. TEZC3
since, Wa = Wg(ﬁ))u = W (4)
0%sp

In addition to these two transitions, there is spontaneous transition from E to E:1. This includes
the radiative and nonradiative transitions. The number of spontaneous transitions per unit time
per unit volume is proportional to N». That is, by eqn.3 sec.1.2

Uit = TaN2 5)
Since there are radiative and nonradiative transitions,
T = A21 +SZl (6)
Thus, we can write the rate of change populations in the two energy levels as,
dN
2 = FlZ_FZI_UZl = le(Nl_Nz)_Tlez (7)

dt
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and, % = T,+T,,+U, = -W,(N,—N,)+T,N, 8)
Adding eqns.7 and 8, we get,

%(N1+N2) =0
ie. N,+N, = constant = N 9)

Eqgn.9 is nothing but it is the fact that the total number of atoms per unit volume is a constant.
Steady state case: At steady state,

ﬂ = O = sz

dt dt

Then from eqn.7 we get,

le(Nl_Nz)_T21N2 =0

Ie. leNl—(W12+T21)N2 =0

Or, & = L (10)
Nl W12+T21

Since W,, and T,, are positive quantities, N2 is always less than Ni. That is, we can never

achieve a steady state population inversion by optical pumping between just two levels. For
steady state populations, by subtracting 1 from egn.10, we can write,

No g o0 W
Nl W12 +T21
ie. N, - N, — W, —W, - Ty - _ Ty (11)
Nl W12 +T21 WlZ +T21
Similarly adding 1 to eqn.10, we get,
N, +N, _ W, +W,, +T,, _ 2W, +T,, (12)
Nl W12 +T21 W12 +T21
Dividing eqn.11 by egn.12 we get,
N2 — Nl - _ T21
N, + N, 2W,, +T,,
. AN 1
I.e. —_— = — (13)
N 1+—2W12
T21

Here, AN =N, —N, is the population difference between the two levels. If we assume that the
transitions from the levels E> to E; is mostly radiative (spontaneous radiative), by eqn.6,

Ta = A,+S,, = An (14)
Now we introduce a lineshape function, g(m)such that it is normalized to have a value equal to
1 at the center of the line where © = ®,. That is,
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- g(w)
g(w) = (15)
(©) = So0)
Since g(o)<g(w,) forall ®, we have 0<§(w)<1. Using eqn.27 sec.1.3 and eqn.15 in eqn.2
we get,

n’c’ n’c® TR |
Wy = ——M = ro-
e L e (OLCO
W, _ % | ol
- ® ®
Ty hwsugtsp ° ( )g( ’ ) cTy
Using eqgn.14 and eqn.12a sec.1.2,
e’ ol n’c?
= — = I 16
o 9(0)s0) - = e a(0)e(a) (19)
Using.16 in egn.13,
AN 1 _ 1
N n’c’
1+ 1+2 I
S 5z () (0s)
= — |1 = _I; (17)
14— § ~
+ ho'y G(w) 1+(Isjg(w)
2n’c’g(w,)
thHZ
here, |l = ———%— 18
where + % g (o) (18)

is called the saturation intensity. In order to understand what Is represents we consider the case
of the interaction of a monochromatic wave of frequency wo with a two-level system. In this

case by eqn.15, § ()= 1. Then eqn.17 becomes,
AN 1

Now we consider the following three cases.
Case-1: If | << Is, then the difference in the population densities of the two levels AN is
independent of the intensity of the incident radiation.
Case-2: If | is comparable to Is, AN becomes a function of I.
Case-3: If | =I5, AN has a value half that of the value for very low incident intensities (case-1).
We have, by eqn.29 sec.1.3, the loss/gain coefficient o in terms of AN as,
n’c’
oa = —————0g(o)AN
© Moty 9()

(19)

Using eqn.17,

= = — 2 (20)

where, a = ———g(o)N (21)
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For small incident intensities, i.e. | << Is, by eqn.20, o reduces to aw. Or, o is the loss coefficient
corresponds to small signal loss.
By eqn.28 sec.1.3, we have,

a,l

I
a ol = —— (22)
dz ).
1+| —|6(w)
IS
For | << |5, we get the variation of | with z is exponential and for | = Is, the variation is linear.
Thus, we see that the attenuation caused by a medium decreases as the incident intensity
increases to a value comparable to the saturation intensity. Later we will see that organic dyes
having reasonably low values of Is are used as saturable absorbers in mode locking and Q-
switching of lasers.

Problem: Obtain the variation of | with z.

We can write eqn.22 as,

{u(ag(m)}% = —aydz

i.e. $+@dl = —a,dz
Integrating we get,
dl §(w) ~
J-T+T-[dl - —(X,OIdZ
i.e. In(l)+@l = —a,z+C (23)

The constant of integration C can be evaluated by applying the initial condition that | = Io when
z=0. That is,

|n(|0)+g(l°°)|O - C
Then eqgn.23 can be written as,
In(l)+@l = —aoz+ln(10)+g(lm)10
i.e. In[%j+@(l—lo) = -0,z (24)
0 S

Eqgn.24 gives the variation of | with z. The first term in the LHS corresponds to the exponential
variation and the second term that of the linear variation.

1.5.2 Three-Level Laser System

Consider a three-level laser system as shown in the figure. All the three levels are
assumed as nondegenerate. (Each energy eigen value has only one wave function. Not more
than one eigen functions have same energy eigen value). the optical pumping is applied for the
1 — 3 transition. The lasing transition is 2 — 1. The pump lifts the atoms from the level 1 to
the level 3. Atoms in the level 3 undergo nonradiative transition to the level 2 rapidly. For lasing
transition to take place the level 2 should be metastable and there are more atoms in the
metastable level 2 than the atoms in the ground level 1. The level 3 may be a broad level or a
group of levels.
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Let N1, N2 and N3 be the number of atoms per unit volume in the levels with energy
values E1, E2 and Ez respectively. Since only these three levels are populated and the transitions
take place only between these levels, we can write,

N1+ N2+Ns = N (1) 3
. . E3 A N3
where, N is the total number of atoms per unit
volume. Number of atoms in the level 3 may be
changed because of the transition 1—3 by induced = 2 N>
absorption, stimulated emission 3—1 and the
nonradiative transition 3—2. Thus, Pump Laser
Rate of change of population of level 3, M N>
dN, = WN,-W N, -T,,N,
dt p p 1
E: Y N1

Wp(Nl_Ns)_Tzst (2)

where, W is a quantity proportional to the Einstein coefficient B1z and the pump beam energy
density. (Suffix p stands for pumping transition). W,N1 represents the number of induced
absorptions per unit time per unit volume due to 1—3 transition. W,Ns represents the number
of stimulated emissions per unit time per unit volume associated with 3—1 transition.
Spontaneous transition 3—1 is neglected because in practical laser systems the atoms in the
level 3 almost instantaneously undergo nonradiative transition to level 2. The term T,,N,

represents the number of atoms that undergo transition 3—2 per unit time per unit volume. Now
we write,

T32 = A32 +S32 (3)
where, A,, is the Einstein coefficient corresponding to the spontaneous transition 3—2 and S,,
represents the nonradiative transition rate from level 3 to level 2.

Rate of change of population of level 2, dd'\tlz = WN,-WN, +T,N,-T,N,

V\/,(Nl—N2)+T32N3—T21N2 (4)

where, W, N, gives the number of atoms per unit time per unit volume coming from level 1by
stimulated transition. (Suffix | stands for laser transition). The term W, N, represents number of

atoms leaving from level 2 per unit time per unit volume by induced transition 2—1. Here W,
represents the stimulated transition rate per atom between levels 1 and 2. By referring eqn.2
sec.1.5.1 and eqn.27 sec.1.3 we can write,

n’c’ 1ol n’c’
Wi = o)L = A, 0, (o)I 5
= et 2O T g A (@)l )

where, I is the intensity of radiation in the 2—1 transition and g, (®) is the lineshape function
describing the transitions between levels 1 and 2. Further,

Toar = Ay +S, (6)
The term T,,N,represents the number of atoms that undergo transition 3—2 per unit time per

unit volume and T,,N, gives the number of atoms undergo spontaneous transition from 2—1
per unit time per unit volume. The quantity W, is proportional to Einstein coefficient B21 (refer
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eqn.12 sec.1.2) and the energy density associated with the lasing transition 2—1. The quantity
T,, represents the net spontaneous relaxation rate from level 2 to level 1. If this transition is

predominantly radiative T, is approximately the same as the Einstein coefficient Azi.

Similarly,

Rate of change of population of level 1, % = W N, -W)N, + WN, -WN, +T,N,

= Wp(Ns_N1)+V\/|(N2_N1)+T21N2 (7)

where, the first term represents the stimulated transitions between levels 1 and 3 by optical
pumping, the second term represents the stimulated transition by lasing action and the third term
represents spontaneous transition from level 2 to level 1.

By adding eqgns.2, 4 and 7 we can easily show that,

dN, AN, N, _ @
dt  dt  dt

Eqgn.8 is consistent with eqn.1. Eqns.2, 4 and 7 are referred to as the rate equations. These
equations give the rate change of populations of the three levels in a three-level laser system in

terms of W, and W.
To solve these for N1, N2 and N3 we use the steady state conditions. At the steady state
dN, _ dN, _ dN =0. Then from egn.2 we get,
dt dt
WN, —W N, -T,N, = 0
ie. (W, +T,, )N, = WN,
W
N3 = ( £ N, ©
W+ T,
From eqn.4 we get,
VV|N1 —V\/|N2 +T32N3 _T21N2 =0
i.e (W, +T,)N WN, +T,,N WN, +T. W, N
1.€. + = + = + P
| 21 2 1" Y1 327 %3 1" V1 32 Wp +-|-32 1
_ Tw Y
= | Wi | N
W+ T,
T,W, )|
ie N = vm+( z p} N, (10)
I W, + Ty, ) |(W+Ty)
— VVI T32Wp
= + N,
_(VV| +T,) (Wp +T32)(V\/| +Ty)
I T, W
N,-N, = Y + =t N; =N,
}W+H)(M+EXW+H)
— VV| T32Wp
= + -1|N,
jw+u)(m+ng+g)
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) ¥ T W, = (W, + Ty, ) (W +T,) N
W +T32)(V\/| +Ty) '

N = Ni+ Na+ Na= [W +T32)+T32W +(Wp+T32)(VV. +T21)]N1+£ W, JNl

(wp +T32)(V\/| +T,) W, +T,,
W, (Wp +T32)+T32Wp +(Wp +T32)(V\/| + T )+ W, (W, +T,,) \
(Wp +T32)(W, +Ty) !

W (W, + T )+ T W, — (W, + T ) (W + T,
N W (W, + T )+ T W, + (W, + Ty ) (W + Ty )+ W, (W, +T,,)

Wp (T32 - T21) - T32T21
3WpV\/| + 2WpT21 +WpT32 +2W T, + T, T,

(11)

Necessary conditions for population inversion: In order to obtain population inversion
N, > N,. Thatis N, — N, must be positive. From eqn.11 it is clear that, this is possible only if

the following two conditions are satisfied.

Condition.1: T,>T, (12a)
Since the relaxation times of atoms in levels 3 and 2 are inversely proportional to the
corresponding relaxation rates, according to eqn.12a, in order to attain population
inversion the lifetime of level 3 must be at least smaller than the lifetime of level 2.

Condition.2: W (T, =Ty ) > T, Ty (12b)

In order to attain population inversion a minimum pump power is required. According
to egn.12b, the minimum pump power required is given by,
Wpt (Tsz _T21) = T, Ty

Minimum pump power, W, = Tolor (13a)
Tsz _T21
If T,, >>T,,, Wit Tar (13b)
That is, for obtaining population inversion W, should be greater than W, . [Suffix t for
threshold].
Under the same approximation, eqn.11 becomes,
N, - N, N W, T, =T, T,y
N 3W,W, +W, T, +2W T, + T, T,
~ (W, +To1) T (W) (14a)
3W, W, +(W,+T,, ) T, +2WT,, . (3W, +2T,, )W,
+
(Wp +T21)T32 (Wp +T21)T32

Special cases: For low laser powers, i.e. when W, very small compared to T2 (rate of loss of
energy by spontaneous transition from level 2 to level 1), we can neglect terms containing W,
in eqn.11. Thus,
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u ~ Wp (T32 B T21) B T32T21
N 2W T, +W T, + T, T,

We also assume that T3z >> To1. Then,
Nz - Nl ~ WpT32 _T32T21 _ Wp _T21

N W T, + T, Ty W+ Ty,

(We may get this result from eqn.14a by simply W, —0).
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(14b)

Under this approximation, for population inversion, we must have W, >T,,. From

eqn.14b it is clear that the population inversion is independent of the energy corresponding to
the laser transition (W, ). Since N, — N, is negative a. is negative (eqn.29 sec.1.3) and hence

by eqn.30, sec.1.3, the intensity of the beam grows exponentially.
By eqn.29 secl1.3

n’c?
= G0 =—— N,-N
i a wzuétspg(m)( .~ N;)
Using eqgn.14a,
(Wp_T2l)
202 W +T
1= ona 9N :Ewp+2‘2rl ) W, (3w YO2T w
Holsp +( p 32) | 1+( ot 32) |
(Wp +Ty ) Ty (Wp +Ty ) Ty
2,2 W -,
where, Yo = %g(m)NM (16)
O Hotg, (Wp +T21)
Using egn.5 in eqn.15, with g, (o) =g(w) and I, =1, we get,
_ Y
Y = Onzcz
(3w, +2T,, )FAﬂg (o)1
1+ Ho
(Wp+T21)T32
Using eqgn.15 sec.1.5.1,
- Yo — Yo
2.2 ~
W, +2T,) " AL 11 (o)1
1+( i 32)h0)3p§ 21g(m)g(0)o) ' hmsug(wp+T21)T32
(Wp i ) To n’c? A, g (o, )(3Wp +2T,, )
= To (17)
1+[|'jg(m)
ho’ul (W, +T, )T,
where, |5 = O (W T ) T (18)

n’c’A,g () (3Wp +2T,, )

is the saturation ntensity.
For high laser powers: Assuming T3z >> T»1, eqn.11 becomes,
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Nz - N1 WpT32 _T32T21
N 3W, W, +W, T, +2W T,
Assuming, W, >>W,,
Nz - N1 ~ WpT32 _T32T21 — Wstz _T32T21 (19)
N 3W, W, +2W,T,, W, (3W,+2T,, )

Under this approximation, the population inversion is inversely proportional to W, .

Hence a.» is negative, but its value is inversely proportional to W, . In such cases (L“’ in egn.26,
z

sec.1.3, is independent of |, and the intensity of the beam grows only linearly with distance.
Now we rewrite eqn.14b as,

AN W Ty
N W, +T,,
Or, NW, —NT,, =~ ANW, +ANT,,
W, ( N —ZANJ . Tﬂ( N +2AN j (20)
where, AN =N, —N,. Cancelling 2 from both sides, eqn.16 becomes,
W (N-AN) =~ T, (N+AN) (21)

The LHS of this equation represents the number of atoms per unit volume in level 1 is lifted to
level 2 per unit time and the RHS represents the number of atoms per unit volume in the level
3 that decays to level 1 per unit time.

For a three level laser system, since the transition rate at level 3 is very large, atoms of
level 3 drops to level 2 so quickly, the number of atoms in the level 3 is very small. Thus,

N ~ Ni+Nz = 2N, +N,—N, = 2N, + AN

N—AN and N2=N-Nj; = N+AN

Q

Or, N1 (22)

Then egn.20 becomes,
WN, » T,N, (23)
The LHS of eqn.23 represents the number of atoms being lifted (by the pump) per unit volume
per unit time from level 1 to level 2 via level 3 and the RHS corresponds to the spontaneous
emission rate per unit volume from level 2 to level 1. These rates must be equal under steady
state conditions for W, = 0, i.e. below the threshold.
Now we estimate the threshold pumping power required to start the laser oscillations. In
this case the threshold inversion is very small compared to N. That is, N,—N, <<N, or

N, ~ N, zg Then by eqn.23, W, ~T,,. Now the number of atoms being pumped per unit
time per unit volume from level 1 to level 3 is WN, . If v, represents the average pump
frequency corresponding to the excitation from E: to Es, the power required per unit volume is,

P = W,Nhv, (24)

Thus, the threshold pump power for laser oscillation is given by,
P = T,N,hv, (25)
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Also, assuming the transition from level 2 to level 1 is mainly radiative, by eqn.6,
T~ Ay
N _ thp
Hence, Pn =~ AZlEhvp = =

sp

(26)

Example: Ruby laser
Ruby laser is a three level laser system. By eqn.14b for population inversion, we must
have,

W >T, ~Ax = —= —— = 330sec, (20)

We now calculate the minimum amount of pump power needed to maintain population
inversion. To maintain population inversion the loss by spontaneous emission at the level 2 must
be compensated. [In eqn.4 we can neglect first term since AN is small and second term since N3
is small].

Rate at which atoms decay from the upper level (laser level) = N2T2
Energy needed to lift a photon from level 1 to level 2 = hvp
where, vy is the average pump frequency.
Minimum power needed to maintain N2 atoms in the level 2, P = N2T21 hvp = Nohv,

sp
Since AN is small, by eqn.19, N2 ~ %

Therefore, the threshold pumping power per unit volume required to maintain population
inversion in a three level laser system is,

Nhv, — 1.6x10"x6.63x10™ x6.25x10"

2t,, 2x3x10°°
1100 watt/cm?.
If we assume that the efficiency of the pumping source is 25% and also that only 25% is
absorbed in passage through the ruby rod,

Q

Py

Q

Threshold electrical power needed = &z 18 kw/cm?®

0.25x0.25

This is consistent with the threshold power determined experimentally.

Under pulsed operation (laser operates in pulses) if we assume that the pumping pulse
is much shorter than the lifetime of level 2, then the atoms excited to the laser level do not
appreciably decay during the duration of the pulse. Then the

Nhv
Threshold pump energy, Uyt = 5 P per unit volume of the active medium.

For ruby laser, Uyt is approximately 54 J/cm?® (time not 1 sec).
Because of the following factors the ruby laser does not need too large pumping power.
1. The absorption band of ruby crystal is very well matched to the emission spectrum
of available pump lamps so that the pumping efficiency is quite high.
2. Most of the atoms pumped to level 3 drop down to level 2, which has a very long
lifetime (3x107%sec), is nearly radiative.
3. Linewidth of the laser transition is also very narrow.
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1.5.3 The Four-Level Laser System

The main problem of a three-level laser

is that one has to lift more than the 50% of the — N, E. Excited state

atoms in the ground level for achieving the :East nonradiative transition
population inversion. This is not a problem in 5 Es—rg Metastable state

a four-level laser. A four-level laser is shown G 3 Avivine L aser

in the figure. Let Ni, Nz, Ns and N« (/| ‘i Avivadrs
respectively be the populations of the levels hv, £ E, N,y N>

with energies E1, E2, Ez and Es. Level 1 is the E Intermediate state
ground level and levels 2, 3 and 4 are excited a

states. Atoms from level 1 are first pumped to L2 £, Ground state
level 4 and these atoms then make fast
nonradiative relaxations to the level 3, which is the metastable state with longer lifetime. Since
the level 2 has a very small lifetime, there is no accumulation of atoms in the level 2 and hence
there is a population inversion between the levels 3 and 2. The transition from level 3 to level 2
forms the laser transition.

We now write the rate equations for the different levels. Number of atoms in the level 4
may be changed because of the transition 1—4 by induced absorption, stimulated emission 4—1
and the spontaneous emission and the nonradiative transition from level 4—3. Also, we neglect
the spontaneous emissions and nonradiative transitions from level 4 to levels 2 and 1 (i.e. T2 =
T4 = 0). Thus, the rate equation for the level 4 is,

dN,

dt
where, Tas = A+S, (2)
The atoms in the level 3 changes due to radiative (spontaneous emission) and nonradiative
transitions from level 4 to level 3, induced emission from level 3 to level 2, induced absorption

from level 2 to level 3 and spontaneous emission and nonradiative transition from 3 to 2. Thus,
the rate equation for the level 3 can be written as,

Wp(Nl_N4)_T43N4 (1)

dN
d_ts = W, (N, —N;)+ TN, - T,N, @)
n’c?
where, W, = mAsz%(@)L 4)
and T32 = A32 +S32 (5)

The number of atoms in the level 2 changes mainly due to the induced transitions between 3
and 2, the spontaneous and nonradiative transitions from 3 to 2 and spontaneous and
nonradiative transition from 2 to 3. Thus,

dN,
dt
where, Taa = A, +S, @)
Finally, in the level 1, we consider only the induced transitions between 4 and 1 due to pumping
and the spontaneous and nonradiative transitions between 2 and 1. Thus,
dN,
dt
Since the total number of toms (in all the levels) is a constant,

_\N|(N2_N3)+T32N3_T21N2 (6)

= _Wp(Nl_N4)+T21N2 (8)
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N = N, +N,+N;+N,
Under steady state conditions,
dN, _ dN, _ dN, _ dN,

= =0
dt dt dt dt
Then by eqgn.1,
Wp (Nl - N4) = T43N4
ie. W,N, = (W, +T,)N,
i.e. Ny W,
N W, +T,,
W
Or, Ns = PN,
W, +T,,
If the relaxation from level 4 to level 3 is very rapid,
T43 >> Wp
w
Then, Ns ~ T_le ;i.e. Na<<Ni;0r, Ns=0
43

Applying this approximation to other equations we get,
By eqn.8, using eqn.12,

WN, W,T,,
T21N2 = W N -W = p Nl

"W, + T, W, +T,,
W,T,
ie. Ny = | 2% N,
T (W, +T,

Q
—~ |~ 7/
Bl
N—
Z
iy

By eqn.6 N, = W +T21) N. = (\NI +Tzl) 1 W, T,
| i Ta +VV|) i (T32 +VV,) T (W +T,, !
. W +T21)%N
= 1
(T, +W,) T,

Then, from eqns.13b and 14b, we get,
W +T,, ) W W T,-T
N,—N, ~ (M) 21)—"N1—(—p] N, ={—( 2T }Wle
(T32 + VVI ) TZl T21 (TSZ + VVI )T21

By eqgns.12b, 13b and 14b
N~ N, +N,+N;+N, = N, +N,+N,

W, (W +T,) W,
1+ Nl Nl
T, (T, +W,) Ty,

N
{ Ty + W) Ty + W, (T, + W)+ (V\/|+T21)Wp}N
1

Q

Q

(T + W) T,
W, (T + T )+ T T + W (T, +2W, )}N
1

Q

(To, + W) T,

31

9)

(10)

(11)

(12a)

(12b)

(13a)

(13b)

(14a)

(14b)

(15)

(16)
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Then from eqgns.15 and 16,
N, —N, N W, (T, - Ty, )
N W, (Top + Ty )+ Ty T + W (T, +2W, )
Eqn.17 shows that the population inversion between the levels 2 and 3 is possible only if
T,, > T,,. If we assume that T21 is much greater than Tsz, we can neglect T3z in the sum and the

difference terms in eqn.17. Then,

17

N, —N, N WpT21 ~ WP
N W, T+ T Ty + W (T +2W, ) W, +T, + Wi (T, +2W,)
21
W
~ [ - ] L (18)
W, +T,, . Wi (T, +2W, )
T, (W, +T,,)

From the eqn.18 we see that even for very small pump rates one can obtain population inversion
between levels 3 and 2. This is contrary to what we found in the case of a three-level system,
where there is a minimum pump rate Wy required to achieve population inversion.
The first factor of eqn.18, which is independent of Wi, gives the small signal gain
coefficient, whereas the second factor, which depends on W, gives the saturation behavior.
Just below the threshold of the laser oscillation, W, = 0, eqn.18 becomes,
AN _ NoN, W (19)
N N W, + T,
Example.1: The Nd: YAG laser is a four-level system with the following parameters. Estimate
the threshold pumping rate.
Ao=1.06 um; Or, v = 2.83x10"Hz ; Av = 1.95x10" Hz; vp = 4x10"Hz
tsp = 2.3x10%s N = 6x10" per cm®; po = 1.82
Resonator cavity length d =7 cm; R1 = 1 m; R2 = 0.90 m; Other loss factors neglected.

By egn.33 sec.1.3.1, since o = 0,

INRR, =2a,d—2ed o _2d
ct, ct,
2u,d  _ 2x1.82x7x107?

= 8.06x107°s

“cInRRR,  3x10°In(1x0.9)
For a Lorentzian line (homogeneous transition)
n Ao n’ Av m° x1.95x10"
By eqn.36b sec1.3.1
3,,2 t
ie. N,-N, > M(ﬂJL
¢\t Jo(o

) Audv? [t 1
1.e. (AN)th = C03 [t—pjw

N—"

—
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3 2 28 -4
= 4x1.82°x2.83°x10 [2'3X10 j7t2><1.95><101l

3 x10* 8.06x107°
= 3.92x10% m™® = 3.92x10%cm™®
W
By egn.19, AN b
N Wp +T,,

Since (AN), <<N, Ts2 >> W, so that we can neglect Wy, in the denominator of
the above equation. Thus,

(AN)th ~ Wpt
N T,
_ (AN), — _ (AN),  _  3.92x10"cm’
1.e. Wpt v —— Ty, = - 9.3 4
N Nt,, 6x107cm™ x2.3x107"s
~ 03s™

At this pumping rate, the number of atoms pumped from 1 to 4 is, WpN1. Also
since N2, N3 and N4 are very small compared with N1, we can assume N1 ~ N. Then the
threshold pump power required per unit volume (cm=3) is,

P = W N,hv, ~ W Nhv,
0.3x6x10" x6.63x10** x4x10"

4.8 W/cm?®
This is much less than that for ruby laser.

ll

Q

Example-2: He-Ne laser. Estimate the threshold power required from the following data.

Mo =0.6328 um; Or, v = 4.74x10"Hz ; Av=10°Hz; vp = 5x10°Hz
tp =107s ;Ho=1
Resonator cavity length d = 10 cm; R1 = Rz = 0.98 m; Other loss factors neglected.
By egn.33 sec.1.3.1, since o = 0,
2ud _ 2x1x10x107
cihRR, 3x10°In(0.98x0.98)
For an inhomogeneously broadened transition (for a Gaussian line),
2(xin2)? _ (zin2)? _ (3.14x In2)?
g(m) - - 2 - 2 9
T A® n° Av 3.14° %10
= 1.5x10™"s
The threshold population inversion required is,
3,,2 t
(aN), = Aot le ) 2
" c (t )g(w)

4x1°x4.74*> x10%( 1077 1
3*x10* 1.6x107® J1.5x107%

= 1.65x10°%s

tc = -

1.4x10%perm® = 1.4x10° per cm®

(AN) (AN)
YN Nt

p

th

th —
T32 -
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Then the threshold pump power required per unit volume (cm=3) is,
W_Nhv_= —(AN)“‘ Nh
pt NV = Vi
sp
1.4x10° x6.63x107* x5x10%
t 107

46.41 mW per cm® = 50 mW per cm?®,
Again, this is much less than that for ruby laser.

Pon = W, N,hv,

Q

(AN)

Rhy, =

1.6 Cavity Modes- Semiclassical theory

Next we deal with the semiclassical theory of the laser developed by Lamb in 1964. In
this analysis, we treat the electromagnetic field classically with the help of Maxwell’s equations
and the atom will be treated using quantum mechanics. We consider a collection of two level
atoms placed inside an optical resonator and find out the cavity modes.

Consider an optical _ _
resonator consisting of two parallel ~ Mirror Mirror
plane mirrors facing each other as
shown in the figure.. The active
medium is placed inside the cavity
of the resonator. We choose a
coordinate system such that its z-
axis along the length of the cavity
and origin at the centre of one of the
mirrors. The plane mirrors are at z= 0 and z = L, where L is the separation between the mirrors.

The Electromagnetic radiation inside the cavity can be described by the Maxwell’s
equations. In an isotropic, homogeneous medium the equations are,

Active medium

V| e

0 z=L

N

oB

VxE = - & 1

X - (1)

vxH = 3+ P @)
at

V.D = p 3)

V.B =0 (4)

where, p is the free charge density, J is the conduction current density E is the electric field, D
is the electric displacement, B magnetic induction and H is the magnetizing field. Inside the
cavity we may assume,

Free charge density, p =0 (5)
Magnetic induction, B = poH (6)
Electric displacement vector, D = P+¢gE =¢g&E @)
Conduction current density J = oE (8)

where, g0 is the permittivity of the free space, po the permeability of free space, P the dielectric
polarization and o the conductivity of the medium. The different types of losses like the ohmic
loss, loss due to diffraction, loss due to the finite transmission at the mirrors etc. are taken into
account in o. These losses cause the attenuation of the wave. Taking curl of egn.1,
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oB 0 0

Vx(VxE) = -Vx— = ——(VxB) = —u,—(VxH
(V~E) B L(vsB) = u S(vH)
= — g(@_FJJ
Moot at
o°D 0J
= THosr TR 9)
_ o°P O°E OE
= _Hoy_uo‘go? —Moﬁg
oE O°E o°P
Or, Vx(VxE)+MOGE+u080¥ = —u()? (10)

Step-1: If we assume that the losses in the medium is small we can neglect the term containing
o . Also if we assume that the medium is sufficiently dilute (i.e. the particle separation is large)
the field that acts on a particle is the electric field of the wave and the local field created by the
polarized surroundings is negligibly small so that we can neglect the term containing P. Then
eqn.10 becomes,

0°E

Vx(VxE)+u080¥ =0 (11)
Since P is small, eqn.7 becomes, D = &oE and in the absence of free charges eqgn. 3 gives,
& (V.E) =0 (12)
Expanding and using egn.12,
Vx(VxE) = V(V.E)-(V.V)E = —-V’E (13)

Now we assume that the electric field varies in the z-direction only. This is justified because the
intensity variations in the directions transverse to the laser axis is small in distances of the order
of wavelength A. Then using eqn.13, egn.11 becomes,

O°E O°E
oz Mot

Comparing with the standard wave equation, we get the velocity of the electromagnetic wave
in free space as,

=0 (14)

c = ! (15)

VHoEo

If we assume that the wave is polarized in a specific direction, say & . Then E = 4 E and eqn.14
can be written the scalar form as,
FE _ 10E
oz° ¢’ ot
The eqn.16 is an equation of two variables z and t. To solve eqn.16 by variable separable
method, let,

(16)

E(zt) = Z(z)T(t) (17)
Using eqn.17, egn.16 becomes,
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d*z 1 d’T
Wz = 20w

Dividing throughout by Z(z)T(t), we get,
1 dz _ 11 dT
Z(z) dz? c® T(t) dt?
Both sides of the above equation are of different variables, the equation is correct only if both
sides are separately equal to the same constant, say, —k?, then

1 dz _ 1 1 d*T_ ,

—_—— = - ——— = kK 18
Z(z) dz* c® T(t) dt? (18)
Then we get two separate equations,
&Z ez =0 (184)
dz’
2
And, ZTI+kZCZT(t) =0 (18b)
. . 2n 2 )
where, k is called the wave number (wave vector) defined as, k = o =— = < (18c)
C
The solution of egn.18a is
Z(z) = Asin(kz+6) (19)

Applying the boundary condition that the wave vanishes at the cavity ends (i.e. Z=0atz=0
andz=1L).
The condition, Z=0at z =0, gives 6 =0, then

Z(z) = Asin(kz) (19a)
The condition, Z=0at z = L, gives, Asin(kL) =0

i.e. kL = nx

Or, Kn n_Ln ;where,n=1,2,3, ........... is called the mode number. (20)

The solution of eqn.18b is of the form,

T() = cos(Q,t)
where, Qn = keC = n—:jc (21)
Then the complete solution of eqn.16 is given by,
E(z.t) = ) A,sin(k,z)cos(Q,t) (22)

Step-2: In presence of the different losses the field equation for a dilute medium is given by,
(egn.10 with term containing P neglected),

O°E oOE _ 10°E

o Ma T da %)
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The solution of this equation contains a space dependent part sin(knz) and a time dependent
part e"'. Then,

E(z,t) = Asin(k,z)e™"
E ir" Asin(k,z)e"
ot
2
aat_IZE = -I'Asin(k,z)e"™
0°E . i
— = —K’Asin(k,z)e"™
aZZ n ( n )
Substituting in eqn.23 we get,
2
—kZAsin(k,z)e™" — ip 0, Asin(k,z)e™" = —%Asin(knz)eirnt
ie. T?—ipocT,—c’k: =0
Using egn.21,
2 - igocC, -2 =0 (24)

The solutions of this quadratic equation are,
_ipoctt \/—ugazc"’ +402

r, =
2
H 2
194 —0—2+4Q§
. €9 €o
Using eqn.15, = >
. io
When o is small, r, = Z—iQn (25)
€9

i| 1% 10, jt

Then the time dependent part of the solution is e (250

-t L
= e 2g, eilQnt —e 2Q, eilQnt (26)

The real part of this equation is,

Q,

— n_t

e % cos(Q,t) (27)

where, Qn = 8 (28)
O

is the quality factor, which will be discussed in detail in the next topic. Thus considering the
real part of the eqn.26, the complete solution of eqn.23 is given by,

oy
E(z.t) = Y Ae *@ cos(Q,t)sin(k,z) (29)
Step-3: In our final step we find out the solution of eqn.10
O°E OE 1 0°E o°P
7 Ma e T (50

Multiplying with c?,
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0°E 0E O°E o°P
i (306)
As in the casesl and 2 (eqns.22 and 29) we assume that the solution of this equation is of the
form real part of the time dependent part multiplied by sin(knz) . That is,

E(z,t) = %Z[{En (t)e flont (V) } + {En ()l }}sin (k,z) (31)

Second term in the RHS is the complex conjugate of the first term. This is to make sure that E
is necessarily real. E, (t) and ¢, (t) are real slowly varying amplitude and phase coefficients.

on is the frequency of oscillation of the mode, which may be, in general, slightly different from
Qn. Since polarization P is proportional to electric field we assume P to be of the form,

- _Z[{ {ont+an(t )}}+{Pn (t, Z)ei{mnt+¢n(t)}}:| (32)

P (t, z) may be complex but is a slowly varying component of the polarization.
, 0°E 1, 1

¢ =7 =3¢ K’E =--QO'E

oz° (82) 2 "

czuoaa—E = ga—E ~ —ii P o,E, ; All other terms being small neglected.
ot g, Ot €

1 0°E 0°E T | . N2

2 — ~ _- .

CSor T~ ok, Z(mn+¢n) E_ ; All other terms neglected.
2 2 2

czpoﬂ = LoP —l&pn(t);All other terms neglected.

ot? g, Ot° 2 g,
Substituting in eqn.30b, we get,

—EQZE +1|( ]mE +imnEn+l(mn+¢n)2E
2 \ g, 2

1
|
K
i=]
=}
—~
—
~

2 2 g,
Multiplying throughout by —2, we get,
2
QE, - i[a JmnEn — 2io,E, - (oan +4, )2 E, = &pn (t) (33)
€o €9

where, p, (t) is obtained as the Fourier transform of eqn.32.

ie.  p(t) = %_IP(Z, t)sin(k,z)dz

Consider, Q2 - (w, +d>n)2 = {Qn + (o, +¢n)} {Qn — (o, + n)}
Since an is very close to Q, and 20, >> ¢
Q2 (0, +4,) ~ 20,(Q,-0,-,) (34)

Then eqn.33 becomes,
2

2(Dn (Qn -0, _d)n)En - i[gjwnEn - 2i0JnEn = &pn (t)
€9

)

Equating the real and imaginary parts of both sides, we get,
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(mn+ n_Qn)En(t) = —;;”O Re{pn(t)} (35)
e[ Je = - pmip, 1)
: : o, _ o,
ie. E”(t)+[2QJE”(t) " Im{p, (1)} (36)
where, Q = £o0% (37)
(o2

When pn = 0, (real part of pn = Imaginary part of pn = 0), then from eqn.35, we get,
Q= o, +(h1 ® O,

And from eqn.36, we obtain,

dE, _ [ o, 3
dt 2Q"

i.e. dE, = | dt
E, 2Q;,

Integrating and taking exponential we get,

E = EOe[ZQn'njt
That is, E, decreases exponentially with time. These are consistent with our earlier findings
(step-2).
Polarization is proportional to the total electric field. That is,
P (1) = exaEn(t) = & (xn+ix)E, (1) (38)

Since, in general, the susceptibility y, is complex. Then from eqn.35, we get,

(00 +6, -2, )E, (1) = ——2Re{p, (1)} = ——TeE, (1)

2¢, 2¢,
®
= _DnyE (¢
2 Xn n()
i.e. o, +¢ = Qn—%mnx;] (39)
and from eqn.36 we get,
. [0) [0} ()
E, (t E (1) = ——1 t = ——Lex'E (t
(0 2 Jeu ) = 2o, (0] = - s, (0
ie. E (1) = —2[ 20 |E ()~ 2o E, (1) (40)
n 2 Q:] n 2 n/n n

The first term on the RHS represents the cavity losses and the second term gives the effect of
the medium filling the cavity. We can see that if " is positive the cavity medium adds to the
losses. On the other hand if . is negative, the cavity medium reduces the losses.
1
If An = —— (41)
Qs
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The cavity losses are just compensated by the gain of the cavity medium. Thus eqn.41 is referred

to as the threshold condition. If —y" > i, there will be buildup of oscillation.

n

If we neglect the term q)n in eqn.39, we can see that the oscillation frequency of the

active medium differs from the passive cavity frequency Q, by —%wnx; , which is known as

the pulling term. In order to understand physically the gain and the pulling effects due to the
cavity medium, we consider a plane wave propagating through the cavity medium. The
permittivity and the susceptibility of the medium of the cavity are related by the equation,

e = g(l+x,) = &g =Keo (42)
where, K is the dielectric constant of the medium.

Refractive index of the medium, n= VK = (1+Xn)% ~ 1+%Xn = 1+%X:1 +i%x’n’ (43)

Then the propagation constant of the plane wave in such a medium is given by,

A c c c 2 2
- 9(1+1X;j+i19;¢; — o +id (44)
o 2 2¢C
® 1 0]
Where, a = —|1+=yx, and & = —y 45
C[ Zx] °y (45)

Thus, a plane wave propagating along the z-direction would have the z dependence of the form,

eikZ — ei(a+i6)z — eiaze—Sz (46)

In the absence of the component due to laser transition, y/, =y, =0, then a= © and 5

c
= 0. Then the plane wave propagating through the medium undergoes a phase shift per unit

length of © The presence of the laser transition contributes both to the phase change and also
C

to the loss or amplification of the beam. Thus if y is positive, & is positive and the beam gets
attenuated (eqn.46) as it propagates along the z-direction. On the other hand if ¥ is negative,

d is negative and the beam gets amplified as it propagates through the medium. As the response
of the medium is stimulated by the field, the applied field and the stimulated response are phase
coherent.

In addition to the losses or amplification, mentioned above, caused by the cavity
medium there is also a phase shift due to the real part of the susceptibility y, . That is, the

frequency of the oscillating mode is at the centre of the atomic line and it has opposite signs on
either sides of the line centre. This additional phase shift causes the frequencies of oscillation
of the optical cavity filled with the laser medium to be different from the frequencies of
oscillation of the cavity in the absence of the laser medium. Thus the actual oscillation
frequencies are slightly pulled towards the centre of the atomic line and hence this phenomenon
is referred to as mode pulling. We can show that at resonance y/, is exactly zero.
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1.7 Q of cavity

We have already seen that the laser system is formed by a resonator cavity filled with an
active medium. Usually the mirrors are used for producing the cavity. Because of several
reasons the loss of energy is associated with any mode in such a cavity and the cavity acts as an
open resonator. The main loss mechanisms are due to,

1. Finite reflectivity of the mirrors. The total energy is partially reflected and partially

transmitted.

2. Scattering and absorption in the medium filling the resonator cavity.

3. The diffraction spill-over when the field undergoes reflection from the mirrors.

This dissipation of energy is described in terms of the quality factor Q of the mode,
which is defined as,
Quality factor,  Q = @, E_ne_rgy stored in the rr_lode (1)
Energy dissipated per second in that mode
where, wo (= 2mtvo) corresponds to the oscillation frequency of the mode. Let W(t) be the energy
stored in the mode at time t. Then, from eqn.1, we get,

Energy dissipated per second in a mode, aw = —%W (2
The negative sign indicates the energy loss. Eqn.2 can be written as,
dw _ o,
— = ——dt
W Q
Integrating, Inw = —20¢41n W,

where, InW, is the constant of integration and Wo = W(t = 0). Rearranging and taking the
exponential of the above equation we get,

Doy

W) = We © ©)

This corresponds to an exponential decay of energy. Now we define the passive cavity lifetime
as the time for which the energy of the passive cavity decays to 1/e of its value at t = 0. From
eqn.3 we get,

Passive cavity lifetime, tc = Q.- Q 4)
o, 2nv,
Considering this exponential loss of energy, the electric field can be expressed as,
20 20 |t ricagt
E(t) = Epe %) et = Ege & (5)

The frequency spectrum associated with this wave train which extends fromt=0tot = oo, is
obtained by a Fourier transform of eqn.5. That is,

E(w)

E(t)e™dt = TEOe_(;OJMWe“‘“dt
0

t
I
O 3 8

]2 Eoe{i(wwo)+;’5}tdt

0
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Integrating we get,

E = E,

(-fitomaegnt] ooy

or, E(v) = By (6)
2n{i(v—v0)+;é}

And the corresponding frequency distribution of the intensity is,

I(v) = [E(v)] = E(v)E(v)

m
—~
e
~
1

E,

2 Vi

2

4n {(v—vo) +4Q02}
As per the eqn.7 the frequency distribution of the intensity is Lorentzian as shown in the figure

below. It is peaked at v = vo. This can be proved by equating the first derivative of I(v) with
respect to v to zero. By substituting v = vo in eqn.7 we get the peak value.

()

_ EQ
[ Voo = 27
Let v' be the frequency corresponding to the half maximum. Then,
EQ° _ E;
2n?v:

4?3 (V' =V )2 + Yo
0 4Q2
Cross multiplying and rearranging we get,
V2 =2y + Vi 1- 12 =0
4Q

The roots are given by,

2v, + [V —4vi| 1- 12
, 4Q

<
11
|
<
o
I+
<
o
|
<
o
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Vo
Q

Then we can find out the frequency corresponding to the half maximum, which are, v, +2V—é

Then, Av = Vv, —v; =

]

and v, —;—(0? . Thus the full width at the half maximum (FWHM) is,

Yo

8
0 (8)

Eqgn.8 shows that the width of the output spectrum depends inversely on the quality factor Q
associated with that mode. The smaller the loss in a mode, the higher is the value of Q and hence
smaller is the frequency half width.

Av =

AI V)

2.0 v-v,

Av

To calculate Q of a passive resonator: Let Wo be the total energy contained in the cavity when
t = 0. Ry and R are the power reflection coefficients of

the two mirrors M1 and Mz. Let o be the absorption

coefficient of the medium per unit length. In one

complete cycle there occurs a pair of reflections, (one M1
reflection in each mirror). Let d is the length of the cavity M2
and no be the refractive index of the medium filling the —

<_
cavity. Then, (refer sec.1.2.3),
Energy remaining in the cavity after one complete /
cycle, W(t) = W,R,R,e** 9)

Velocity of light in the medium, v = i
nO
, 2d 2n,d
Time taken for one complete cycle (one to and fro travel), t = — = (10)
%

o _ 2mvg 2nyd

By eqn.3, the energy in the cavity after one cycle, W(t) = W,e Q' = W,e Qe (12)
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Comparing eqns.9 and 11 we obtain,

e @ ¢ = RR,e™
20cd _ 4mvgnod
i.e. e ® = RR,
Taking the natural logarithm,
20,d— Fod _ 1 (RR))
Qc
i.e. dvongd - _ 20,d-In(R,R,)
Qc
ie. Q = Imand : (12)
c 20,d—In(R,R,)
Let k= 20,d-In(R,R,) = % (13)
Cc
Using in egn.11 we get,
211:v0.2n0d
W() =We ¢ ° = We™
Fractional loss per round trip,
x = Wo=Wee © g s
WO
e = 1-x
—« = In(1-x)
1
k = —In(l-x)= In| — 14
= n[ ;4] 14
By eqn.4, Passive cavity lifetime, tc = Q. 0Q
0, 21,
Using eqn.12, tc = 2nd L (15a)
¢ |20, d-In(RR,)
Using egn.13, - 2nyd (15b)
CcK
Using eqn.14 = Zn—O‘i (15¢)
cln(j
1-x
By eqgn.8,Full width at the half maximum (FWHM) for passive cavity, (using eqn.12)
v c 1
Av, = 2L = ad—=In(R,R 16
p Q 27‘[1’10(1{ C 2 ( 1 2)} ( )

For a typical cavity, d = 100 cm, acd—%ln(Rle) ~ 2x107 and assuming no ~ 1, we get,

Av, =~ 1MHz (17)
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1.8 Q Switching

Q-switching is a standard technique for the pulsed operation of a laser. It is used to
generate pulses of high energy but nominal pulse width in the nanosecond regime. We have
seen that the quality factor of the laser cavity is determined by the losses suffered by the modes
of the cavity. The smaller the losses the higher is the Q value. (Refer eqn.1 sec 1.7). Let us
consider a case in which a shutter is used in front of one of the mirrors. First the shutter is closed
and the medium is continuously pumped. The population in the cavity goes on increasing and
reaches a high value. Now the
shutter is suddenly opened. Since Pump
the inversion would correspond to l l l l l
a value much above the threshold
the energy stored in the cavity will
be released in the form of a short
pulse of light with a high peak
value of intensity. Because of the
opening of the shutter increases
the Q value from very small value
before opening to a very large value after opening, this technique of producing a short intense
pulse of light is referred to as Q switching. Two cases may arise. (1) If the shutter is opened in
a time much shorter than the time required for the building up of laser oscillation, the output
would consist of a giant pulse of light. (2) If the shutter opening is slow, the output would consist
of a series of pulses having smaller peak power.

e e S
v

Amplifying medium Shutter

Theory of Q-switching: We now develop a theoretical basis for describing the time
dependence of the population inversion, and also of the output pulse duration, for various
inversion densities above threshold before the Q-switch is activated. Our aim is to obtain an
expression for the total number of photons ‘n’ within the laser cavity at the laser frequency v,
and also for the total population difference AN =N, — N, within the laser gain medium at any

instant during the Q-switching procedure.

Let us consider the two levels involved in the laser transition in a four-level laser (or,
three-level laser). Let they are designated as u and I; u for upper and | for lower. (For a four-
level laser transition from level 3 to 2 and for three-level laser it is from 2 to 1). We assume that
the lower laser level (I) has very fast relaxation rate to lower levels (lower than the levels

designated as 1), so that it is essentially unpopulated. We N
also assume that only one mode has sufficient gain to —3 <«
oscillate and that the line is homogeneously broadened so  _ R
that the same induced rate applies to all the atoms. 2 Eu N | A

Let R represents the number of atoms that are £ AR Laser
being pumped into the upper level per unit time per unit = N N> hy
volume. If the population density of the upper laser level £ E— Yy W
is Ny, then the number of atoms undergoing stimulated  § Intermediate state
emission from the upper laser level to the lower laser level “1I N ;

——L1% F, Ground state

per unit time is given by, (refer eqn.16 sec.1.2.1),

n’c®
Fua =TuV = Nu u g((D)V (1)

ho’ugt,,
where, u is the energy density of the radiation at the oscillating mode frequency o, V is the
volume of the active medium and Lo is its refractive index. If n is the number of photons in the
cavity, we can write,



46 Lasers and Fibre Optics MCT

uV = nho
nho
Or, u = — 2
V 2)
n°c® nho
Then eqn.1 becomes, Fu = N, ——— g(0)V
ho’uet, V
2.3
= %‘i(w) nN, = KnNy €)
® Motsp
2.3 2.3
A
where, K = & CZ%(“)) _ T ng‘*? ul @
O Hotg, W Uy

The spontaneous relaxation rate (radiating and non-radiating) from the upper level to the lower
level per unit volume is given by, (refer eqn.3 sec.1.2),

dNu = TuINu
dt
For the whole volume,
d(N,V
% TuINuV = (Aul +Su| ) NuV (5)

Spontaneous
Since the number of atoms in the upper level changes due to pumping, induced transitions
between upper and lower levels (from upper to lower level and lower to upper level) and the
spontaneous transitions from the upper to lower level, the rate of change of population of upper
level is,
d(N,V)
dt

RV+F,-F, -T,N,V

RV +KnN, —KnN, (A, +S, )N,V (6)

Since the Q-switched pulse is of a very short duration we will neglect the effect of pump R and
the spontaneous emission during the generation of the Q-switched pulse. It must, at the same
time, be noted that for the start of the laser oscillation, the spontaneous emission is essential.
Then eqn.6 becomes,

Kn

) = Kn(N,-N,) = (N -N,)V
dt n( u I) V( u I)

ie. d(N:) —(QJAN’ )
dt \Y,

where, N, =N,V and AN = (N,-N)V (8)

[In Sylfvast instead of AN’ the symbol M is used].
Similarly, the rate change of population of the lower level due to induced transitions is,

d(N) (ﬁjm (©)
dt \
Subtracting eqn.9 from eqn.7, we get,
AN’
d(AN') _ _z(ﬁj AN’ (10)
dt \

The rate of change of photon number in the cavity depends on the following four factors.
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1. Increase of photons by the stimulated emission from upper level to lower level. Since
every stimulated transition from upper to lower level creates a photon, the rate of
increase of photons n in the cavity is given by,

_M = KnN, (11)
dt

2. Decrease of photons by the stimulated absorption from the lower level to the upper level.
Due to the induced absorption the photon number in the cavity is decreased as per,

d(N,V)
dt

3. Decrease of photons by the finite cavity lifetime (due to passive cavity losses). The
energy of the beam bouncing back and forth in the medium decreases due to passive
cavity losses. Thus, when no gain is present (no laser transition) the energy of the
medium decay according to the relationship,

= KnN, (12)

t

dE E ,,
— = = :Or, E=Eet®" 13
™ 3 0 (13)
. : e . _Q _ Q
where, tc is the passive cavity lifetime given by, tc = = o0 (14)
[0 y[aY
Here Q is the quality factor. For a passive cavity resonator, we have by eqn.13 sec.1.7
20d-In(RR,) = TMoted - 2Hd
Qc ct,
or L - Zuod{ 1 } _ pyd 1 (15)
¢ |20d-In(RR,) c acd—ln(Rle)%
Since there are n photons in the cavity, we have,
E =nhv
Hence eqn.13 becomes,
dn n
N 16
dt t, (16)
4. Increase of photons due to spontaneous emission from upper to lower level. It is equal
to KNy (19)
Thus, the total rate of change of n is given by adding eqns.11, 12, 16 and 19.
i—? - KnNu—KnN,—tﬂJrKNu - Kn(Nu—NI)—tﬂH(Nu (20a)
Neglecting the spontaneous emission,
an (@jm\r—ﬂ (20b)
dt \% t,

In the threshold case, il—: =0, the gain is equal to the cavity losses. Then from eqn20b we get,

\% K 1
AN") = — ; Or, - = — 21
(aN°), Kt, r V. (AN)t, @)
Then eqgn.10 becomes,

d(aN) _ _z(ﬁjm _ _Z[LJAN' )
dt V (AN,)t tc
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d(AN’
or, (AN) _ 20 (23)
dt (AN"),
where, ©=-— (24)

C
Eqgn.23 summarizes our statement that the decrease in population inversion is twice that of the
increase in the number of photons sue to the stimulated emission.
Using eqn.21, eqn.20b becomes,

dn :(@jm_ﬂ _ N
dt \% t, (AN'), t, t,

or, an o, AN (25)
dt (AN'),

The term n represents the number of photons generated within the cavity by stimulated

(AN),
emission per unit of normalized time. Eqns.23 and 25 are the two principal equations in the
evolution of the Q-switched pulse. These equations give us the variation of the photon number
‘n’ and the population inversion AN’ in the cavity as a function of time. These two equations
are nonlinear and the solutions to the above set of equations can be obtained numerically by
starting from an initial condition that at t = 0, T = 0; AN’=(AN’). and n=n;, where i' stands

for the initial value. Here n; represents the initial number of photons in the cavity generated by
the spontaneous emission, which is necessary to trigger laser oscillations.

Eqgn.25 can be written as,

1 dn
AN" = (AN’), +=(AN’"), — 26
(AN), +—(aN), 5 29)

If the system is initially pumped

to an inversion, AN’ is positive. !

That is, AN’ > E(AN,)tc;_n is (AN') Population in ersion AN
n T

positive. This shows that ((:Ii_n IS
T

positive, i.e. the number of

photons in the cavity increases
with time. The maximum
number of photons appear in the
cavity (n is maximum when its
first derivative is zero), when

(;_n: 0, or, when AN'=(AN’)
T
Atsuch an instant n is very large
and from eqgn.23 we see that

AN’ will further reduce below
(AN')t and hence there is a

decrease in n.

.

Population inversion A N’

(AN') f--nnmmmmmmmmmnneees

Photon number n

(AN),

~
~

N;

|

Timet ———»
Temporal variation of population inversion AN’ and photon
number n associated with a Q-switched pulse.

Photon number n
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The time dependent solution of eqns.23 and 25 requires numerical computation. But we
can analytically obtain the variation of n with AN’ and from this we can draw some general
conclusions regarding the peak power, the total energy in the pulse and the approximate pulse
duration.

Dividing eqn.25 with egn.23 we get,

AN’
o ”{wx ‘1}

_ _ l{(AN')t_AN'} - 1 (AN,)t 1 (27)
d(AN") ZURNNT 2 AN’ 2| AN
(AN),
) 1 , d(AN’)_ .
ie dn = E{(AN )tW d(AN )}
Integrating,
n = %{(AN’)t In(AN')-AN'} +C (28)

To find the constant of integration C we apply the initial condition that when AN’ has an initial
value (when t = 0) (AN’)., the number of photons is ni.

ie. ni = %{(AN’){ In(AN'), —(AN'). }+C (29)
Subtracting eqn.29 from eqn.28 we get,
1 ' ’ ’ 1 ' ' !
n-n, = E{(AN ), In(AN')—AN }+C—E{(AN ), In(AN'),—(AN'), }-C
— 1 ’ (AN,) ’ '
= E{(AN ), |n{(AN,)i}+(AN ). —AN} (30a)

Since the initial number of photons in the cavity (generated by spontaneous emission) is very
small, egn.30a becomes,

1

n o= E{(AN')t '”{((AAS)) }+(AN')i -AN} (30b)

Eqn.30a or 30b describes the relationship between the number of photons in the cavity and the
inverted population AN"=(N, —N,)V atany particular time.

Peak power: The instantaneous power output can be approximated by multiplying the photon
number by the photon energy hv and dividing by the cavity decay time tc. That is,

hv _ h , AN’ , ,
Pout = ”t_ ~ Z_tvc{(AN ), |n{((AN,))i}+(AN )i—AN} (31a)

c

The peak power output will correspond to maximum n, which occurs when AN’ = (AN’)t . Thus,

_nhv
max —

c

Using eqn.30b, with AN’ =(AN’),

Prmax = :TV{(AN')t In {Ei':l;t }+(AN’)i —(AN’)J (31b)

c i

Eqgn.31b shows that the peak power is inversely proportional to the cavity lifetime.
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Total energy: By eqn.23 we have,

d(AN) __
dt (AN'),
: AN"  _ 1 d(AN)
i.e. = -———7
(AN"), 2n  dt

Substituting in eqn.25 we get,

dn _ n{—iw—l} _ _1d(aN)

do 2n dt 2 dt
i.e. dn = —Ewdr—ndr
2 dt

Integrating this equation fromt=0tot = oo (i.e. Tt = 0 to T = ) we Qet,

Jdn = —ledT—Jndr

n; 2 0 dT 0
- — 1 ' ! i
ie. n,—n, = _E[(AN ), —(AN )i]—.([ndr
- r 1 1 !
i.e. }[ndr = 5{(AN ), —(AN'), }=(n; —n;) (32a)

Since the initial (before pumping) photon number n; and the final (after Q-switching) photon
number n¢ are very small compared with the total integrated number of photons, we can neglect
them. Then egn.32 becomes,

Indr = %{(AN')i ~(AN'), | (32b)

The total energy of the Q-switched pulse is obtained by integrating the instantaneous power
output. That is, using egn.31a

o0

E = Pudt = Mgt = hvjnd(ij = hv| ndr
0 1:C 0 tC 0
Using eqn.32b, = h—zv{(AN’)i—(AN’)f} (33)

Pulse duration: An approximate estimate of the duration of the Q-switched pulse can be
obtained by dividing the total energy by the peak power. That is,

: (), - (aN), )

g = =

Proax ;:{(AN')I In {Eiz:;f}+(AN,)' —(AN')t}

(AN!)i _(AN’)f

(AN'), In {EAN')t }+(AN’)i ~(ANY),

(34)

>
=
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In the above formulas (AN') iIs the final population inversion. In order to obtain this,

f
we may use egn.30a for t — oo. When t — o, n — ns. Thus by eqn.30a, we get,

N, -, = %{(m)t |n{%}+(m')i —(AN')f} (35)

Since the initial number of photons ni and the final number of photons nr are very small we can
write the LHS of the egn.35 equal to zero. Thus, for t — o,

(AN"), —=(AN'), = (AN'),In {((i%,)f} (36a)
AN

(AN, In {((AT)} (36b)

f

)
)

Or, (AN’)i _(AN')f

from which we can obtain (AN’), for a given set of (AN’). and (AN’), .

Different techniques for Q switching

Now we briefly discuss some Q switching techniques such as,

(a) Mechanical method: This method consists of a mechanical rotation of one of the mirrors of
the laser system about an axis perpendicular to the resonator axis. When the mirrors are not
parallel, the losses in the resonator are large and the pump increases the inversion beyond the
threshold corresponding to the case when the mirrors are parallel. If the timing of the pump
pulse is adjusted such that the laser rod is got excited to a steady maximum population inversion
as the two mirrors are getting parallel, as soon as the mirrors become parallel, a giant pulse
would appear at the output. Typical rotation speeds are 30,000 revolutions per minute. Since the
mechanical switching is comparatively slow, one usually obtains pulse lengths of 25 to 50
nanosecond.

(b) Electronic switching technique using the Kerr and Pockels effects: Another method is
the faster electronic switching techniques such as that using Kerr and Pockels effects. [If the
refractive index of the electro-optic material changes linearly with the applied electric field it is
termed Pockels effect. If the dependence is quadratic it is termed Kerr effect]. In this method a
polarizer and a birefringent material are placed in front of one of the mirrors. [Birefringence is
an optical property of certain materials, which have refractive indices that depend on
polarization and propagation direction of light. Anisotropic materials show birefringence]. The
two are adjusted such that the Kerr cell rotates the linearly polarized light through 90° after two

Mirror-1 Polarizer Mirror-2
Kerr cell
Active medium
Orthogonal Circular
8 linear polarization E

polarizations

traversals of the light through the cell and is blocked by the polarizer. [First the Kerr cell changes
the linearly polarized light into circularly polarized. This circularly polarized light after
reflection again passes through the cell, which changes the circularly polarized light into linearly
polarized in the orthogonal direction]. That is, there is no re-entry of light into the active
medium. In such a position the losses in the resonator are large and the pump increases the
inversion beyond the threshold value. On removing the applied voltage on the Kerr cell, the cell
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loses its birefringence and hence it does not rotate the polarization. In this position the losses
are small, corresponds to an open shutter, and intense pulse of light appear at the output. Typical
values of voltage required for the operation are a few kilovolts for a Pockels cell and a few tens
of kilovolts for a Kerr cell.

(c) Method using saturable absorbers: Q switching can also be attained by saturable
absorbers. These absorbers have light intensity dependent transmittance, which remains
constant at small powers and begins to increase at sufficiently high intensity. As the
transmittance increases the absorption coefficient decreases. The saturation intensity (which is
the intensity required to reduce the absorption coefficient to one half the low power value) for
normal dye solutions is about 107 watt/cm?. The operation of such a device may be understood
as follows. The saturable absorber is placed inside the cavity. At low powers losses by
absorption is large and no laser oscillation takes place. As the pumping increases the power
level inside the cavity goes on increasing and the dye begins to be bleached. This bleaching
results a larger transmittance which in turn increases the power level inside the cavity. The
increased power results a larger bleaching and thus the dye becomes almost transparent. At this
stage the population inversion is much more than the threshold value. That is the gain is much
more than the losses and thus a giant pulse is produced.

1.9 Theory of Mode locking in lasers

There are many uses of very short duration laser pulses in various fields like digital
communication, diagnostics of ultra-fast processes and ablation of materials without causing
significant heating of the material. In the previous section we described the process of Q-
switching, which produces very high energy pulses. However, such Q-switched pulses are

—_

Three waves of
slightly different
— frequencies
locked in phase

Resultant amplitude

Intensity variation

/ of resultant wave

Fig.a
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limited to minimum pulse durations of a few nanoseconds. Another technique, known as mode

locking, has allowed the generation of optical pulses as short as 5 fs (femtosecond = 107°s).

Mode locking is achieved by combining in phase a number of distinct modes of a laser,
all having slightly different frequencies. In such a case the output from the laser would be a
repetitive series of pulses of light as shown in fig.d. Such a pulse train is called mode locked
pulse train and this phenomenon is called mode locking. Mode locking is very similar to the
case of diffraction of light from a grating. In the case of diffraction by a grating, the angular
width of any of the diffracted order depends on the number of slits in the grating. Similar to that
the temporal width of the mode locked pulse train depends on the number of modes that are
locked in phase. (Refer fig.a).

A
TN
// A Gain curve
Loss line:
At half maximum
= Vo v >

Fig.b : ov Av :
To understand this let us consider a laser system formed by two parallel mirrors
separated by a distance ‘d’ enclosing an active medium. It has a line width Av about a central
frequency vo as shown in the gain profile given above (fig.b). The frequency spacing Av of the

longitudinal modes of the resonator is approximately % . ¢ R [Refer egn.21 sec.1.10.1, or,

Lo

referring any book on electrodynamics we can see that the resonant frequency ‘v’ of a
rectangular cavity resonator of dimensions a, b and d (d along the z-direction) is given by,

4%  m* n* g . o .
— = ?JFFJF?’ where, m, n, g are integers which gives the different mode.
v

v (m? n? ¢ b o m?2 n?)d? bt q m2 n?) g2
— |l =tete] T\ el Er Yyt et e
Vv a b d d a® b°)q d a® b°)2q

To calculate the frequency spacing we assume that m and n remain the same and g becomes
g+1, then,

v (q+1) m*> n?) d? & [q+1j m> n’ d’

= | = St | —— & | [ 5t | ——
v d a’ b )(q+1) d a’ b’ J2(q+1)
v 2v 1 v

———"— =~ = ; Or, frequency spacing, ov=v -vx —
vy 5 guency spacing Vieve o ]

If the laser medium is able to provide a net gain over a bandwidth Av, then the laser

would oscillate in a number of frequencies separated by ov = . The actual number of

2p,d
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oscillating modes is the number of frequencies within the bandwidth Av (including the central
one).

Number of laser oscillating modes = 1 + N =1+ integer closest to (but less than) ? (D)
Vv

where, 1 corresponds to the mode at the centre of the line. The total output from the laser can
be written as the superposition of the fields of all frequencies within the bandwidth as,

|z

= 'A\neizmn (t—%}i% (2)

M.

E(z.t) =

n=—

Nz

Since we are interested in the time dependence, we suppress the space dependent part. Thus,

N
n=—

E(t) — ZZN Aneizw”m% (28.)

n=——
2

where, An represents the amplitude of the n'” mode and ¢n its phase. The complex conjugate of

this equation can be written as,

N
m=—

2 : .
E'(t) = ) Ajenti (2b)
The amplitudes and phases of the various modes are arbitrary. For such a case the output laser
intensity is proportional to ‘E(z, t)‘2 . (The intensity can be expressed as either a function of time

at a fixed point or function of space coordinates (z) at a fixed time. Following the former case),
i.e. considering intensity as a function of time, we get,

1)

K [E(t) = KE(t)E'(1)

N N
n=— =

m=—
2 . . 2 . .

K 2 AneIZﬂ:vntH(I)n 2 Ame—IZTrvmt—l(I)m
N N

n=—— m=——
2 2

_N
K fN A +KY ST A A el (3)

n=_N nm m

2

where, K is the proportionality constant. The first term on the RHS of eqn.3 is the n = m case.
For arbitrary values of
amplitudes and phases of I(t) 1
various modes, eqn.3
represents a fluctuating output
intensity of the laser and is
plotted in the fig.c.

Since 1 _2Znd

ov c

exactly the time for one round
trip z changes to z + 2d. Then Fig.c t
from eqn.3 we get,

I(t) = I(t+%j 4

A

is

v
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Thus, the intensity pattern repeats itself with a per|0d|C|ty6— even when the modes are
\

uncorrelated. Eqn.3 also shows that within these quasiperiodic intensity fluctuations, the
shortest fluctuation occurs in a time interval that corresponds to the frequency difference

between two extreme modes. The extreme modes are (from fig.a) v, +% and v, —%
. Av Av
Frequency difference between the extreme modes = v, +7— Vom o = Av
: : 1 1
Time for shortest fluctuation, tf = — = — 5)
Av Nov

i.e. the inverse of the bandwidth of the laser medium. When the laser is oscillating below the
threshold, the various modes are largely uncorrelated as a result of the absence of the correlation
between various spontaneously emitting sources. These fluctuations become much less on
passing above threshold but the different modes still remain essentially uncorrelated and the
output intensity fluctuates with time. From eqn 3,
2d,
C

Average intensity lay S 'f K Z A, | +KY > A A

EAL

2
= K ZN Al (6)
2

.2n(t_§j(vn-vm)+i(¢n—%) dt

Since the second term is zero. If we assume that all the modes have the same amplitude Ao,
lav = (N+1)KA] @)
Since, there are N + 1 modes within the bandwidth.
Now let us consider a case when all the modes locked in phase (i.e. they have the same

phase constant). Thus, ¢1= ¢2 = ............. = ¢n = do . For the convenience of mathematical
calculation we also assume that all of them have the same amplitude Ao. Then,

E(t) = Age® Z%‘ g2t

n=_N
T2
N
i2m| vo——3dn |t i2m| vo——dn+dn i2n| vo——0n+28n
= Age®e oz +e [o-gra) +e ( ) SRS Ll
2 5 5 25 |27r[v0+—5n}t
+e| T[(V0+ ﬂ) + el T[(V0+ 1’1) + ........ e
= A el(lbeIZTEvot [1+ei2n8nt e i2ndnt +e12n2£)m +e i2m28nt +
i2n—dnt 712nﬁ6nt
+e 2 }
= Ae™e? ' [1+2co0s(2ndnt)+2cos 2(2mdnt) +..........

+2¢0s {g(Znént)H
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sin {Zn( Ngl]évt}
- Aoeiq)oeiZTrvot 1
sin {Zn(jé‘wt}
2

‘2

(8)

The output laser intensity is proportional to ‘E(t) = KE(t)E"(t)
The intensity can be expressed as either a function of time at a fixed point or function of space

coordinates (z) at a fixed time. Following the former case, we get,
2

sin| 2 N+1 ovt 2
, oo ) {sin{n(NH)Svt}}
I(t) = KAZ _ — | =1, . )
sin Zn(gﬁvt Sln(n6vt)
W\ I M\
C Fig.d E

The intensity variation is plotted in fig.d. In this case the output is a regular sequence of well-

defined pulses. From egn.9 one may observe the following.
1. The output consists of a sequence of pulses which are separated by a time interval of

1 2pd

ov c
resonator cavity. Hence the mode-locked condition can be visualised as a pulse which is
travelling back and forth in the laser cavity and which loses a part of its energy through
the output mirror in every round trip.

2. Eqgn.9 also gives that the duration of the pulse is approximately given by,

L1 _ 1 (10)

Nov Av
i.e. the inverse of the bandwidth of the atomic line. Thus, the larger the oscillating

bandwidth of the laser medium, the smaller will be the pulse width. For typical gas lasers
the pulse widths are about 1 nsec. For solid state lasers, the oscillating bandwidths are
much larger and pulse widths are about 1 psec or even smaller. Such pulses are referred
to as ultra-short pulses and find widespread application in the study of ultrafast
phenomena in physics, chemistry and biology.

3. From egn.9 we also obtain the peak intensity of the output pulse as,

peak = (N+1)" KA = (N+2)°1, (11)
This is (N + 1) times the average value given by eqgn.7. Since typical solid state

lasers have 10° to 10* modes of oscillation power enhancement obtained due to mode
locking is very large.

, Which is exactly the time taken by the light to complete a round trip in the

tp
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Technique of active mode locking: There are different methods for mode locking. One
example is active mode locking. In this technique a device is introduced into the resonator cavity
which modulates periodically either the loss or the refractive index of the medium of the cavity.
This technique is referred to as active mode locking since the modulating device is run by a
source other than the laser. In order to understand the action of a loss modulator, we assume
that the loss is modulated at a frequency equal to the intermodal spacing dv. As soon as the laser
is switched on, the mode that lies nearest to the line centre frequency vo would start oscillating
first. Since the loss is modulated at the frequency dv, the amplitude of this mode would also

oscillate at the frequency dv. Let the modulating wave is represented by A, cos(2n8vt) . Then,

the resultant field is given by,
E = {A,+A, cos(2mdvt)}cos(2mv,t)

A, €os(2mvyt)+ A, cos(2ndvt)cos (2mv,t)

2A, cos(2mdvt ) cos (2mv,t)
2

A, cos(2mvt)+

A, cos(2mv,t) +%cos 21 (v, +8v)t +%cos 2n(v,—dv)t (12

The modulated central mode given by egn.12 is the superposition of three oscillating modes
with frequencies v,, v,+dv and v,—d&v. The oscillating fields having frequencies v, +&v

and v, —d&v force the oscillations corresponding to these frequencies into oscillation and thus
these new modes have a perfect phase relationship with the mode at v, . Just as before, these

new modes are also modulated at the frequency v, which in turn create additional frequencies
v, +28v and v, —25v in addition to those already present. This process is going on and hence

all the modes are forced into oscillation in a definite phase and this leads to mode locking.
Mode locking can also be obtained by using saturable absorbers.

1.10 Laser Cavity Modes

We have already seen that in a laser system the active medium (amplifying medium)
which produces light amplification is placed in between two parallel mirrors facing each other.
This arrangement is known as an optical resonator. The region between the mirrors is known
as the cavity. In this topic we consider the properties associated with the optical cavity of the
laser. These properties play a significant role in determining the output characteristics of the
laser medium. The mirrors at the ends of the cavity lead to the development of both the
longitudinal modes (also known as temporal modes) and transverse modes (spatial modes).

1.10.1 Longitudinal laser cavity modes

When the mirrors are placed at the ends of the laser medium, they impose certain
boundary conditions upon the electromagnetic field developed in between the mirrors.
Comparing with the modes that developed in a cavity in thermal equilibrium (theory of
blackbody radiation in a cavity) we can expect that similar modes may develop within the laser
cavity with similar boundary condition that the electric field must be zero at the reflecting
surface. To begin with our analysis, we consider the case of two-mirrored cavity, known as
Fabry-Perot resonator, with no optical elements between the mirrors. Then we consider the
effect of placing an amplifying medium between the mirrors.
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Ray 2
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Consider the multiple reflection by two mirrors My and M2 as shown in the figure above.
Here the rays 1, 2, .... in the region 3 are considered as the transmitted rays and those rays on
the left side as reflected rays. (In a laser cavity transmitted rays are the output laser beam). The
phase of the propagating waves is given by ¢ = k.r = kz. The phase difference between the
successive transmitted rays can be calculated as follows. Let d be the separation between the
mirrors. The path difference between rays 1 and 2 is, (same as between 2 and 3, between 3 and

4 and so on)
AB+BC = a+b
From the triangle ADB, a = 4
cos0

From the triangle ABC, b

acos20 = a(2cosze—1) = C:E(Zcosze—l)

Then, the path difference between rays 1 and 2 is
a+b = iJri(Zcosze—l)
cos® cosO

d
@{H(Zcosz 9—1)} = 2dcos9

Thus, the phase difference between the successive transmitted rays is given by,

§ = 2—;(a+b) = 4—;dcose = 2kdcos8

1)
)

©)

(4)

()
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9

Let Er be the phase change for one reflection. When the reflection takes place at the interface

3

of the denser to the rarer medium 5 =0 and for rarer to denser medium %=n. Thus, the

resultant amplitudes of the transmitted rays is given by,

20 - i A
Ei = E,+r’e 2t°Ee° +r'e 2 ’E ™ +........
= t°E, (1+r2ei(5+4”+r4e12(5+4*)+ ........ )
= CE,(1+reV +r'e™ +.....) = PE Y r"e™  (6)
n=0
where, v =38+q, (7

Using the expansion,

i:(l—x)_l = 1+ X+X+ X+,
1-x
- ton
a 1-re" ©®
Thus, the transmitted intensity,
t4E2 T2E2
k=B = ey T TVERYE )
(1-re¥)(1-re™)  (1-Re“)(1-Re™)
where, Reflectance, R= |r[ =r? and Transmittance, T = [f| = £ (10)
(Here, for transmission there is no phase change and for reflection the phase change is%).

Eqgn.9 can be written as,

Ik = |0T2 : L — ) = IoT2 : 2
1-Re" —Re™ +R 1-2Rcosy+R

= |,T? 5 L
1-2R+R”-2Rcosy+2R

- TZ{ 1 } 1, 1
" |@-R)’+2R(1-cosy)| (1-R) 4Rsin2(\gj
1+ \2)

(1-R)’
_ I0T22 1 (11)
(1-R) 1+F’sin2@/j
where, Fo= 2R . (12)
(1-R)

Here the quantity in the brace is referred to as the Airy function. If there is no absorption,
R+T=1,or, T=1-R, then egn.11 becomes,
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t
b 11 Fsin? (\")

2
That is, the ratio of the transmitted intensity to the incident intensity is simply the Airy function.

A plot of L Versus % for different values of R is shown in the figure below.

A

1

v

0 nm (n+1)=n N

The Airy function for a particular value of R has a maximum value of unity when its

denominator is minimum, i.e. when % =nn;wheren=0,1,2,3,.......... It has minimum value

when %= (2n +1)g; forn=0,1,2,3, .......... . The minimum value of Airy function depends

. . |
on the value of R also. We refer the values of y corresponding the maximum values of I—t by,
0

and also using eqns.5 and 7
Ymax = 2N = 4—;d0089+¢r (14)

We get peaks for Airy function forn=0, 1,2, 3, ....... . All these peaks are identical in shape.
From the figure it is clear that for larger values of R, i.e. R > 0.6, the graph is highly sharp so

that a peak is obtained for the range of small values of g . S0 we can approximate sin (%) ~ %

. The values of % corresponding to the half maximum are given by eqn.13,

1 1
- ==
' 2
1+F’(\Vj
2
i.e yo= 2 ; and w'——i
N N =
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Thus, the full width at half maximum (FWHM) is given by,

- 4
ie. FWHM = vy, -y =— (15)
V. -y N
The separation between the adjacent peaks is given by, (from the figure)
Yo W o - (n+1)n—nn
2 2
i.e. Ay = vy .-y, = 2n (16)

Now we define a function F equal to the ratio between peak separation and FWHM. That is,
using eqn.12,

4R
ni

F- _Av _2n _ wF _ (1—R)2 _ R

FWHM 4 2 2 1-R
N

F is referred to as finesse. If the two mirrors have different reflectivities, instead of R we have
touse R= (Rle)%, then F becomes,

(17a)

b
F = MRR) (17b)

1-(R,R, )"
Now we consider the simple case of normal incidence and the reflection takes place at the
interface of denser to rarer medium. In this case 6 = 0 and ¢ = 0. Then by eqn.14, we get,

4nd

WYmax = 2nmt = T (18)
This wavelength at which a maximum occur can be referred to as, A, is given by,
A = 2 ;wheren=1,2,3, ...... (19)
n

Eqgn.19 shows that these maxima occur at an infinite sequence of wavelengths, decreasing
separation with increasing n. In terms of frequency eqn.19 becomes,

vo_
v n
Or’ Cmax = E
HoVn n
. cn
ie. v = 20
= (20)
Thus, the difference between two successive frequencies is given by,
c
VP = My = 21
n+l n Zuod ( )

This theory is also applicable to lasers.
By eqn.17a, we have,

FWHM = A?“’

In terms of frequency we can write this equation as,
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ov*P 1( ¢
NVewnm = = _£ }

F Fl 2p,d
) 1-R C
Using eqn.17a, = | — 22a
9ed (n\/ﬁjzuod @29
Mirrors with different reflectivities,
1-(RR,)?| ¢
8VFWHM = ( - 2)}/ (22b)
n(R,R, )% | 2Hod

The quality factor of the resonator is given by
Resonant frequency

Q =
SV ey
Using eqn.22a, = Yo = Mvo (23a)
[l— R j C (1-R)c
n/R ) 2u,d
Mirrors with different reflectivities,
2mu,d(R,R, )
- 2uod(RR, ) (230)
{1—(R1R2)%}c
Fabry-Perot cavity modes: For a Fabry-Perot cavity we have by eqn.19,
d = nk”2 ;wheren=1,2,3, ...... (24)

Eqn.24 shows that the integral multiple of half the wavelengths fit into the cavity spacing d.
Each of these is a standing wave and is known as a mode. In terms of frequency, eqn.19 becomes,

v = n— = ¢ (25a)
2d  2u,d
nc
If p,=1, v = — 25b

This shows that there are essentially an infinite number of frequencies that would fit within such
a cavity. If we want to consider a wide range of frequencies, the reflectivity of the mirrors would
have to be high over that entire range of frequencies.

Longitudinal laser cavity modes: A laser system is basically a Fabry-Perot cavity with an
amplifying medium inserted within the cavity. So, in a laser cavity, similar modes will be set up
in the form of standing wave patterns. Eqn.25 shows that these frequencies are equally spaced.
The various standing waves each of a different frequency according to eqn.25 are referred to as
longitudinal modes, because they are associated with longitudinal direction (along the length of
the cavity) of propagation of the electromagnetic waves within the cavity.

Longitudinal mode number: We have seen that one or more longitudinal laser mode
frequencies can occur when a laser gain medium is placed in between two mirrors and sufficient
time is allowed for such modes to develop, typically 10 ns to 1 ps. The total number of modes
is determined by the separation ‘d’ between the mirrors, the laser bandwidth and the type of
broadening (homogeneous or inhomogeneous) that present. The mode frequencies are obtained
from the eqn.25a as,
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nc

Vn (25¢)  Mirror Mirror

2p,d y L
This expression is valid for almost
all gas lasers, solid state lasers and

A
A

Active medium

A,

dye lasers in which the mirrors are He ML Hc
placed immediately at the ends of
the gain medium. < - b

If the length ‘L’ of the laser
medium is less than the separation ‘d’ between the mirrors, the different modes are given by,

_ nc 1
Yoo ?{uc(d—L)+uLL} (&)

1.10.2 Transverse laser cavity modes

In the longitudinal mode we have considered two parallel mirrors of infinite extent and
the light beam is normal or nearly normal to the reflecting surface. However, the laser mirrors
are not of infinite extent and the beam is not plane wave. The finite size of the mirrors causes
diffraction of the beam at the edges of the mirror. This leads to the loss of energy within the
laser cavity.

We now consider two modifications to our previous analysis. We assume that the two
mirrors are of finite size and are circular in shape. Since the diffraction effects are comparatively
smaller, curved circular mirrors are more desirable for a laser cavity. We also assume that the
source of light is in between the mirrors so that the incident beam is not plane wave.

In our analysis we will first obtain the expression for the transverse profile of the beam
that builds up within the cavity after having undergone many reflections as the beam oscillates
back and forth between the mirrors.

In our analysis we use the Huygens
principle. According to this principle
spherical wavefronts of amplitude Uo are
emanated from the source S and reaches
the circular aperture region of area A.
Then the secondary wavelets are Ug I n P

Circular aperture
__--""ofarea A

originated from the aperture and reaches
any point P at which the amplitude of the
wave Up is evaluated. Using the Fresnel-
Kirchhoff integral formula the amplitude of the wave at P is given by,
|k eikr' eikr .

Up = _4_n-”A U, - T{cos(n,r)—cos(n,r )}dA (1)
where, dA = dxdy is the area element in the aperture region which lies in the x-y plane, nis a
unit vector normal to the aperture plane over which the integration to be done, r’ and r are
respectively the vectors drawn from the source and the point P to a point in the aperture region,
symbol (n, r') is the angle between the unit vector n and r’ and (n, r) is the angle between n and
the vector r.
Transverse modes with plane parallel mirrors: Consider any point on the unprimed mirror

as the source point. Let U (x, y) is the amplitude function (amplitude distribution) at any point

on the unprimed mirror, U’(x’, y’) is the amplitude function at any point on the primed mirror



64 Lasers and Fibre Optics MCT

and U (x’, y') is amplitude distribution due to the unprimed mirror evaluated at any point on the
primed mirror. Then it can be shown that (avoided all the steps),

uU'(x,y') = yU(x,y') :HAU(x,y)K(x,y,x’,y’)dxdy )

where, y is a constant factor determined by the diffraction. The function K is known as the kernel
of the equation and vy is the eigenvalue of the equation.

There are infinite number of solutions Un and y» to eqn.2; each set is associated with a
specific value of n, where n can take valuesn=1,2,3, .......... These solutions correspond to
the normal modes of the resonator. They are referred to as transverse modes because they
represent amplitude distributions of the electromagnetic field in the transverse directions to the
laser beam within the resonator.

Transverse modes with curved mirrors: An analysis similar to that of the parallel plane
mirrors can be made for a laser beam developed between curved mirrors. The advantage of the
curved mirrors is that the beam was focussed slightly after each reflection. This reduces the
beam amplitude near the edges of the mirror and hence the diffraction loss can be reduced. The
diffraction loss is related to the Fresnel number.

[The Fresnel number (N), named after the physicist Augustin-Jean Fresnel, is

a dimensionless number occurring in optics, in particular in scalar diffraction theory.

For an electromagnetic wave passing through an aperture and hitting a screen, the Fresnel
2

number N is defined as N :Z—d, where, ‘a’ is the characteristic size (e.g. radius for spherical

mirrors, for plane mirrors length and breadth of the mirrors. For rectangular mirrors two Fresnel
numbers one for x-direction and the other for y direction. For square mirror they are equal.) of
the aperture, °d’is the distance of the screen from the aperture and ‘A’is the
incident wavelength.

The Fresnel number is a useful concept in physical optics. Conceptually, it is the number
of half-period zones in the wavefront amplitude, counted from the center to the edge of the
aperture, as seen from the observation point (the center of the imaging screen), where a half-
period zone is defined so that the wavefront phase changes by = when moving from one half-
period zone to the next.]

The theory of confocal 1
resonator system (radii of curvature of 3 N Plane-pargllel
the mirrors is equal to the separation s *\ /7
between the mirrors), which will be g 0.1—1 \\Q;\
discussed in sec.1.11, shows that fora = \\‘TE Moy
confocal resonator the different modes & \\TEI‘ P
are designated as TEMnpg, Where, nis 5 0.01 00
the longitudinal mode number and p %
and g are the transverse mode numbers. = pConfocal
When we are concerned with g 0.001
transverse modes the designation 3
becomes_TEMpq._ E TEMOOTEMOI
Figure gives the plot of the 0.0001
fractional power loss per transit versus 1 2 3 4 5 52
the Fresnel number in the cases of Fresnel Number N =2

plane parallel and confocal resonator
systems for two modes TEMoo and TEMoz. In the next topic we will discuss the longitudinal
and transverse modes of a confocal resonator system.
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1.11 Confocal Resonator system™

Figure represents a symmetric confocal resonator
system. It consists of a pair of mirrors of equal radii of curvature
facing each other. They are separated by a distance equal to the
radius of curvature. Our aim is to find out the modes of this
symmetric resonator.

Since the resonator system is symmetric about the
middle plane NN the field distribution across any plane on one
side of N1N2, say AB, after completing half a round trip (equal
to the distance R; the rays from AB after reflection from mirror
M2 reach the plane CD) must repeat itself on the plane CD. The
phase shift suffered by the wave in half a round trip must be an
integral multiple of =. Such a condition would give us the

=

N

transverse modes of the resonator. In this case to know the field Figa R
distribution as it propagates A

through a distance z we use the XTPlane (x,y, 0) Plane (x, Y, 7)
Huygens principle.

Assume a  coordinate
system with origin at the midpoint

of the plane AB and the z-axis ]

along the axis of the resonator. — T
Then the coordinates of the points z
on plane AB is (x, Yy, 0). Then the

field distribution at the plane AB Figh

can be represented by the function
f(x, y). According to Huygens
principle the field distribution on another plane at a distance z (coordinates X, y, z) is given by
the superposition of all fields due to the spherical waves emanating from every point on the
plane at z = 0. Consider a small elemental area dx'dy’ centred at the point (X, y’, 0) on the plane
at z = 0. Then the field distribution over the elemental area dx'dy’ is given by, f (X', y")dx'dy".

Since the intensity of the wave obeys inverse square law, [If I is the intensity of radiation
scattered in all directions from the point O, intensity of radiation over unit area at a spherical

dsS

A

VA _—

5 Then we can write 5
4nir Amr

surface of radius r is

I

Anr
proportional to r2. Since the intensity is proportional to
the square of the amplitude, the amplitude of the wave
varies inversely with r], the field produced by the
element dx’dy’ at the point P with coordinates (X, y, z)
on a plane at z would be proportional to

—ikr
f (Xl, yr) e r

considering the phase change.
Distance between the points (X', y’, 0) and (X, v, 2),

r = [(x—x’)2+(y—y’)2+zz}% (1)

dS'. That is the intensity is inversely

12

dx'dy’ . Exponential factor is used for
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ZZ

{H(xx')%(yy'fr

In the paraxial approximation we consider only the region very close to the z-axis. Then, X, Yy,
X', y' << z. Thus we may write,

r o~ z{1+(x_xl)z+(y_y’)2} :er(X_X’)ZJr(y_y')2 (2)

272 2z

Total field produced (over unit area around) on any point on the plane at z by all the
secondary wavelets emanated from the plane AB is given by,

Con e
a(x, Y, 2) :K”f(x,y) r dx'dy ©))
ik%(xx'ﬁ(yy’f}
2z
Using eqn.2, = K”f(x’, y') € — — dxdy’
X))
2z
—ikz ik N2 (y—y')2
< KEL[[r(x,y)e =0 gy (4)

z

By a rigorous treatment one can show that K = i/A. Eqn.4 may be used to find the field
distribution on any plane.
Effect of reflection: Now we determine the effect on the field when it undergoes a reflection
from a mirror of radius of curvature R. In the case of a spherical mirror, the diverging spherical
wave emanating from an axial point after reflection becomes a converging spherical wave. We
have the mirror equation,

14_1 = l = E (5)

u v f R
Thus a spherical mirror converts the incident diverging spherical wave of radius ‘v’ to a
converging spherical wave of radius ‘v’. The phase change produced on the diverging spherical

wave originated from ‘u’ when reaches the plane AB is given by, €™, where ‘r’ in this case is
r= x2+y?+u’. Again in the paraxial approximation the transverse coordinates X, y << u.

Then,
X2+y2 % X2+y2 X2+y2
r= ujl+——s ~ ull+ — | =u+ (6)
u 2u 2u
o ) |k[u+)< +y2] f(x2+yz)
Phase distribution on the plane AB = e = gKe
By omitting the constant phase term ™, we get,
K (2 y2
Phase distribution on the plane AB = e 2+

Similarly, by considering the change in direction of k and also omitting the constant phase term
e we get,

K (y2y2
Phase distribution on the plane AB due to the converging wave at ‘v’ = eZV(X )
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Now let pm represents a factor which when multiplied with incident phase distribution gives the
emergent (reflected) phase distribution (effect of reflection). That is,

p e 2Il(J(X2+y2) %(Xz y2>
m
iZl:/(X2+y2) k2, 2\ dkea 2 ik(y2 2(1+£)
Pm = e— — eE(X +y )e?u(x +y) — e2( )u v
ik
- (x2+y2)
e 2u
LY iK(2, 2
= oY) o GRDY) @

Since, as the resonator system is symmetric about the middle plane N1N: the field distribution
across any plane on one side of N1N, say AB, after completing half a round trip (equal to the
distance R; the rays from AB after reflection from mirror M reach the plane CD) must repeat
itself on the plane CD we get from eqn.4 by considering the reflection effect (z = R constant),

—ikz KT V2 (yoy' )2
g(x, y) = Pm K (5] J‘J'f (X’, y!)e_gz[( ) +Hy-y) derdy!
z
. kR K (y—y') K (32 4y?
= %eR _Uf(x’, y')e arl X)) }dx’dy'eR( ¥) (8)

The integration must be performed over the surface represented by the plane AB.
To determine different modes: A field distribution f(x, y) would be mode of the resonator if

gx,y) =of(x,y) 9)

where, o is some complex constant. The losses suffered by the field would be governed by the
magnitude of o and the phase shift of the wave is determined by the phase of . Then eqn.8 may
be written as,

i . —E[xz+x’2—2xx’+y2+y’2—2yy’] B(x2+y2)
of(x,y) = Ee"m ”f(x’, y')e =® dx'dy’eR
i K2 _axxry2—2yy' K (2 4y2
— ﬁe_ikR‘Uf(X: y’)e ZR[ 2xx'+y ZW]dX'dy'GZR( y) (10)
To solve the eqn.10, let
ik 2,2
u(x, y) = f(x, y)e_ﬁ(X ) (11a)
ik 2,\2
or, f(cy) = u(xy)e="" (11b)
Now we introduce two dimensionless variables,
k % 27 %
= |—| X = |—| X 12a
: = (& & (122)
%
Or, X = (X—R & (12b)
27
k % 27 %
= —_ = | — 12¢
w - () - (2T s
)
or, y = ("—R] n (12d)
27
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Using egns.11 and 12 in eqn.10

ik (AR 2 7\.R 2

O_};_]Zu(é’ n)GZR(Zné m )
. ik ZB,Z Z_LR +>LR2_L k(MR IR
XLReikRJ‘J‘E_}ZU(é,, nr)e ( g Je ZR[ R el zn"‘q?; d&'dn'e 2[{[275é 27[”)

ou (é, n) — éeikR J'J' u (ﬁ', n;)ei(éé’mn’)d&'dn' (13)

In order to simplify the analysis, we assume that the planes AB and CD are rectangular with
dimensions 2ax2b. Then the limits of integration are x = —a to +a and y = —b to +bh.
Corresponding limits of integration of & are —&p to + &o and for 1 are —mp to +no, Where,

% %
& = (kj a and 1o = [Ej b

Then egn.13 becomes,

i —i e roon\ (g ' qun!
ou(&n) = —e" [ [u(g,n)e™mdgdn (14)

=& -

In order to solve eqn.14 we make use of the separation of variable technique. Now we write,

c =xt and u(&n) = pE)am) (15)

Then egn.14 becomes,

i +&o o

o [ [ p(&)a(n)e“emdsdn

27[ =& -

ktp(&)q(n)

. i % _ikj+§o . i % _iKR Mo .
e (@) = (2] ¢ [p(e)ear( L] e [ atmemar

=&

Splitting this equation we get,

Kp(é) = (Lj%e k; +j.0p Iéé d&r (16)
2n —&o
i % _ik£+ﬂ0 o
And, wq(n) = (%J e 7 [a(n)e™dy (17)

Eqns.16 and 17 are finite Fourier transforms. In the limit £ — o0 and no — oo, they reduce to
the usual Fourier transforms. It has been shown by Slepian and Pollack (1961) that the solutions
eqns.16 and 17 are prolate spheroidal functions. We now consider only resonators of large

aZ 2

P! P!
Fresnel numbers, N, =— and N, = L , S0 that &o= (kj a= 2na >>1 and no=
AR AR R AR

R
and 17 are from —oo t0 +oo0.

kY2 (27077 . . o .
(—j b= R >>1 and in these cases we consider the limits of integration of egns.16
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Eqgn.16 can be written as

kp(&) ( | j _IkRTp e e’

ie. Ap(E) = [p(&)e¥de (18)

i 7% ikj

where, A = (—j e ?x (19)
2n

We can also write an identical equation for q(n). Eqn.18 requires that, apart from some constant

factors, p(&) be its own Fourier transform. Differentiating eqn.18 twice with respect to &, we

get,

d2p - o 12 APRIZSETY 20
d—éz——Jép(i)e de (20)
=&
We now consider the integral,
+& d2p -
= e~d 21
{ T % (21)
Integrating eqn.21 by parts [f udv = UV—deU ], we get,
+&0 2 r _+§0 +E‘,0
J‘ d g eds’ = eiéé'd_p’ “VSJ‘ p e g’
—éo dé = dé —*F;o _‘20
Integrating once again by parts,
r T+&o +§
i ’d H r\ igg’ % ? 1\ LIEE' 31
= | e % —ig[p(&)e® |7 & [ (&) de
L =& %o

For the required mode, we assume that p(&) and its derivative vanish at infinity and using eqn.18,
we get,

+&g de gg )
'Sd = —A 22
{0 e &%p (&) (22)
Adding egns.20 and 22, we obtain,
+&o d p , } -
= 2p e de’ 23
{ @ ap(é)} L{daz &%prede (23)

2
Comparing egns.18 and 23 we see that both p(§) and {%—ézp} satisfy the same equation.

Then one must have,

d’p ., _
@ er = Ke(d) (24)
where, K is a constant. Rewriting eqn.24 we get,
d’
“P(k-&)p =0 (25)

dg’
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The solutions of egn.25 with the condition that p(&) vanish at large values of & are the Hermite-
Gauss functions. For each choice of the parameter K there is a different function pm. Each
function consists of a polynomial Hm(§), called Hermite polynomial, in either odd or even
powers of &, an exponential factor exp(—£%/2) and a numerical coefficient which is needed for
pn to meet the normalization condition,

ie m® = NH,(8)e % (26a)
o ) = NH (&)~

m(m-1)(m-2)(m-3)

where, Hm(g) = (2@)”‘—%!_1)(2@'“‘% o (28)"" ...
f% s m! m-2s
- S:ZO(_l) (m—2s)!s! (2%)

where, the summation over s is up to m/2 when m is even and (m-1)/2 when m is odd.

Some Hermite polynomials

m Hm(y)

0 1

1 2y

2 4y? — 2

3 8y° — 12y

4 16y" — 482 + 12
5 32y°— 160y° + 120y

27)
Also we get a similar solution for eqn.17.
R

dn(n) = N,H,(n)e s (26b)

Thus the complete solution of eqn.10 may be written as,

2 2 ik 2,2

f(x,y) = N, H_ (i)eﬁANan (n)e_ngeﬁ(x )

{ﬂ) .[M]

= CH, (&)H,(n)e' * %e* ° (28)

where, C is some constant. Here m and n represent the transverse mode numbers that determine
the transverse field distribution of the mode. Hermite-Gauss function satisfies the equation,

PH (2 = (2n) % [ H, (2)e e ar (29)

By eqgn.16
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i % _ik£+§° o
i"kp(E) = im[L] e 7 [p(&)e¥de

27 %,

Using eqn.26
WNiH, (2)e 7 = (Ljy s i p(&)ede’
Using eqgn.29 to RHS
c(2a) % [N, (8)e Ao = u(z'—n] &' [ p()edr

Eqgn.26a can also be written as,

”

Or’ pm(é') = NmHm (é,)e_éz

Using this equation to RHS of above equation we get

+00 2/ . }/ 7ik7R+§o 2/
K(2n)%JNmHm(é’)e‘%e'&da' = |(2Lje 2 | NmHm(g')e%e@dg'
- T =&
kR 1 kR
Thus, k= i"(i)2e 2 = "z 2
Using, i = eig
T m+£ kR . 1\t kR | kR 1\n
Then, K = [elzj 2847 = el(erEJEéI7 = e_{T_(erE)E} (30)
Similarly, from eqgn.17,
KR _i kR | nal)®
t o= i"(iY2e 2 = e Eateid (31)

Then by eqn.15,
—i[kR —(m+n+1)ﬂ

G =T KT = &€ (32)
We see that |o| = 1. This implies that there is no loss in the cavity. This is because of the mirrors

are assumed to have extremely large transverse dimensions. The phase shift of o represents the
phase shift suffered by the wave in half a round trip. Thus one must have,

kR—(m+n+1)g =qr ;9=123, ... refers the longitudinal mode number (33)

. 2nv T

e TR- 1)= =

ie - (m+n+)2 qr

. 2mv T
.. VR = (2 )X
ie - (q+m+n+)2

Thus, the frequencies of oscillations in the cavity are given by,
c
Vmnq = (2q+m+n+1)ﬁ (34)

All the modes having the same value of (2q +m+n +1) (but different g, m and n values) would

have the same oscillation frequency and hence would be degenerate. If q changes to gq+1, eqn.34
becomes,
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vmn(g+l) = {2(q+1)+m+n+1}% = {2q+2+m+n+1}%

Then the frequency separation between two modes having the same values of m and n but
adjacent values of q is given by,
C
Avg = v H—V = — 35
q mn(g+1) mnq 2R ( )
Similarly by changing m to m+1 or n to n+1 in eqn.34 and taking difference one may get the
frequency separation between two transverse modes corresponding to the same value of g.

C
Avm (or AVn) = V(m+1)ng — Vmnq = E (35)
which is. half tha_lt b(_atween two Avq Avq
consecutive longitudinal modes. - > >
See fig.d.
The transverse intensity . Avm | Avm Avm | Avm

distribution  (square of the
amplitude) corresponding to the

mode amplitude distribution g, m . m+l g+l m g+l m+l g+2,m

given by eqn.26 is depicted in g, m+2 g m+3 g+l m+2

fig.e. Fig.d q, m+4
Lines with more than one set of mode numbers are degenerate

P (6)1
10T

08T

Fig.e 0.6+ p‘z’ (é)

0.4+ p: (&)

| | »
I T T T T T T T »

4 3 2 -1 0 1 2 3 4 &

The field distribution given by eqn.28 corresponds to a plane passing through the pole
of the mirror. It can be shown that the field distribution at a plane midway between the mirrors
IS,

(& _j{kR_m
fu(x,y) = CH,(&V2)H,(nV2)e & Je (73) (36)
_i(ﬁ_ﬁj
Eqn.36 shows that the phase of the field given by the term e * ? #/is a constant at a plane

midway between the mirrors and hence the phase fronts are plane there. The phase front of other
modal distribution is curved with radius of curvature R, which is equal to the radius of curvature
of the resonator mirror.
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1.12 Analysis of optical resonators using geometrical optics
(ABCD Matrices and condition for stability of resonators)

In this section we use the matrix method of the geometrical optics for the analysis of the
general spherical resonator consisting of two mirrors of radii of curvature R1 and R». Since we
are using mirrors of large Fresnel numbers (see page 53) the diffraction loss is small. We assume
that the resonator is stable. In a stable resonator the ray of light may keep bouncing between the
mirrors indefinitely, whereas in an unstable resonator the ray may escape from the resonator
after a few to and fro motions.

Consider a ray of light 4
propagating in a homogeneous
medium in the x-z plane as
shown in fig.a. The ray at any
point may be described by two
coordinates, say x and 6, where x
is the height of the ray from z-
axis and 6 is the angle made by
the ray with the z-axis. In this
analysis we restrict ourselves to
only paraxial rays, i.e. the rays
very close to the z-axis. This approximation is termed as paraxial approximation. In this
approximation x and 6 are very small, so that sin6 = tanf ~ 6. Let the slope of the ray at any

Nvy

e dx .
position is X' = d—: tand =~ 0. Let x; and x;, be the slopes of the ray at the positions z = z; and
z

z=z71+d.
Translation matrix: From the fig.a,

X2 =xi+dtan® = x1+ xd 1)
If the two positions are in the same homogeneous medium,

o= =% oy @

Egns.1 and 2 may be combined into the following matrix equation,
X 1 d)(x
)=l i
X5 0 1)ix;
_ 1 d). . .
The matrix T = 0 1 is called the translation matrix. 4)

Eqgn.3 shows that the effect of propagation of the ray through a homogeneous medium is
achieved by the translational operation with the translation matrix. Notice that the determinant
of T is,

1 d
det T = =1 (5)
0 1
Reflection matrix: At the point of reflection, the incident ray and the reflected ray have the

same height. Thus,
X2 = X1 (6)
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The reflection produces a change in the direction and hence the slope of the ray. Thus the
incident and the reflected rays have different slopes. We determine the relationships between
the incident and the reflected rays using the mirror formula.

1,112 o

u v f R
Slope of the incident ray, x| =4

u
Slope of the reflected ray, X, = _%
Then, X, —x| = XX o2
vV o R

Or, X’2 = Xi—% (8)

Eqgns.6 and 8 can be combined to a matrix equation,

1 0
X, _ X,
Lx;J R @ )
R

Then the effect of reflection by a concave mirror can be characterized by a 2x2 matrix called
the reflection matrix and is given by,

1 0
R =| 2 (9b)
-—— 1
R
It may be noted that,
1 0
det® =| 2 =1 (9¢)
_E 1
System Matrix: Consider an optical system consisting of a number of reflecting and refracting

Xl
i

surfaces. The ray entering into the system is specified by (
1

j. When it leaves the system it

XZ
i
2

Cj c g]m - [S]@ (10)

where the matrix,

can be specified by ( j Then, in general, one can write,

S = A B (11)
C D

is called the system matrix and is determined solely by the optical system. When the ray passes
through an optical system we need only translation and refraction operations. (Reflection can
be treated as a special case of refraction by choosing n> = —n1). Hence, in general, the system
matrix in the case of resonators using spherical mirrors is the product of reflection and
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translation matrices. Since the determinant of product matrices is the product of the determinants
of the matrices, we obtain,

detS = AD-BC =1 (13)

Since the element ‘d’ of translation matrix has dimensions of length and the element —2/R of
the reflection matrix has dimensions of inverse length, the elements A and D are dimensionless
and the product BC also is dimensionless.
To find the system matrix for a system of two facing concave mirrors: Consider a system of
two concave mirrors M1 and M of radii of curvatures R1 and R respectively as shown in fig.b.
Let d be the distance between them. The plane EF is at the
midway between the two mirrors. Let a paraxial ray of light " Mi g M

. . X 1 R2
with coordinates [X?J starts from the plane EF and moves

0

towards M. It reaches the mirror M2 and gets reflected at Mo.
Then this ray travels towards M: and after undergoing a
reflection at My reaches again at the plane EF. Now the ray

undergoes a to and fro motion or it completes a cycle of

Xl
by a transformation with the system matrix. Now we take the
radius of curvature of a concave mirror as positive and that
of a convex mirror as negative and the distances for real
objects and images as positive and that for imaginary as
negative.

X
oscillation. The coordinates ( f] of the final ray is obtained

0 1 0
R ) IS HERN P IR {9
x:) ¢ D)lx -— 1{0 1)|]-— 1 X!
! ° 0 1) R, R, 0 1)\
d
1 0 a
(1 % ) (1 dj . 2 (xj
- -= 1)lo 1) 2 d || x’
0 1 = 1-— |\
Rl RZ RZ
2
o1 ofi2 M
1 = R, 2 R, (x(,]
= 2|_2 ,
o 1)\ 'R _2 1= 4 X
R2 RZ
2d 3d o
d)| 1-= — -
1 = R, 2 R, (xoj
= 2
2 '
0 1)_2_2, 4 _4d _3d 20 [(X
Rl RZ RlRZ RZ Rl RlRZ
2 2 2 3
, 4 _3d 2d o 3d% 3 d
B R, R, RR, 2R, 2R, RJR, XO]
2 2 4 3d d  2d? X,
_— 1-—
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Thus, the system matrix for one complete traversal is given by,

d 3d 2d? 3d2 3d* d°
-t — 2d - - +
A B R, R, RR, 2R, 2R, RJR, 14
C D 2 2 4d 3d d 2d°
—— = 1-———+
Rl R2 RlRZ Rl RZ RlRZ

The ray after two complete traversals is given by,

=l o) =6 o)

The final ray after n complete traversals becomes,

x,) _ (A BY(x, 15
(x;j ] [C Dj (xs) (49)

For a stable resonator ( ] should not diverge after n complete traversals. In order to obtain

n
the stability criterion we have to look at the n" power of the system matrix. This can easily be
done by diagonalizing the system matrix.

A, O
A matrix U is said to diagonalize a matrix Sif ~ U'SU = (01 N ] (16)
2
where, Ut is the inverse of U defined by, UU = Uu? =1 (17)
1 0
The identity matrix is defined as, | = (0 J.

A1 and A2 in eqn.16 are called the eigen values of the matrix S. Pre multiplying by U and post
multiplying by U~* eqn.16 becomes,

b 0
uu-suut =u| * u
0 2

Using eqn.17 we get,

A, 0 .

S =U u- (18)
0 A,
A, 0 A 0 _

Then, s" =U ultu Ul n times
0 2, 0 2,
A 0 N0
=u|* utl =u| "’ u-t (19)

0 A, 0 Al

Now to find out A1 and A, we write the eigen value equation,

< ol 0

e =0 (20)
C D-A)\n

In order to exist the nontrivial solution for eqn.20 the determinant of the square matrix must
vanish, then
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A-\ B
‘ ‘ =0 (21)
C D-A
i.e. (A-1)(D-A)-BC =0
ie. A —(A+D)A+AD-BC =0
Using eqn.13,
M —(A+D)A+1 =0 (22)

The two solutions of the quadratic eqn.22 are given by,

A+D)+,/(A+D) -4 2
) = ( )+4/( ) _(A+D), [[A+DY _, (233)
2 2 2
A+D)—\(A+D) -4 2
And A, = (A+D)~(A+D) _(A+D)_ [ALDY 4 (23b)
2 2 2
Eqgns.23a and 23b are the eigen values of the system matrix S. Now we write,
cosf = AJZFD (24)
Then, A, = cos@+isin® = e (25)
A, = c0s@—isin® = e (26)

From egns.19, 25 and 26 it follows that S" should not diverge as n increases if 6 must be real
and hence cos6 must be such that,

—1<cosO <1 i.e. —1<A+D <

1 27)

Eqn.27 represents the stability condition of the resonator system.
d 3d 2d? 3d d 2d°

S — + S
By eqn.14 A+D _ R, R, RR, R, R, RR,
L2 2
_, 2 2 o
Rl RZ RlRZ
2
Then the condition for stability (eqn.27) becomes, —131—§—§+ 2d <1
Rl RZ RlRZ
2
By adding 1 throughout, OSZ—E—E+ 2d <2
Rl RZ RlRZ
By dividing throughout by 2, the condition for stability becomes,
OS[l_ij[l_ijgl (282)
R1 R2
Or, 0<g,0,<1 (28b)
where g, = 1—i and g, = 1—i (29)
' ' Rl ’ RZ

Thus, for a resonator to be stable R1, R, and d must satisfy eqn.28.
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This condition can be expressed in the form of a stability diagram as shown in fig.b. The
clear regions are regions where eqn.28 is not satisfied, i.e. gig2 > 1. In this region the values of
R1, Rz and d are such that the condition given by eqn.28 is not satisfied and the cavity is unstable.
For the shaded regions the condition for stability is satisfied and the cavity is stable. Along the

M1 M,

0.9, =1 curve

. Point for planar
Point for confocal oint for piana

- : d >
Fig.c

curved line 9192 = 1. Three particular
points (white spots) in the fig.b are of
special interest. They are the cases of
(1) two parallel plane mirrors separated
by a distance d. In this case, g1=g2=1, Point for concentric
(2) confocal mirrors with R1 = Rz = d,

so that g1 =g2= 0 and (3) symmetric _ /
concentric case with Ry = R2 = d/2 so 9,9, = 1 curve

that g1 = g2 = —1. All these three points

are on the edge of the stability diagram

and can become highly lossy. It is wise to choose the values of R1, R2 and d such that the
parameters g1 and gz lie in the stable zone of the stability diagram.

Fig.d

1.13 Stable and unstable resonators

An open resonator with plane mirrors would have significant diffraction losses on
account of the finite transverse size of the mirrors. These losses can be much reduced by
replacing plane mirrors by spherical mirrors that provide focussing of light beam.

A spherical mirror resonator is formed by a pair of spherical mirrors (convex or concave)
or a plane mirror and a concave mirror. Figure given in the next page shows the various spherical
mirror resonators.

(a) Using two plane parallel mirrors separated by a distance d.
(b) Using two long radius concave mirrors, Ry = R> >> d, facing each other separated by a

distance d.

(c) Symmetric resonator using two concave mirrors, R1 = Rz > d, facing each other with

separation d.

(d) Half symmetric resonator using a concave mirror with Ry > 2d and a plane mirror with

a separation d.

(e) The symmetric confocal resonator using a pair of identical concave mirrors each having

a radius of curvature R and with the separation between the mirrors d = R so that the

foci of the mirrors coincide at the centre of the resonator.

(FH Half symmetric confocal resonator consists of a concave mirror with Ry = 2d and a plane

mirror separated by a distance d.

(9) A concave-convex resonator consists of a concave mirror with Ry > d and a convex

mirror with Rz = —(R1 — d) with separation d.

(h) near concentric spherical resonator is formed by two identical concave mirrors each with

a radius of curvature equal to half the distance between them. That is, Ry = R> > d/2.
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Ri1=w RZ =
- d >
R,>>d R,>>d
< d >
R,;>d R,>d
— ECEUICCIRLE
< d >
R>2d R, =0
_g (d) Half-Symmetric; R,>2d; R,=o0
< d >
R, = d R, = d
_ (€) Symmetric confocal; R,=R,=d
< d >
R.=2d R, =
| . R,=2d; R, =
< d >
R,>d R,=—(R1—d)
H (g) Concave-convex mirrors;
S k; R, >2d;R,=—(R:1—d)
- d .
R, = d/2 R,=d/2
N (h) Near concentric concave
\ - mirrors; R, = d/2; R, = d/2
- d -
R,=d R, =

M (i) Hemispherical; R, = 2d; R, = 0

< d

>
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(i) A hemispherical resonator consists of a concave mirror of R1 = d and a plane mirror with
separation d.

In general, one can form a spherical mirror resonator with plane, concave or convex
mirrors. Depending on the curvature of the mirrors and the separation between the mirrors, the
resonator is stable or unstable. In the language of geometrical optics, we can define stable and
unstable resonators as follows.

Stable resonator: If a family of light rays may keep bouncing back and forth between the
mirrors of the cavity indefinitely

without ever escaping from the Gain medium

cavity, the resonator is called a §
stable resonator. Because of the §
focussing action of the mirrors °
the beam remains concentrated Stable resonator

within the cavity and hence there

is no loss of energy in the case of stable resonator. They satisfy the condition for stability
discussed in sec.1.12.

)
% Qutput

Unstable resonator: If the rays diverge away from the axis after every pass and thus escape
from the resonator

after a few reversals, ~ — —Gainmedium. _ _ _ "
the  resonator s | — \(: \ ’ \
— \ \
known as unstable Rr | —— =< \‘ > : “‘ Output
resonator. Thus, for ' i \ \ 1 ‘ \
an unstable resonator I'. | ! '.'_Ro :
there are no ray D e | | Y |
ay= 1 : 1 II /
families that can I: ' ! . ’
bounce back and forth I ! ! ,'I i .
without  escaping ° L ' ! ! A
from the cavity. Such 1~ — NI\N'IL / I,Out*ut
! /
resonators do not ~

satisfy the condition
for stability. Unstable Unstable resonator

resonators  provide

useful laser output with reasonable beam quality.

The most common unstable resonator cavity has two mirrors of different diameters
(different areas) and different radii of curvature. The large diameter rear mirror has a radius of
curvature Ry and small diameter mirror at the output end of the cavity has a radius of curvature
Ro as shown in the figure. Then,

e - : R
Unstable resonator magnification ratio, Mys = R—’
0]
Such unstable resonator cavities have transverse mode envelops. The losses in such resonators
are dominated by diffraction.

The constraints associated with the unstable resonators are that 9,9, =1, or, 9,9, <0,

where, g, =1—Ri =1—Ri and g, =1—Ri =1—i. The unstable resonators can be classified

1 0 2 r
as being either positive or negative branch according to whether,
0,9, =1 (positive branch)

Or, 0,9, <0 (negative branch)
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Figures a and b show the two types
of unstable resonators that produce
a collimated output beam. These
are referred to as positive branch
and negative branch confocal
unstable resonators. The positive
branch confocal unstable resonator
has a constraint that R, —-R_ =2d,
whereas, for negative branch
requires that R, +R,=2d . Q-
switched lasers and mode locked

lasers are examples of unstable
resonators.
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5 |
Rr Ezzxzj IE R,
|
W= | >
< d >
Fig.a: Negative branch confocal
Rr + Ro = 2d
: — >
,/'_,.
R, R,
|
N ' - >
- d >

Fig.b : Positive branch confocal
R -R,=2d



