
Chapter-1 

Basic Laser Theory and Optical Resonators 

1.1 Introduction 

    The name ‘Laser’ is an acronym for light amplification by stimulated emission of 

radiation. A laser is a device that produces an intense, concentrated and highly parallel beam of 

coherent light. Historically the laser is an outgrowth of maser (microwave amplification by 

stimulated emission of radiation), a similar device using microwaves instead of visible light. 

The basic principle involved in the lasing action is the phenomenon of stimulated 

emission which was predicted by Einstein in 1917. The first successful laser was built by T H 

Maiman in 1960.  

The three kinds of transitions involving 

electromagnetic radiation between two energy 

levels in an atom are,  

1. Induced absorption 

An atom which is initially in a lower state 

can go to the higher state by absorbing a photon of 

energy E = E2−E1 = h. This process is called 

induced absorption.  

 

2. Spontaneous emission 

If the atom is initially in the higher state E2, 

it can drop to the lower level by emitting a photon 

of energy h. This is called the spontaneous 

emission. 

 

3. Induced (stimulated) emission 

Einstein pointed out that a third possibility, called induced emission, in which an 

incident photon of energy h, causes in an atom, a transition from a higher level to a lower level, 

producing two photons in coherence (i.e. in the same phase). Einstein showed that the induced 

emission has the same probability as the induced absorption. The rate of stimulated emission 

depends on the intensity of the external field and also on the number of atoms in the upper state. 

In this chapter we mainly deal with the Einstein coefficients governing the above-

mentioned processes, how light amplification takes place in presence of population inversion, 

the quantum theory for transition rates and the line broadening mechanisms.  

 

*Principle and requirements of a laser 

The three main components of any laser device are the active medium, the pumping 

source and the optical resonator. The active medium consists of a collection of atoms, molecules 

or ions (in solid, liquid or gaseous form) which is capable of amplifying light waves. The laser 

may be a three level laser or a four level laser.  

 

The simplest kind is a three level laser, which uses an assembly of atoms (or molecules) 

that have three states- a ground state, a metastable state and a higher excited state that can decay 

to the metastable state. For lasing action, we want more atoms in the higher energy state Ef than 

atoms in the lower state Ei. If this is achieved by some method and a photon of energy
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Fig.a: Induced absorption 

Fig.b: Spontaneous emission 

Fig.c: Stimulated (induced) emission 
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f ihν E E= −  is passed through the assembly, there will be more induced emissions from the 

atoms in the higher level than induced absorptions by atoms in the lower level. The result will 

be an amplification of the incident original light. This is the concept that underlies the operation 

of a laser. 

 

In a three level laser more than half the atoms must be in the metastable state for induced 

emission. In a four level laser there are four levels- excited state, metastable state, intermediate 

state and the ground state. The intermediate state is unstable. The laser transition is from 

metastable state to 

intermediate state. The 

population inversion is 

required between 

metastable state and 

intermediate state. Since 

the intermediate state is 

unstable and it decays 

rapidly to ground state the 

number of atoms in the 

intermediate state is very 

low. Hence even a 

moderate amount of 

pumping is enough to 

achieve population inversion. 

 

Population inversion: Under ordinary conditions of thermal equilibrium the number of atoms 

in the higher levels is considerably smaller than the number of atoms in the lower energy states. 

For laser action, by some means, the atoms in the assembly are excited such that there is more 

number of atoms in the higher state Ef than in the lower state Ei. This is known as population 

inversion and is essential for laser action.  

 

Optical pumping: This is a method to produce population inversion. In this method an external 

source of light is used to excite atoms in the ground state to higher state. Atoms first absorb 

photons from the external source and get excited to the higher states from which they finally 

decay into metastable state. 

 

Metastable state: Laser action cannot occur if there are 

only two states. This is because the process of optical 

pumping induces transitions from ground state to the 

higher state as well as from the higher state to the lower 

state. When half the atoms are in each state, the rate of 

induced emission will be equal to the rate of induced 

absorption. So the assembly cannot ever have more than 

half its atoms in the higher state.  

 

The lifetime of the excited atoms in the higher levels is of the order of nanoseconds. 

Therefore the population inversion is usually not possible in higher levels. In order the 

population inversion to takes place, the lifetime in a higher state is sufficiently large. Such long 

lived excited state is known as metastable state. 
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1.2 The Einstein’s A&B coefficients 
Consider a system of atoms having two energy states E1 and E2. Let N1 and N2 be the 

number of atoms per unit volume in the states 1 and 2 respectively. An atom which is initially 

in a lower state can go to the higher state by absorbing a photon of energy, 

       E  = E2−E1   =  h   = 
h

2πν
2π

  =  ћω  

Or,          =  2 1E E

ћ

−
     (1) 

Now we define the energy density u() such that u()d 

represents the radiation energy per unit volume within the frequency 

interval  and  + d.  The rate of induced (stimulated) absorption 

per unit volume is proportional to the energy density u() at a 

frequency  of the radiation field due to the external photons and the 

number of atoms per unit volume in the lower state. 
 

   i.e.       12

induced absorption

dN

dt

 
 
 

      N1u()  

i.e.    Number of absorptions per unit time per unit volume,      12   =  B12 N1u()   (2) 

where, B12 is the coefficient of proportionality and is a characteristic of the energy levels. Now 

let us consider the transitions from higher level to lower level. Einstein postulated that these 

transitions are radiative. Atom goes to the lower level either through spontaneous emission or 

through induced (stimulated) emission. The spontaneous emission takes place in the absence of 

any external photon and is hence independent of the energy density u() of the radiation field. 

So, the rate of spontaneous emission, 

                     21

spontaneous emission

dN

dt

 
 
 

    N2  

i.e.     U21 =   A21N2         (3) 

But the induced emission depends on the energy density u() of the radiation field also. Thus 

the rate of transition to the lower level, 

               21

induced emission

dN

dt

 
 
 

    N2u() 

i.e. Number of stimulated emissions per unit time per unit volume,    21  =   B21N2u() (4) 

The coefficients A21, B21 and B12 are known as Einstein’s coefficients. At thermal equilibrium 

the rate of upward transition is equal to the rate of net downward transition. That is, 
 
    B12 N1u() =    A21N2 + B21N2u() 

   i.e.   u()[B12 N1 − B21N2] =  A21N2 

             u() =   21 2

12 1 21 2

A N

B N B N−
 =   21

1
12 21

2

A

N
B B

N
−

      (5) 

According to Boltzmann’s distribution formula, 

              1

2

N

N
 =     

2 1

B

E E

k T
e

−

 =  B

ћω

k T
e          (6) 

where, kB is the Boltzmann’s constant and ћ = h = E2 − E1.  

E2 

E1 

Ground state atom 

Excited atom 
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Then eqn.5 becomes, 

  u() =     

B

21

ћω

k T

12 21

A

B e B−

   =    

B

ћω

k T12 21

21 21

1

B B
e

A A
−

        (7) 

Treating a system of photons as a gas obeying Bose-Einstein statistic, the Planck’s law for 

energy density of radiation in a medium of refractive index 0 can be calculated as, 
 

   u() =  

B

3 3

0

ћω2 3

k T

ћω μ 1

π c
e 1

 
 
  

− 

 =  

B

ћω2 3 2 3
k T

3 3 3 3

0 0

1

π c π c
e

ћω μ ћω μ
−

        (8) 

[In a radiation chamber or cavity with free space 0 = 1]. 

Comparing eqns.7 and 8 we get, 

   12

21

B

A
 =    

2 3

3 3

0

π c

ћω μ
  or, 21

12

A

B
 =    

3 3

0

2 3

ћω μ

π c
    (9a) 

And   21

21

B

A
 =   

2 3

3 3

0

π c

ћω μ
 or,    21

21

A

B
 =  

3 3

0

2 3

ћω μ

π c
     (9b) 

From eqns.9a and 9b,      B12  =   B21 =  B. Also, we write A21 = A.     (10) 

Thus, the probabilities of stimulated absorption and stimulated emission are the same. The ratio 

between A and B coefficients is given by eqn.9. In the absence of stimulated emission the correct 

expression for u() would not have been derived. So in order to obtain the correct form of u(), 

Einstein, in 1917, predicted the existence of stimulated emission. 
 

At thermal equilibrium, using eqn.10 in eqns.7, we get, 

             u() =     

B

21

ћω

k T

12 21

A

B e B−

  =   

B

ћω

k T

A

B e 1
 

− 
 
 

    

i.e.          
( )

A

Bu ω
 =  B

ћω

k T
e 1−           (11) 

By eqn.11 it is clear that at thermal equilibrium at a temperature T, if Bk T
ω << 

ћ
, the number 

of stimulated emissions (B) far exceeds the number of spontaneous emissions (A), while for 

Bk T
ω >> 

ћ
 the number of spontaneous emissions far exceeds the number of stimulated 

emissions. For normal optical sources the temperature T  103 K, then  

     Bk T

ћ
 =    

23 3

34

1.38 10 J/K 10 K

1.054 10 J.sec

−

−

 


 =   1.311014 sec−1. 

For optical region, [wavelength 400nm to 700 nm;  

      For 400 nm,  = 
2πc

λ
 = 

8

9

2 3.14 3 10

400 10−

  


 = 4.711015; 

B

ω

k T
ћ

= 
15

14

4.71 10

1.31 10




 =36          ] 
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  41015. That is,  Bk T
ω >> 

ћ
 . Thus we find that at optical frequencies the emission is 

predominantly due to the spontaneous transition and hence the emission from usual light 

sources is incoherent.  

By eqn.9b,     21B  =   
2 3

213

π c
A

ћω
 =  

2 3

3

sp

π c

ћω t
      (12) 

where, sp

21

1
t

A
= represents the spontaneous lifetime of the upper level.             (12a) 

[The line-shape function * 

The line-shape function is a real, nonnegative and usually normalized function.  It is 

used for the mathematical description of the line shape for an absorptive transition. The 

transition may be electronic, rotational, or vibrational (i.e. visible, microwave or infrared 

radiation). Spectral line shape describes the form of a feature, observed in spectroscopy, 

corresponding to an energy change in an atom, molecule or ion. Ideal line shapes 

include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position, 

maximum height and half-width. For each system the half-width of the shape function varies 

with temperature, pressure (or concentration) and phase. 

The Lorentzian line shape function centered about any arbitrary frequency w0, is given 

by, 

     L() =  
( )

22

0π ω ω



  + −
 

 

where  is the energy width. Note that 

the Lorentzian line shape function is a 

normalized function so that

( )L ω dω 1

+

−

= . 

A Gaussian function is also a 

useful line-shape function. Any source 

of inhomogneous broadening such as 

the Doppler shift or site differences of 

molecules in crystals or solution can be 

described as a Gaussian line-shape. 
 

G() =  

( )
2

0

2

ω ω
 1

e
π

−
−




   

The third line shape that has a theoretical basis is the Voigt function, which is 

a convolution of a Gaussian and a Lorentzian, 

  V() =  ( ) ( )G ω L ω ω dω

+

−

  −  

The computation of a Voigt function and its derivatives is more complicated than a Gaussian or 

Lorentzian].  

 

 

 

Gaussian 
Lorentzian 
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1.2.1 Further discussion of Einstein coefficients 

In our discussion so far, we have assumed that the atom is capable of interacting with 

radiation of a particular frequency . In general, the atom can interact with radiation over a wide 

range of frequencies. The strength of interaction is a function of frequency, known as line-shape 

function. Let g() represents the normalized line-function corresponding to the transition 

between levels 1 and 2. The function is usually normalized according to, 
 

       ( )g ω dω  =  1        (13) 

Then, the number of atoms per unit volume in level-1 capable of interacting with 

radiations of frequency range  and +d is  
 

  n1d =  N1 g()d  

and the number corresponding to level-2 is 

  n2d =  N2 g()d   

Now taken into account of the line-function, the number of stimulated emissions per unit time 

per unit volume is given by (modifying eqn.4),  
 

       21 =  ( ) ( )2 21N B u ω g ω dω  

Using eqn.12,      =  
( )

( )
2 3

2 3 3

0 sp

u ωπ c
N g ω dω

ћμ t ω      (14) 

Now we consider two specific cases. 

1. If the atoms are interacting with radiation whose spectrum is very broad compared to 

that of g(ω) as shown in fig.a, then we assume that over the region of integration where 

g(ω) is appreciable 
( )

3

u ω

ω
 is essentially constant and can be taken outside the integral in 

eqn.14. Then, using eqn.13, eqn.14 becomes, 

      21 =  
( )

( )
2 3

2 3 3

0 sp

u ωπ c
N g ω dω

ћμ t ω   =  ( )
2 3

2 3 3

0 sp

π c
N u ω

ћω μ t
  (15) 

where, ω now represents the transition frequency. Eqn.15 is consistent with eqn.4. Thus 

eqn.15 represents the rate of stimulated emission per unit volume when the atom 

interacts with the broad radiation. 

ω ω 

u(ω) 

u(ω) g(ω) 

g(ω) 

Fig.a Fig.b 
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2. In the other case, the atom is interacting with near monochromatic radiation. If the 

frequency of the incident radiation is ω , the u(ω) curve will be sharply peaked at ω ω=  

as compared to g(ω) as shown in fig.b. Then, we can take 
( ) ( )

3 3

g ω g ω

ω ω
=


 outside the 

integral of eqn.14. Thus, 

       21 =  
( )

( )
2 3

2 3 3

0 sp

g ωπ c
N u ω dω

ћμ t ω



   =  ( )
2 3

2 3 3

0 sp

π c
N g ω U

ћω μ t



 (16) 

where,         U =  ( )u ω dω        (17)  

where, U is the energy density of the near monochromatic field. [U is the energy density by all 

frequencies, whereas u(ω) is the energy per unit volume per unit frequency range. 

  Similarly, for interaction with near monochromatic radiation, the number of stimulated 

absorptions per unit time per unit volume is given by (modifying eqn.2),   
 

      12 =   ( )
2 3

1

3 3

0 sp

N π c
g ω U

ћω μ t



        (18) 

Absorption and emission cross sections: We know that the intensity and energy density of the 

electromagnetic wave are related by, 
 
          I =  Uv, 

where, 
0

c
v

μ
=  is the wave velocity in the medium. Thus, 

          U =   
I

v
 =  0μ I

c
        (19) 

If n is the number of photons crossing a unit area per unit time (also known as flux of photons) 

the intensity I is given by, 
 
            I =  nћω          (20) 

Using eqns.18 and 19, eqn.18 becomes, (since, ω ω= ), 

     12 =   ( )
2 3

01

3 3

0 sp

μ nћωN π c
g ω

ћω μ t c





 =  ( )

2 2

12 2

0 sp

π c
g ω N n

ω μ t
  = a 1N n  (21) 

 where,        a  =  ( )
2 2

2 2

0 sp

π c
g ω

ω μ t
       (22) 

a  has the dimensions of area and is known as the absorption cross section. Similarly, eqn.15 

can be written as, 

      21 =  ( )
2 3

2 3 3

0 sp

π c
N u ω

ћω μ t
 =  

2 3

0
2 3 3

0 sp

μ nћωπ c
N

ћω μ t c
  

   =  ( )
2 2

22 2

0 sp

π c
g ω N n

ω μ t
  =  e 2N n           (23) 

where,         e  =  ( )
2 2

2 2

0 sp

π c
g ω

ω μ t
       (24) 

Eqns.22. and 24 show that the absorption and emission cross sections are equal and they are 

functions of frequency ω. They are related to the line broadening function ( )g ω  and the lifetime 

tsp. 
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1.3 Light amplification 

Consider a collection of 

atoms of a particular medium. 

A near monochromatic beam of 

frequency  is allowed to 

propagate in the Z-direction 

through the medium. In order to 

obtain the expression for the 

rate of change of intensity of 

the beam as it propagates 

through the medium, we 

imagine two parallel plane 

surfaces of equal area S such that the surfaces are perpendicular to the Z-axis, which passes 

through their centers. Let dz be the separation between the two planes.  
 

Volume of the medium between the planes   =  Sdz 

Number of stimulated absorptions per unit time  =  12 Sdz 

Energy absorbed per unit time in the volume element Sdz =  12 Sdz ħ 

Energy gain by stimulated emission    =  21 Sdz ħ 

We can neglect the gain in energy due to spontaneous emissions because the radiations arising 

out of it propagate in random directions. We assume that half of them propagate in the positive 

z-direction and remaining half in the negative z-direction. Thus, 
 

Net amount of energy absorbed per unit time in the volume  

     element Sdz and in the frequency interval  and +d =  ( )12 21 ћω Sdz −   

Let I(z) and I(z+dz), respectively, be the intensities of the radiation entering the volume 

element and that leaving it. Then, 

  Energy entering into the volume element per unit time =  I(z) S 

 Energy leaving the volume element per unit time  =  I(z+dz) S 

 Assuming the change in energy of the radiation is linear as it propagates in the Z-direction, 

we can write, 

         I(z+dz)S =  I S  +  ωI

z




 Sdz   

 Energy leaving the volume element per unit time =  I S  +  ωI

z




 Sdz    (25) 

      Net amount of energy leaving the volume element per unit time =  ωI

z




 Sdz  

This must be equal to the negative of the net energy absorbed by the medium in between z and 

z+dz per unit time. Thus, 

         ωI

z




 Sdz   =  ( )12 21 ћω Sdz−  −   

Using eqn.16 and 18 (with ω ω =  and energy density U),  

        ωI

z




 Sdz   =  ( ) ( )

2 3 2 3

1
23 3 3 3

0 sp 0 sp

N π c π c
g ω U N g ω U ћω Sdz

ћω μ t ћω μ t

 
− −  

 

 

Z 

dz 

S S 

I(z) I(z+dz) 
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    =  ( ) ( )
2 3

1 22 3

0 sp

π c
g ω U N N Sdz

ω μ t
− −  

Or,                 ωI

z




 =  ( ) ( )

2 3

1 22 3

0 sp

π c
g ω U N N

ω μ t
− −       (26) 

The energy density U and the intensity I are related through the equation, 

            I =  vU = 
0

c
U

μ
          (27) 

where, v is the velocity of propagation of the wave through the medium and µ0 is the 

refractive index of the medium. Then eqn.26 becomes, 
 

       ωI

z




 =  ( ) ( )

2 3

0 ω
1 22 3

0 sp

μ Iπ c
g ω N N

ω μ t c
− −    

Or,      ω

ω

dI

I
 =  ( )( )

2 2

1 22 2

0 sp

π c
g ω N N dz

ω μ t
− −   =  −dz      (28) 

where,   = ( )( )
2 2

1 22 2

0 sp

π c
g ω N N

ω μ t
−  =  −       (29) 

Figure below is a typical plot of  with . 

Integrating eqn.28, we get, 

           ln I(z) =  −z + C 

When z = 0,   I(z) = I(0).  

Then,   C = ln I(0). Thus, we get, 

           ln I(z) =  −z + ln I(0) 

i.e.            
( )

( )
ω

ω

I z
ln

I 0

 
  
 

 =   −z   

Taking exponential and rearranging, we get, 

     I(z) =  ( ) ωα z

ωI 0 e
−

  (30) 

Now we consider the two cases.  

Case (a): 1 2N >N . In this case  is positive. Then by eqn.30 it is clear that the intensity of the 

beam decreases exponentially. Hence at thermal equilibrium, if the number of atoms in the lower 

level is greater than the number of atoms in the higher level, the energy of the beam decreases 

exponentially as it propagates through the medium.  

 

Case (b) : 2 1N >N . This case is known as population inversion. In this case  is negative and 

the intensity increases exponentially. That is, at thermal equilibrium if there are more atoms in 

the excited states than the atoms in the lower level, the intensity of the beam increases 

exponentially as it propagates through the medium. This is known as light amplification.    

  

 

 

0  

 
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1.3.1 Threshold conditions for laser action 

In an actual laser system, the active medium, which produces the light amplification, is 

placed in between two parallel mirrors facing each other. This arrangement is known as an 

optical resonator. The region between the mirrors is known as cavity. In order to produce laser 

beam the oscillations must be sustained in the 

cavity. This is possible only if the net losses 

suffered by the beam must be compensated by 

the gain of the medium. The threshold and 

under steady state operation of the laser system 

they are exactly equal.  

 Let ‘d’ be the length of the active 

medium. Let R1 and R2, respectively, are the 

reflectivities of the mirrors M1 and M2 at the 

two ends of the laser resonator. The intensity 

of the beam at one of the mirrors, say M2 is 

represented by I.  While travelling through the active medium the beam gets gain in energy due 

to light amplification or suffers loss in energy due to absorption, scattering etc. in the laser 

medium. By eqn.23 the beam gets amplified by the factor ωα d
e

−
. The diminishing of the beam 

depends on the passive parameters of the medium. The beam gets diminished by the factor cα d
e .

−
 

Here, c represents the average loss per unit length due to all loss mechanisms (other than the 

finite reflectivity) such as scattering loss, diffraction loss due to finite mirror size, etc. Now we 

use ωα γ= − . Then,   

Intensity of the beam when it reaches the mirror M1 after travelling a distance ‘d’ in the 

laser medium,  I  =  ( )cγ α d
Ie

−
 

 

Intensity of the beam after reflection at the mirror M1,    I1 = 1I R  =  cα dγd

1IR e e
−

 

         =  
( )cγ α d

1IR e
−

  

Intensity of the beam when it reaches the mirror M2 after traversing a further distance 

‘d’ in the laser medium,  I  =  
( )cγ α d

1I e
−

  = 
( ) ( )c cγ α d γ α d

1IR e e
− −

 = 
( )c2 γ α d

1IR e
−

 

Intensity of the beam after reflection at the mirror M2,    I2 = 2I R  = 
( )c2 γ α d

1 2IR R e
−

  

The laser action takes place only if 2I I  or, 2I
1

I
 . From the above equation we get, the 

condition for the laser oscillation to begin is  
( )c2 γ α d

1 2R R e 1
−

     (31) 

The equality sign would correspond to the threshold value for oscillation. Remember for light 

amplification population inversion is needed. Eqn.31 can be written as, 

  Condition for laser oscillation is,  c2α d2γd

1 2

1
e e

R R
        

Taking exponential of eqn.32, we get, 

       2d ≥ c 1 22α d ln R R−   

i.e.             ≥  
c 1 2

1
α ln R R

2d
−       (32) 

[The RHS, which depends on the passive cavity parameters, is related to the quality factor Q of 

the passive resonator. Later we will show that  

d 

M1 

M2 

Active medium 

Laser beam 
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     c2α d  =  0
1 2

4πνμ d
ln R R

cQ
+    

Or,                     1 2ln R R   =  0
c

4πνμ d
2α d

cQ
−   =  0

c

c

2μ d
2α d

ct
−    (33) 

where,         tc =  
Q Q

ω 2πν
=   is the passive cavity lifetime of the resonator.   (34) 

Then, by eqn.33, 

          
c

1

t
 =  ( )c 1 2

0

c
2α d ln R R

2μ d
−       ]        (35a) 

Or,          
c 1 2

1
α ln R R

2d
−  =   0

c

μ

ct
                (35b) 

Using eqn.29 in eqn.32, we get, 

        ( )( )
2 2

2 12 2

0 sp

π c
g ω N N

ω μ t
−  ≥  

c 1 2

1
α ln R R

2d
−  

Using eqn.35b, 

        ( )( )
2 2

2 12 2

0 sp

π c
g ω N N

ω μ t
−  ≥  0

c

μ

ct
 

i.e.            2 1N N−  ≥  
( )

3 2
sp0

2 3

c

tμ ω 1

π c t g ω

 
 
 

 =  
( )

3 3
sp0

2 3

tμ ω 1

π c Q g ω

 
 
 

         (36a) 

Or,     ≥  
( )

3 2
sp0

3

c

t4μ ν 1

c t g ω

 
 
 

            (36b)   

where,  is the oscillation frequency at the centre of the resonator mode, µ0 is the refractive 

index of the medium and c is the velocity of the electromagnetic wave in free space.  Eqn.36 

gives the threshold population inversion required for the laser action. The minimum threshold 

value (corresponding to the equality) correspond to centre of the line where g() is maximum.  

The method to produce population inversion is known as optical pumping. As the laser 

medium is pumped harder and harder, the population inversion between the two levels goes on 

increasing. The mode that lies nearest to the resonance frequency of the atomic system reaches 

threshold first and begins to oscillate. As the pumping is still further increased the nearby modes 

may also reach threshold and start oscillating. 

By eqn.36, we can state the following conditions required to have the low threshold 

value of population inversion.  

1. The value of, tc = 
Q

2πν
  should be large. That is, Q must be large or cavity losses must be 

small. 

2. The value of g() at the centre of line should be large. For a Lorentzian line ( )
2

g ω
π ω

=


 

and for a Gaussian line ( )
( )

1
22 π ln2

g ω
π ω

=


. Thus, smaller values of line width  lead 

to smaller values of threshold population inversion. 

3. Small values of tsp lead small values of threshold population inversion. That is the 

relaxation times of transitions corresponding to spontaneous emission should be short. In 

general, population inversion is more easily obtained on transitions which have longer 

relaxation times. 
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4. By eqn.36a it is clear that the value of threshold population inversion is approximately 

(frequency dependence of other terms should be considered) proportional to 3. Hence it 

is much easier to obtain laser action at longer wavelengths (infrared region) as compared 

to the shorter wavelengths (ultraviolet region). 

Ruby laser as an example:  In order to get an idea of the magnitude of population inversion 

required for laser action we consider ruby laser. Ruby is a crystal of aluminum oxide Al2O3 

(corundum) doped with approximately 0.05 percent of chromium ions in the form of Cr2O3, so 

that some Al atoms in the crystal lattice are replaced by Cr3+ ions. We consider the laser to be 

oscillating at the frequency corresponding to the peak of the emission line. 

Population of Cr3+ ions, per cm3,  N =  N1 + N2  =  91.6 10  

Value of g() at the peak of the line,  =  
2

π ω
   (Lorentzian line shape) 

 Threshold population inversion density,  2 1N N−   = 
( )

2
sp

3

c

t4ν

c g ω t
 =   

2
sp

3 c

t4ν

2 t
c

π ω

  

      =  
2 3

sp

3

c

t4π ν ν

c ν t


 =  

2
sp

3

c

t4π ν

λ ν t


  (37) 

[For Gaussian line shape ν in eqn.37 must be replaced by 
( )

1
2

ν

π ln2


] 

For ruby laser transition 

Wavelength of ruby laser, free space   =  694.3 nm  

Refractive index of ruby rod                 n0 =  1.76 

 Wavelength of light in the ruby rod     = 
free space

0

λ

n
= 

7694.3 10

1.76

−
 

54 10− cm 

            =   
free space

c

λ
  =  

10

7

3 10

694.3 10−




    

144.3 10 sec−1.  

Since frequency of light in the medium is same as the frequency in the free space. But 

wavelengths are different.  

         ν    
111.5 10 sec−1. 

          tsp  
33 10−  sec       (38) 

If ‘d’ is the length of the optical cavity, n0 is the refractive index of the medium filling 

the cavity and ‘x’ is the fractional loss per round trip it can be shown that (later we see it), 

           tc =  02n d

1
c ln

1 x

 
 

− 

        (39) 

If length of the cavity is 5 cm and x = 10%, then 

              tc =  
10

2 1.76 5

1
3 10  ln

1 0.1

 

 
  

− 

 
96 10−  sec      (40) 

Then, threshold population density in ruby laser, 2 1N N−  =  
2

sp

3

c

t4π ν

λ ν t


  

    =  

( )

2 11 3

3 14 95

4 3.14 1.5 10 3 10

4.3 10 6 104 10

−

−−

  
 

 
    

161.1 10  Cr3+ ions/cm3. 
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1.4 Line broadening mechanisms 
The radiation coming out of a collection of atoms making transitions between two 

energy levels is never perfectly monochromatic. Thus, there is broadening of spectral lines.  This 

line broadening is described in terms of line shape function ( )g ω . Now we discuss some 

important line-broadening mechanisms and the corresponding line shape functions. A study of 

this is of great importance as it determines the operation characteristics of the laser, e.g. the 

threshold population inversion, the number of oscillating modes etc. There are three types of 

line broadening mechanisms and a convolution of all these three mechanisms.  

(1) Collision/pressure broadening: This is due to the finite lifetime in quantum states owing 

to collision.  

We first consider the line-shape function 

corresponding to the collisions that occur in a 

collection of atoms in the gaseous form. There 

are random collisions between atoms. Thus, an 

atom when interacting with the incident 

electromagnetic wave sees a field which 

changes its phase abruptly at each collision. 

Thus, the atom no longer sees a monochromatic 

wave but instead a wave like that shown in the 

figure. If  is the average time between two 

collisions, there is abrupt change in phase of the wave at time intervals  as shown in the figure. 

Thus, in this case the line-shape function would be given by (apart from some proportionality 

constant) the power spectrum of the field shown in the figure. The field of this type can be 

written in the form, 

    E(t) =  
( )0i ω t

0E e
+

         (1) 

where the phase constant  remains constant for 0 0t t t τ  +     (2) 

At each collision the phase  changes abruptly. The frequency spread of such a wave is obtained 

by a Fourier transform as given below. 

   ( )E ω  =  ( )
0

0

0

t τ

i ω t iωt

0

t

1
E e e dt

2π

+

+ −

  =  
( ) 

0

0

0

t τ

i ω ω t

0

t

1
E e dt

2π

+

− +

  

Here  is the radiation (absorption or emission) frequency.  

Put   ( ) 0i ω ω t− +   =  x 

i.e.       ( )0i ω ω dt−  =  dx 

Then,   ( )E ω  =  
( )

0

0

t τ

x0

0 t

E
e dx

2πi ω ω

+

−   =  
( )

0

0

t τ
x0

t
0

E
e

2πi ω ω

+

  −
  

    =  
( )

( )  0
0

0

t τ
i ω ω t0

t
0

E
e

2πi ω ω

+
− + 

 −
 

    =  
( )

( )( )  ( ) 0 0 0 0i ω ω t τ i ω ω t0

0

E
e e

2πi ω ω

− + + − + −
 −

  

    =  
( )

( ) ( )  ( ) 0 0 0 0 0i ω ω t ω ω τ i ω ω t0

0

E
e e

2πi ω ω

− + − + − + −
 −

  

    =  
( )

( )  ( )0 0 0
i ω ω t i ω ω τ0

0

E
e e 1

2πi ω ω

− + − −
 −

  

 
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Thus, the frequency distribution of intensity (power spectrum) such a wave is given by, 

    I()      ( )
2

E ω  =   ( ) ( )*E ω E ω  

     
( )

( )  ( )

( )
( )  ( )0 0 0 00 0

i ω ω t i ω ω ti ω ω τ i ω ω τ0 0

0 0

E E
e e 1 e e 1

2πi ω ω 2πi ω ω

− − + − +− − −   − − −
   − −

 

     
( )

( ) ( )0 0

2
i ω ω τ i ω ω τ0

22

0

E
e 1 e 1

4π ω ω

− − −   − −
   −

  

     
( )

( ) ( )0 0

2
i ω ω τ i ω ω τ0

22

0

E
1 e e 1

4π ω ω

− − − − − +
 −

 

     
( )

( ) ( ) ( ) ( )
2

0
0 0 0 022

0

E
2 cos ω ω τ isin ω ω τ cos ω ω τ isin ω ω τ

4π ω ω
− − + − − − − −  

−
 

     
( )

( )
2

0
022

0

E
2 2cos ω ω τ

4π ω ω
− −  

−
 =  

( )
( )

2

0
022

0

E
2 2cos ω ω τ

4π ω ω
− −  

−
 

   
( )

2
20 0

22

0

E ω ω
2 2 1 2sin τ

24π ω ω

  −  
− −   

 −   
 

     
( )

2
20 0

22

0

E ω ω
sin τ

2π ω ω

− 
 
 −

       (3) 

Let P()d represents the probability that the atom suffers a collision after a time interval 

between  and  + d. By kinetic theory of gases P()d is given by, 

  P()d =  0

τ
 
τ

0

1
e dτ

τ

−

         (4) 

with,            ( )
0

P τ dτ



  =  1          (5) 

and        ( )
0

τP τ dτ



  =  0         (6) 

At any instant the radiation is from atoms that have different values of . Thus, in order 

to obtain the spectral density we must multiply I() by P()d and integrate from 0 to . Thus, 

the frequency distribution of the radiation causing the transition is given by, 

   g()    ( ) ( )
0

I ω P τ dτ



  

    
( )

0

τ2  
τ 20 0

22
0 00

E ω ω1
e sin τdτ

τ 2π ω ω

 − − 
 
 −

  

  =  
( )

0

τ2  
τ 20 0

22
0 00

KE ω ω1
e sin τdτ

τ 2π ω ω

 − − 
 
 −

 ,  

where, K is the proportionality constant. Put U = 
2 0ω ω

sin τ
2

− 
 
 

 and dV = 0

τ
 
τ

e dτ
−

, then 

integrate using UdV  = UV − VdU . Applying the limits first term reduces to zero. 
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 Then using formulae, 2 sinA cosA = sin2A and axe sin bx dx  =  
ax

2 2

e
a sin bx bcosbx

a b
−

+
, 

we get, 

     0

τ
 
τ 2 0

0

ω ω
e sin τdτ

2

 − − 
 
 

  =  
( )

( )

2

00

2

02

0

ω ωτ

12
ω ω

τ

 
 −
 
 + −
  

 

Then,     g() =     
( )

( )

( )

22
00 0

22 2
00

02

0

ω ωKE τ1

1τ 2π ω ω ω ω
τ

 
 −
 

−  + −
  

 =  
( )

2 2

0 0

22 2

0 0

KE τ 1

2π 1 ω ω τ

 
 

+ −  

 

The proportionality constant and hence the constant factor is adjusted such that ( )g ω dω  = 1. 

Thus, we get,  

       g() =    
( )

0

2 2

0 0

τ 1

π 1 ω ω τ

 
 

+ −  

 =   
( )

0

2 2

0 0

τ 1

π 1 ω ω τ

 
 

+ −  

  (7) 

The distribution g() given by eqn.7 is known as a Lorentzian and is plotted in the figure below 

(page 28). The peak of g() can be determined by the condition 
dg

0
dω

= . The peak lies at 0ω ω=  

and has a value, 0τ

π
. We can also find out the width at the half maximum, 0τ

2π
. That is, 

        0τ

2π
 =  

( )
0

2 2

0 0

τ 1

π 1 ω ω τ

 
 

+ −  

 

          ( )
2

0ω ω−  =   
2

0

1

τ
 

  ( )0ω ω−  or ( )0ω ω−  = 
0

1

τ
 

 Full width at half maximum,      =  
0

2

τ
       (8) 

The mean time between collisions depends on the mean free path and average speed of 

atoms in the gas. Hence, they depend upon pressure, temperature and mass of atoms. The 

approximate expression for average collision time for monatomic gas is, 

         0τ  =  

1
2

B2

1 2
Mk T

8πpa 3

 
 
 

 

where, p is the pressure of the gas, a is the atomic radius, M is the atomic mass, kB is the 

Boltzmann’s constant and T is the temperature.  

 

2. Doppler broadening: This is due to thermal motion of atoms. Now we calculate the effect 

of the thermal motions of the gas atoms. According to kinetic theory, gas atoms undergo random 

motions. When such a moving atom interacts with radiation, the apparent frequency of the 

incident wave is different from the frequency seen from a stationary atom. This is called Doppler 

Effect. Due to this effect there is shifting of the resonance frequency of the atom. Let  be the 

frequency of the incident wave. Also, we assume that the wave is travelling along the Z-axis. If 
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vz is the component of velocity of the atom in the z-direction, the relative velocity of the wave 

with respect to the atom is c − vz. Then the  

  Apparent frequency,         ν  =  zc v

λ

−
 

  Original frequency,             =  
c

λ
   

         
ν

ν


 =  zc v

c

−
  =  zv

1
c

−  

Or,         ν  =  zv
ν 1

c

 
− 

 
 

i.e.                2πν   =  zv
2πν 1

c

 
− 

 
 

Thus, the apparent angular frequency as seen by the atom is given by, 

       ω  =  zv
ω 1

c

 
− 

 
         (9a) 

Or,         =   

1

zv
ω 1

c

−

 
 − 
 

    zv
ω 1+

c

 
 
 

      (9b) 

Let 0 be the resonant frequency (transition frequency) of the atom. (21 = ω ). In order that 

the incident radiation may interact strongly with the atom, the resonant frequency of the atom 

must be equal to the apparent frequency of the wave, i.e. 0ω ω= . Then by eqn.9b,  

    z
0

v
ω 1

c

 
+ 

 
        (10) 

Thus, the effect of motion of the atom is to change the resonant frequency of the atom. 

According to the Maxwell-Boltzmann distribution, the probability of an atom having z-

component of velocity lying between vz and vz + dvz is given by, 
 

      ( )z zP v dv  =  

2
z

B

1 Mv
2

2k T

z

B

M
e dv

2πk T

 
− 

 
 

 
 
 

       (11) 

where, M is the mass of the atom, T is the temperature of the gas and kB is the Boltzmann’s 

constant.   

 By eqn.10,         
0

ω

ω
 =  zv

1
c

+  

i.e.       zv

c
 =  

0

ω
1

ω
−   =  0

0

ω ω

ω

−
 

Or,        vz =  0

0

ω ω
c

ω

 −
 
 

                (12a) 

and,         dvz =   
0

c
dω

ω
                  (12b) 

The probability g()d that the transition frequency lies between  and  + d is same as the 

probability that the z-component of velocity lies between vz and vz + dvz. Using eqns.12a and b 

in eqn.11 we get, 
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        ( )g ω dω  =  

( )
22

0

2
B 0

Mc ω ω1
2

2k Tω

0 B

c M
e dω

ω 2πk T

 −
 −
 
 

 
 
 

 = 

( )
22

0

2
B 0

Mc ω ω1
22

2k Tω

2

B 0

Mc
e dω

2πk Tω

 −
 −
 
 

 
 
 

  (13) 

This corresponds to the Gaussian distribution. The distribution curve is plotted in the figure 

below (page 19). At the peak 
dg

0
dω

= . Then we get the peak is obtained for 0ω ω= . For this 

frequency, the maximum value of g() is 

1
22

2

B 0

Mc

2πk Tω

 
 
 

. For half maximum, 

     

1
22

2

B 0

Mc 1

2πk Tω 2

 
 
 

 =    

( )
22

0

2
B 0

Mc ω ω1
22

2k Tω

2

B 0

Mc
e

2πk Tω

 −
 −
 
 

 
 
 

  

    ln 2  =  
( )

22

0

2

B 0

Mc ω ω

2k Tω

−
 

            0ω ω−  =   

1
2

B
0 2

2k T ln 2
ω

Mc

 
 
 

 

 Full width at half maximum  ω  =  ( )02 ω ω−  =  

1
2

B
0 2

2k T ln 2
2ω

Mc

 
 
 

    (14) 

      Peak value of g() =   

1
22

2

B 0

Mc

2πk Tω

 
 
 

 =   

1
22 ln2

ω π

 
 

  
    

Thus, in terms of ω , the Gaussian line-shape function can be written as, 

    g() =  
( )

( )

( )

2

0

2

ω ω1
4 ln22

ω2 ln2
e

ω π

−
−

 
 

  
     (15) 

3. Natural broadening: This is the inherent line width as a result of the finite lifetime of the 

excited states corresponding to the spontaneous emission. The rate of transition from the level 

2 to 1corresponding to spontaneous emission is given by eqn.3 sec.1.2. 
 

                     2

spontaneous emission

dN

dt

 
 
 

 =   −A21N2  

Rearranging and integrating, we get, 

       2N  =  21A t

20N e−         (16) 

The energy of the photon emitted is given by, 

      0ћω  =  2 1E E−  

Then the energy emitted per unit time per unit volume is given by, 

   ( )W t  =  21
0

spontaneous emission

dN
ћω

dt

 
 
 

 =  21 2 0A N ћω  

    =  21A t

21 20 0A N e ћω−  =  21A t

21 20 0A N ћω e−     (17) 

This equation gives the variation of intensity of the spontaneously emitted radiation. So, the 

electric field associated with the spontaneous emission can be assumed to be of the form, 
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       E(t) =  sp 0

t

2t iω t

0E e e
−

       (18) 

where, tsp spontaneous emission lifetime and 0ω  is the emission frequency. Let  be the 

frequency of the incident radiation. Then the frequency spectrum corresponding to the field 

given by eqn.18 is obtained by the Fourier transform of the form 
 

      E() =  sp 0

t

2t iω t iωt

0

0

E e e e dt

 −
−

  =  
( )0

sp

1
i ω ω t

2t

0

0

E e dt

   − − 
  

    

Put,      ( )0

sp

1
i ω ω t

2t

  
− − 

  

 =  x 

          dt = 

( )0

sp

dx

1
i ω ω

2t

  
− − 

  

 

 Then   E() = 

( )

x0

0
0

sp

E
e dx

1
i ω ω

2t



− −
  =    

( )

( )0
sp

1
i ω ω t

2t0

00

sp

E
e

1
i ω ω

2t


  

− − 
  

 
 
   
 − − 

  

  

   =  

( )

( )0
sp

1
i ω ω t

2t0

00

sp

E
e

1
i ω ω

2t


  

− − + 
  

 
 
   
 − − 

  

 

    = 

( )

 0

0

sp

E
0 1

1
i ω ω

2t

−
  

− − 
  

 =  

( )

0

0

sp

E

1
i ω ω +

2t

  
− 

  

   (19) 

Thus, the frequency distribution of intensity (power spectrum) is given by, 

        I()      ( )
2

E ω  =   ( ) ( )*E ω E ω  

       

( ) ( )

0 0

0 0

sp sp

E E

1 1
i ω ω + i ω ω +

2t 2t

  
  
  
  

− − −
  
  

  

        

( )

2

0

2

2

0

sp

E

1
ω ω +

2t

 
−   

 

  

    =  

( )
2

0 2

sp

K

1
ω ω

4t
− +

 =  
( )

2

sp

22

sp 0

4t K

1 4t ω ω+ −
    (20) 

By applying the normalization condition, (refer eqn.13 sec.1.2.1) 
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      ( )g ω dω  =  1  

the proportionality constant K can be evaluated as, 

          K =  
sp

1

2πt
        (21) 

Then the normalized lineshape function is  

  g() =  
( )

sp

2 2

0 sp

2t 1

π 1 4 ω ω t

 
 

+ −  

       (22) 

This is again Lorentzian. Using 
dg

0
dω

= , we get the peak of g(ω) lies at 0ω ω= and is equal to 

sp2t

π
. Then the frequency ω  corresponds to the half maximum is obtained by, 

     
spt

π
 =   

( )
sp

2 2

0 sp

2t 1

π 1 4 ω ω t

 
 

+ −  

  

Then, 0ω ω −  =  ω  = 
sp

1

2t
       (23) 

Thus, full width at half maximum 

(FWHM) is given by,  

    Nω  =  
sp

1

t
        (24) 

Then eqn.22 becomes, 

   g() =
2

N
0

N

2 1

π ω ω ω
1 4

ω

 
 
 
   − +     

(25) 

4. Voigt profile: In general, all the 

three mechanisms may be present 

simultaneously and the resultant line-

shape function can be obtained by 

performing a convolution of the 

different line shapes, known as voigt 

profile.  

If any one of the broadening mechanisms dominates over the others, then the line-shape 

function would correspond to the dominant mechanism. For example, the Doppler-broadened 

line width corresponding to the 6328Å transition of Ne in He-Ne laser can be calculated using 

eqn.14. It is about 1700 MHz. For this transition the line width due to collision broadening at a 

pressure of 0.5 Torr is about 0.64 MHz, whereas that for natural broadening is about 20 MHz. 

Thus for He-Ne laser the Doppler broadening dominates over natural and collision broadening.  

The line broadening mechanisms we have seen is again broadly classified under 

homogeneous and inhomogeneous broadening. In the case of homogeneous broadening the 

response of each atom is identical. Certain line broadening mechanisms like collision 

broadening or natural broadening come under the class of homogeneous broadening, which have 

FWHM: Full width at half maximum 
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Lorentzian line shape. In the case of inhomogeneous broadening the response of different atoms 

are different. Doppler broadening or broadening produced by local inhomogeneities in a crystal 

lattice come under the class of inhomogeneous broadening and their line shapes are Gaussian. 

[For further study refer chapter-4: Radiative transitions and emission line width: Laser 

fundamentals- second edition by William T Silfvast].  
 

1.5 Laser rate equations  

The laser rate equations govern the rate at which the populations of various levels change 

under the action of a pump (refer optical pumping) and in presence of the laser radiation. It 

provides a convenient means of studying the time dependence of the atomic populations of 

various levels under the presence of radiation at frequencies corresponding to the different 

transitions of the atoms. It also gives the steady state population difference between the actual 

levels involved in the laser transition. This helps one to know whether an inversion of population 

is achievable in a transition. If the population inversion is achievable one can find out the 

minimum pumping rate required for the continuous wave operation of the laser.  
 

1.5.1 The Two-Level System 

We first consider a two-level system 

consisting of energy levels E1 and E2. Let N1 and 

N2, respectively, be the number of atoms per unit 

volume. Let a monochromatic radiation of 

frequency ω with energy density u be incident on 

the system. Then the number of induced 

absorptions per unit volume per unit time is given 

by eqn.18 sec.1.2.1. 

     12 =  ( )
2 3

13 3

0 sp

π c
g ω uN

ћω μ t
  =  12 1W N      (1) 

where,     W12 =  ( )
2 3

3 3

0 sp

π c
g ω u

ћω μ t
       (2) 

The number of stimulated emissions from E2 to E1 per unit time per unit volume is given by 

eqn. 16 sec.1.2.1. 

       21 =  ( )
2 3

23 3

0 sp

π c
g ω uN

ћω μ t
 =  W21N2 = W12N2    (3) 

since,     W21 =  ( )
2 3

3 3

0 sp

π c
g ω u

ћω μ t
 =  W12      (4) 

In addition to these two transitions, there is spontaneous transition from E2 to E1. This includes 

the radiative and nonradiative transitions. The number of spontaneous transitions per unit time 

per unit volume is proportional to N2. That is, by eqn.3 sec.1.2 
 
      U21 =   T21N2           (5) 

Since there are radiative and nonradiative transitions, 

       T21 =  21 21A S+         (6) 

Thus, we can write the rate of change populations in the two energy levels as, 

    2dN

dt
 =  12 21 21U −  −  =   ( )12 1 2 21 2W N N T N− −    (7) 

N2 

N1 

E2 

E1 

2 

1 

Pump 
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and,     1dN

dt
 =  12 21 21U− +  +  =   ( )12 1 2 21 2W N N T N− − +    (8) 

Adding eqns.7 and 8, we get, 

  ( )1 2

d
N N

dt
+  =  0 

i.e.         1 2N N+  =    constant =  N       (9) 

Eqn.9 is nothing but it is the fact that the total number of atoms per unit volume is a constant. 

Steady state case: At steady state, 

   1dN

dt
 =   0 =  2dN

dt
 

Then from eqn.7 we get, 

           ( )12 1 2 21 2W N N T N− −  =  0 

i.e.     ( )12 1 12 21 2W N W T N− +  =  0 

Or,      2

1

N

N
 =  12

12 21

W

W T+
       (10) 

Since 12W  and 21T  are positive quantities, N2 is always less than N1. That is, we can never 

achieve a steady state population inversion by optical pumping between just two levels. For 

steady state populations, by subtracting 1 from eqn.10, we can write, 
 

            2

1

N
1

N
−  =    12

12 21

W
1

W T
−

+
 

i.e.         2 1

1

N N

N

−
 =   12 12 21

12 21

W W T

W T

− −

+
   =  21

12 21

T

W T
−

+
    (11) 

Similarly adding 1 to eqn.10, we get, 

          2 1

1

N N

N

+
 = 12 12 21

12 21

W W T

W T

+ +

+
 =  12 21

12 21

2W T

W T

+

+
    (12) 

Dividing eqn.11 by eqn.12 we get, 

         2 1

2 1

N N

N N

−

+
 =  21

12 21

T

2W T
−

+
 

i.e.      
N

N


 =  

12

21

1

2W
1

T

−

+

       (13) 

Here, 2 1N N N = −  is the population difference between the two levels. If we assume that the 

transitions from the levels E2 to E1 is mostly radiative (spontaneous radiative), by eqn.6, 
   
       T21 =  21 21A S+    A21      (14) 

Now we introduce a lineshape function, ( )g ω such that it is normalized to have a value equal to 

1 at the center of the line where 0ω ω= . That is, 
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     ( )g ω  =  
( )

( )0

g ω

g ω
       (15) 

Since ( ) ( )0g ω g ω  for all ω, we have ( )0 g ω 1  . Using eqn.27 sec.1.3 and eqn.15 in eqn.2 

we get, 

   W12 =  ( )
2 3

3 3

0 sp

π c
g ω u

ћω μ t
 =  ( ) ( )

2 3

0
03 3

0 sp

μ Iπ c
g ω g ω

ћω μ t c
  

     12

21

W

T
 =  ( ) ( )

2 3

0
03 3

0 sp 21

μ Iπ c
g ω g ω

ћω μ t cT
 

Using eqn.14 and eqn. 12a sec.1.2,   

    =  ( ) ( )
2 3

0
03 3

0 sp 21

μ Iπ c
g ω g ω

ћω μ t cA
 =  ( ) ( )

2 2

03 2

0

π c
g ω g ω I

ћω μ
    (16) 

Using.16 in eqn.13, 

    
N

N


 =  

12

21

1

2W
1

T

−

+

 =  

( ) ( )
2 2

03 2

0

1

π c
1 2 g ω g ω I

ћω μ

−

+

 

    =  

( )

( )3 2

0

2 2

0

1

I
1 g ω

ћω μ

2π c g ω

−

+

 =  

( )
s

1

I
1 g ω

I

−
 

+  
 

   (17) 

where,         sI  =  
( )

3 2

0

2 2

0

ћω μ

2π c g ω
       (18) 

is called the saturation intensity. In order to understand what Is represents we consider the case 

of the interaction of a monochromatic wave of frequency ω0 with a two-level system. In this 

case by eqn.15, ( )g ω = 1. Then eqn.17 becomes, 

      
N

N


 =  

s

1

I
1

I

−
 

+  
 

        (19) 

Now we consider the following three cases.  

Case-1: If I << Is, then the difference in the population densities of the two levels N is 

independent of the intensity of the incident radiation.  

Case-2: If I is comparable to Is, N becomes a function of I.  

Case-3: If I = Is, N has a value half that of the value for very low incident intensities (case-1). 

  We have, by eqn.29 sec.1.3, the loss/gain coefficient  in terms of N as, 

           =  ( )
2 2

2 2

0 sp

π c
g ω N

ω μ t
−    

Using eqn.17,   

    = 
( )

( )

2 2

2 2

0 sp

s

g ω Nπ c

ω μ t I
1 g ω

I

 
+  

 

 =   

( )

0

s

α

I
1 g ω

I

 
+  

 

   (20) 

where,         0 =  ( )
2 2

2 2

0 sp

π c
g ω N

ω μ t
       (21) 
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For small incident intensities, i.e. I << Is, by eqn.20,  reduces to 0. Or, 0 is the loss coefficient 

corresponds to small signal loss.   

By eqn.28 sec.1.3, we have, 

        
dI

dz
 =  −I =  

( )

0

s

α I

I
1 g ω

I

−
 

+  
 

          (22) 

For I << Is, we get the variation of I with z is exponential and for I = Is, the variation is linear. 

Thus, we see that the attenuation caused by a medium decreases as the incident intensity 

increases to a value comparable to the saturation intensity. Later we will see that organic dyes 

having reasonably low values of Is are used as saturable absorbers in mode locking and Q-

switching of lasers. 
 
Problem: Obtain the variation of I with z. 

 We can write eqn.22 as,  

      ( )
s

I dI
1 g ω

I I

   
+  

   

 = 0α dz−  

i.e.   
( )

s

g ωdI
dI

I I
+  =   0α dz−  

Integrating we get, 

          
( )

s

g ωdI
dI

I I
+   =  0α dz−   

i.e.             ( )
( )

s

g ω
ln I I

I
+  =  0α z C− +        (23) 

The constant of integration C can be evaluated by applying the initial condition that I = I0 when 

z = 0. That is, 

          ( )
( )

0 0

s

g ω
ln I I

I
+  =  C 

Then eqn.23 can be written as, 

           ( )
( )

s

g ω
ln I I

I
+  = ( )

( )
0 0 0

s

g ω
α z ln I I

I
− + +  

 i.e.    
( )

( )0

0 s

g ωI
ln I I

I I

 
+ − 

 
 =  0α z−        (24) 

Eqn.24 gives the variation of I with z. The first term in the LHS corresponds to the exponential 

variation and the second term that of the linear variation. 
 

1.5.2 Three-Level Laser System 

Consider a three-level laser system as shown in the figure. All the three levels are 

assumed as nondegenerate. (Each energy eigen value has only one wave function. Not more 

than one eigen functions have same energy eigen value). the optical pumping is applied for the 

1 → 3 transition. The lasing transition is 2 → 1. The pump lifts the atoms from the level 1 to 

the level 3. Atoms in the level 3 undergo nonradiative transition to the level 2 rapidly. For lasing 

transition to take place the level 2 should be metastable and there are more atoms in the 

metastable level 2 than the atoms in the ground level 1. The level 3 may be a broad level or a 

group of levels. 
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Let N1, N2 and N3 be the number of atoms per unit volume in the levels with energy 

values E1, E2 and E3 respectively. Since only these three levels are populated and the transitions 

take place only between these levels, we can write, 
 
  N1 + N2 + N3  =  N     (1) 

where, N is the total number of atoms per unit 

volume. Number of atoms in the level 3 may be 

changed because of the transition 1→3 by induced 

absorption, stimulated emission 3→1 and the 

nonradiative transition 3→2. Thus, 

 Rate of change of population of level 3, 

      3dN

dt
 =  

p 1 p 3 32 3W N W N T N− −  

   =  ( )p 1 3 32 3W N N T N− −   (2) 

where, Wp is a quantity proportional to the Einstein coefficient B13 and the pump beam energy 

density. (Suffix p stands for pumping transition). WpN1 represents the number of induced 

absorptions per unit time per unit volume due to 1→3 transition. WpN3 represents the number 

of stimulated emissions per unit time per unit volume associated with 3→1 transition. 

Spontaneous transition 3→1 is neglected because in practical laser systems the atoms in the 

level 3 almost instantaneously undergo nonradiative transition to level 2. The term 32 3T N

represents the number of atoms that undergo transition 3→2 per unit time per unit volume. Now 

we write, 

        32T  =  32 32A S+         (3) 

where, 32A  is the Einstein coefficient corresponding to the spontaneous transition 3→2 and 32S  

represents the nonradiative transition rate from level 3 to level 2.   
 

Rate of change of population of level 2,   2dN

dt
 =  1 2 32 3 21 2W N W N T N T Nl l− + −  

        =  ( )1 2 32 3 21 2W N N T N T Nl − + −   (4) 

where, 1W Nl gives the number of atoms per unit time per unit volume coming from level 1by 

stimulated transition. (Suffix l stands for laser transition). The term 2W Nl represents number of 

atoms leaving from level 2 per unit time per unit volume by induced transition 2→1. Here Wl 

represents the stimulated transition rate per atom between levels 1 and 2. By referring eqn.2 

sec.1.5.1 and eqn.27 sec.1.3 we can write, 
 

         Wl  =  ( )
2 3

0
13 3

0 sp

μ Iπ c
g ω

ћω μ t c

l   =  ( )
2 2

21 13 2

0

π c
A g ω I

ћω μ
l        (5) 

where, Il is the intensity of radiation in the 2→1 transition and ( )1g ω  is the lineshape function 

describing the transitions between levels 1 and 2. Further, 
 
         T21 =  21 21A S+          (6) 

The term 32 3T N represents the number of atoms that undergo transition 3→2 per unit time per 

unit volume and 21 2T N  gives the number of atoms undergo spontaneous transition from 2→1 

per unit time per unit volume. The quantity Wl  is proportional to Einstein coefficient B21 (refer 
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eqn.12 sec.1.2) and the energy density associated with the lasing transition 2→1. The quantity 

21T  represents the net spontaneous relaxation rate from level 2 to level 1. If this transition is 

predominantly radiative  21T  is approximately the same as the Einstein coefficient A21.  

Similarly, 

Rate of change of population of level 1,   1dN

dt
 =  

p 3 p 1 2 1 21 2W N W N W N W N T Nl l− + − +  

       = ( ) ( )p 3 1 2 1 21 2W N N W N N T Nl− + − +   (7) 

where, the first term represents the stimulated transitions between levels 1 and 3 by optical 

pumping, the second term represents the stimulated transition by lasing action and the third term 

represents spontaneous transition from level 2 to level 1. 

By adding eqns.2, 4 and 7 we can easily show that, 

       31 2
dNdN dN

dt dt dt
+ +  =  0        (8)  

Eqn.8 is consistent with eqn.1. Eqns.2, 4 and 7 are referred to as the rate equations. These 

equations give the rate change of populations of the three levels in a three-level laser system in 

terms of Wp and Wl.  

To solve these for N1, N2 and N3 we use the steady state conditions. At the steady state 

31 2
dNdN dN

0
dt dt dt

= = = .  Then from eqn.2 we get, 

           
p 1 p 3 32 3W N W N T N− −  =  0  

i.e.               ( )p 32 3W T N+  =  
p 1W N   

           N3 =  
p
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p 32

W
N

W T

 
  + 

      (9) 

From eqn.4 we get,  

          1 2 32 3 21 2W N W N T N T Nl l− + −  =  0 

i.e.     ( )21 2W T Nl +  =  1 32 3W N T Nl +  =  
p

1 32 1
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W N T N

W T
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 
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W T
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           2 1N N−  =  
( ) ( )( )

32 p

1 1

21 p 32 21

T WW
N N

W T W T W T

l

l l
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l

l l

 
+ − 

+ + +  
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    =  
( ) ( )( )

( )( )
p 32 32 p p 32 21

1

p 32 21

W W T +T W W T W T
N

W T W T

l l

l

 + − + +
 

+ +  

 

  N  = N1 + N2 + N3 = 
( ) ( )( )

( )( )
p 32 32 p p 32 21 p

1 1

p 32p 32 21

W W T +T W W T W T W
N N

W TW T W T

l l

l

 + + + +  
+    ++ +    

 

    = 
( ) ( )( ) ( )

( )( )
p 32 32 p p 32 21 p 21

1

p 32 21

W W T +T W W T W T W W T
N

W T W T

l l l

l

 + + + + + +
 

+ +  

 

       2 1N N

N

−
 =  

( ) ( )( )

( ) ( )( ) ( )
p 32 32 p p 32 21

p 32 32 p p 32 21 p 21

W W T +T W W T W T

W W T +T W W T W T W W T

l l

l l l

+ − + +

+ + + + + +
 

    =  
( )p 32 21 32 21

p p 21 p 32 32 21 32

W T T T T

3W W 2W T +W T +2W T T Tl l

− −

+ +
    (11) 

Necessary conditions for population inversion: In order to obtain population inversion

2 1N N . That is 2 1N N−  must be positive. From eqn.11 it is clear that, this is possible only if 

the following two conditions are satisfied. 
 

Condition.1:  32 21T T                (12a) 

Since the relaxation times of atoms in levels 3 and 2 are inversely proportional to the 

corresponding relaxation rates, according to eqn.12a, in order to attain population 

inversion the lifetime of level 3 must be at least smaller than the lifetime of level 2. 

Condition.2:  ( )p 32 21 32 21W T T T T−              (12b) 

 In order to attain population inversion a minimum pump power is required. According 

to eqn.12b, the minimum pump power required is given by, 

    ( )pt 32 21W T T−  =  32 21T T  

       Minimum pump power, 
ptW  =  32 21

32 21

T T

T T−
             (13a) 

  If 32 21T T ,        Wpt   T21               (13b) 

That is, for obtaining population inversion pW  should be greater than ptW . [Suffix t for 

threshold]. 

Under the same approximation, eqn.11 becomes, 

        2 1N N

N

−
   

p 32 32 21

p p 32 32 21 32

W T T T

3W W W T 2W T T Tl l

−

+ + +
 

    

( )
( )
( )
( )

p 21 32

p 21 32

p p 21 32 32

p 21 32

W T T

W +T T

3W W + W +T T +2W T

W +T T

l l

−

 =  

( )
( )

( )
( )

p 21

p 21

p 32

p 21 32

W T

W +T

3W +2T W
1

W +T T

l

−

+

           (14a) 

Special cases: For low laser powers, i.e. when Wl  very small compared to T21 (rate of loss of 

energy by spontaneous transition from level 2 to level 1), we can neglect terms containing Wl  

in eqn.11. Thus, 
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         2 1N N

N

−
   

( )p 32 21 32 21

p 21 p 32 21 32

W T T T T

2W T +W T T T

− −

+
     

We also assume that T32 >> T21. Then, 

        2 1N N

N

−
    

p 32 32 21

p 32 21 32

W T T T

W T T T

−

+
 =   

p 21

p 21

W T

W T

−

+
         (14b) 

(We may get this result from eqn.14a by simply W 0l → ). 

Under this approximation, for population inversion, we must have 
p 21W T . From 

eqn.14b it is clear that the population inversion is independent of the energy corresponding to 

the laser transition ( Wl ). Since 1 2N N−  is negative  is negative (eqn.29 sec.1.3) and hence 

by eqn.30, sec.1.3, the intensity of the beam grows exponentially.   

By eqn.29 sec1.3 

            = − = ( )( )
2 2

2 12 2

0 sp

π c
g ω N N

ω μ t
−  

Using eqn.14a, 

             =  ( )

( )
( )

( )
( )

p 21

2 2
p 21

2 2

0 sp p 32

p 21 32

W T

W +Tπ c
g ω N

ω μ t 3W +2T W
1

W +T T

l

−

+

  =  
( )
( )

0

p 32

p 21 32

γ

3W +2T W
1

W +T T

l
+

 (15) 

where,          0 =  ( )
( )
( )

2 2
p 21

2 2

0 sp p 21

W Tπ c
g ω N

ω μ t W +T

−
      (16) 

Using eqn.5 in eqn.15, with ( ) ( )1g ω g ω=  and I Il = , we get, 

           =  

( ) ( )

( )

0

2 2

p 32 213 2

0

p 21 32

γ

π c
3W +2T A g ω I

ћω μ
1

W +T T
+

     

Using eqn.15 sec.1.5.1, 

   =  

( ) ( ) ( )

( )

0

2 2

p 32 21 03 2

0

p 21 32

γ

π c
3W +2T A g ω g ω I

ћω μ
1

W +T T
+

 = 
( )

( )
( )( )

0

3 2

0 p 21 32

2 2

21 0 p 32

γ

g ω I
1

ћω μ W +T T

π c A g ω 3W +2T

+

 

   = 

( )

0

s

γ

I
1 g ω

I

 
+  

 

        (17) 

where,        Is =  
( )
( )( )

3 2

0 p 21 32

2 2

21 0 p 32

ћω μ W +T T

π c A g ω 3W +2T
       (18) 

is the saturation ntensity.     

For high laser powers: Assuming T32 >> T21, eqn.11 becomes,     
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                              2 1N N

N

−
   

p 32 32 21

p p 32 32

W T T T

3W W +W T +2W Tl l

−
 

Assuming, 
pW Wl  , 

                              2 1N N

N

−
   

p 32 32 21

p 32

W T T T

3W W +2W Tl l

−
 =  

( )
p 32 32 21

p 32

W T T T

W 3W +2Tl

−
    (19) 

Under this approximation, the population inversion is inversely proportional to Wl . 

Hence  is negative, but its value is inversely proportional to Wl . In such cases ωdI

dz
 in eqn.26, 

sec.1.3, is independent of I and the intensity of the beam grows only linearly with distance.  

Now we rewrite eqn.14b as, 

                
N

N


       

p 21

p 21

W T

W T

−

+
   

Or,                
p 21NW NT−    

p 21NW NT +   

   p

N N
W

2

−  
 
 

    21

N N
T

2

+  
 
 

       (20) 

where, 2 1N N N = − . Cancelling 2 from both sides, eqn.16 becomes,  

  ( )pW N N−      ( )21T N N+         (21) 

The LHS of this equation represents the number of atoms per unit volume in level 1 is lifted to 

level 2 per unit time and the RHS represents  the number of atoms per unit volume in the level 

3 that decays to level 1 per unit time.       

For a three level laser system, since the transition rate at level 3 is very large, atoms of 

level 3 drops to level 2 so quickly, the number of atoms in the level 3 is very small. Thus, 
 
         N   N1 + N2  =  1 2 12N N N+ −  = 12N N+   

Or,         N1 =  
N N

2

− 
  and  N2 = N − N1 = 

N N

2

+ 
    (22) 

Then eqn.20 becomes, 

   
p 1W N     21 2T N         (23) 

The LHS of eqn.23 represents the number of atoms being lifted (by the pump) per unit volume 

per unit time from level 1 to level 2 via level 3 and the RHS corresponds to the spontaneous 

emission rate per unit volume from level 2 to level 1. These rates must be equal under steady 

state conditions for Wl  0, i.e. below the threshold.  

  Now we estimate the threshold pumping power required to start the laser oscillations. In 

this case the threshold inversion is very small compared to N. That is, 2 1N N N−  , or 

2 1

N
N N

2
  . Then by eqn.23, p 21W T . Now the number of atoms being pumped per unit 

time per unit volume from level 1 to level 3 is p 1W N . If p represents the average pump 

frequency corresponding to the excitation from E1 to E3, the power required per unit volume is, 
 
           P =  p 1 pW N hν           (24) 

Thus, the threshold pump power for laser oscillation is given by, 

         Pth =  21 1 pT N hν        (25) 
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Also, assuming the transition from level 2 to level 1 is mainly radiative, by eqn.6, 

        T21   21A         

Hence,        Pth   
21 p

N
A hν

2
 = 

p

sp

Nhν

2t
     (26)  

Example: Ruby laser 

Ruby laser is a three level laser system. By eqn.14b for population inversion, we must 

have, 

         
p 21W T    A21  =  

sp

1

t
 =  

3

1

3 10−
  =  330 sec−1.    (20) 

We now calculate the minimum amount of pump power needed to maintain population 

inversion. To maintain population inversion the loss by spontaneous emission at the level 2 must 

be compensated. [In eqn.4 we can neglect first term since N is small and second term since N3 

is small]. 

 Rate at which atoms decay from the upper level (laser level)   =  N2T21 

 Energy needed to lift a photon from level 1 to level 2  =  hp   

where, p is the average pump frequency.  

 Minimum power needed to maintain N2 atoms in the level 2, P =  N2T21 hp  =  
2 p

sp

N hν

t
  

Since N is small, by eqn.19, N2   
N

2
 

Therefore, the threshold pumping power per unit volume required to maintain population 

inversion in a three level laser system is, 
 

          Pt   
p

sp

Nhν

2t
  =  

19 34 14

3

1.6 10 6.63 10 6.25 10

2 3 10

−

−

    

 
 

      1100 watt/cm3.  

If we assume that the efficiency of the pumping source is 25% and also that only 25% is 

absorbed in passage through the ruby rod, 

  Threshold electrical power needed =  
1100

0.25 0.25
 18 kW/cm3 

This is consistent with the threshold power determined experimentally.  

Under pulsed operation (laser operates in pulses) if we assume that the pumping pulse 

is much shorter than the lifetime of level 2, then the atoms excited to the laser level do not 

appreciably decay during the duration of the pulse. Then the  
 

  Threshold pump energy, Upt =  
pNhν

2
  per unit volume of the active medium. 

For ruby laser, Upt is approximately 54 J/cm3 (time not 1 sec).  

Because of the following factors the ruby laser does not need too large pumping power. 

1. The absorption band of ruby crystal is very well matched to the emission spectrum 

of available pump lamps so that the pumping efficiency is quite high. 

2. Most of the atoms pumped to level 3 drop down to level 2, which has a very long 

lifetime (
33 10− sec), is nearly radiative.  

3. Linewidth of the laser transition is also very narrow. 
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1.5.3 The Four-Level Laser System 

  The main problem of a three-level laser 

is that one has to lift more than the 50% of the 

atoms in the ground level for achieving the 

population inversion. This is not a problem in 

a four-level laser. A four-level laser is shown 

in the figure. Let N1, N2, N3 and N4 

respectively be the populations of the levels 

with energies E1, E2, E3 and E4. Level 1 is the 

ground level and levels 2, 3 and 4 are excited 

states. Atoms from level 1 are first pumped to 

level 4 and these atoms then make fast 

nonradiative relaxations to the level 3, which is the metastable state with longer lifetime.  Since 

the level 2 has a very small lifetime, there is no accumulation of atoms in the level 2 and hence 

there is a population inversion between the levels 3 and 2. The transition from level 3 to level 2 

forms the laser transition.  

  We now write the rate equations for the different levels. Number of atoms in the level 4 

may be changed because of the transition 1→4 by induced absorption, stimulated emission 4→1 

and the spontaneous emission and the nonradiative transition from level 4→3. Also, we neglect 

the spontaneous emissions and nonradiative transitions from level 4 to levels 2 and 1 (i.e. T42 = 

T41 = 0). Thus, the rate equation for the level 4 is, 
 

   4dN

dt
 =  ( )p 1 4 43 4W N N T N− −       (1) 

where,      T43  =  43 43A S+         (2) 

The atoms in the level 3 changes due to radiative (spontaneous emission) and nonradiative 

transitions from level 4 to level 3, induced emission from level 3 to level 2, induced absorption 

from level 2 to level 3 and spontaneous emission and nonradiative transition from 3 to 2. Thus, 

the rate equation for the level 3 can be written as, 
 

   3dN

dt
 =  ( )2 3 43 4 32 3W N N T N T Nl − + −      (3) 

where,       Wl =  ( )
2 2

323 2

0

π c
A g ω I

ћω μ
l l            (4) 

and       T32  =  32 32A S+         (5) 

The number of atoms in the level 2 changes mainly due to the induced transitions between 3 

and 2, the spontaneous and nonradiative transitions from 3 to 2 and spontaneous and 

nonradiative transition from 2 to 3. Thus,  
 

   2dN

dt
 =  ( )2 3 32 3 21 2W N N T N T Nl− − + −      (6) 

where,      T21  =  21 21A S+         (7) 

Finally, in the level 1, we consider only the induced transitions between 4 and 1 due to pumping 

and the spontaneous and nonradiative transitions between 2 and 1. Thus, 
 

   1dN

dt
 =  ( )p 1 4 21 2W N N T N− − +       (8) 

Since the total number of toms (in all the levels) is a constant, 
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        N =  1 2 3 4N N N N+ + +        (9) 

Under steady state conditions, 

     1dN

dt
 = 2dN

dt
 = 3dN

dt
 = 4dN

dt
=  0      (10) 

Then by eqn.1, 

  ( )p 1 4W N N−  =  43 4T N  

i.e.    
p 1W N  =  ( )p 43 4W T N+  

i.e.      4

1

N

N
 =  

p

p 43

W

W T+
         (11) 

Or,        N4 =  
p

1

p 43

W
N

W T+
                (12a) 

If the relaxation from level 4 to level 3 is very rapid, 

          43T  >> 
pW  

Then,         N4  
p

1

43

W
N

T
 ; i.e.  N4 << N1 ; Or, N4  0              (12b) 

Applying this approximation to other equations we get, 

By eqn.8, using eqn.12, 

   21 2T N  = 
p 1

p 1 p

p 43

W N
W N W

W T
−

+
  =  

p 43

1

p 43

W T
N

W T

 
  + 

 

i.e.         N2 =  
p 43

1

21 p 43

W T1
N

T W T

 
  + 

                 (13a) 

      
p

1

21

W
N

T

 
 
 

                 (13b) 

By eqn.6,      3N  =  
( )

( )
21

2

32

W T
N

T W

l

l

+

+
  =  

( )

( )
p 4321

1

32 21 p 43

W TW T 1
N

T W T W T

l

l

 +
  + + 

            (14a) 

      
( )

( )
p21

1

32 21

WW T
N

T W T

l

l

+

+
                (14b) 

Then, from eqns.13b and 14b, we get, 

        3 2N N−    
( )

( )

( )

( )
p p21 21 32

1 1 p 1

32 21 21 32 21

W WW T T T
N N W N

T W T T T W T

l

l l

 + −   
− =   

+ +    

  (15) 

By eqns.12b, 13b and 14b 

          N   1 2 3 4N N N N+ + +    1 2 3N N N+ +  

     
( )

( )
p p21

1 1 1

21 32 21

W WW T
N N N

T T W T

l

l

+ 
+ + 

+ 
 

      
( ) ( ) ( )

( )
32 21 p 32 21 p

1

32 21

T W T W T W W T W
N

T W T

l l l

l

 + + + + + 
 

+  

 

      
( ) ( )

( )
p 32 21 21 32 21 p

1

32 21

W T T T T W T 2W
N

T W T

l

l

 + + + + 
 

+  

   (16) 
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Then from eqns.15 and 16, 

         3 2N N

N

−
   

( )

( ) ( )
p 21 32

p 32 21 21 32 21 p

W T T

W T T T T W T 2Wl

−

+ + + +
   (17) 

Eqn.17 shows that the population inversion between the levels 2 and 3 is possible only if 

21 32T T . If we assume that T21 is much greater than T32, we can neglect T32 in the sum and the 

difference terms in eqn.17. Then, 
 

        3 2N N

N

−
   

( )
p 21

p 21 21 32 21 p

W T

W T T T W T 2Wl+ + +
   

( )

p

p 32 21 p

21

W

W
W T T 2W

T
l+ + +

  

      
( )
( )

p

p 32 21 p

21 p 32

W 1

W T W T 2W
1

T W T

l

 
 

  
   + +  

+ +
 

     (18) 

From the eqn.18 we see that even for very small pump rates one can obtain population inversion 

between levels 3 and 2. This is contrary to what we found in the case of a three-level system, 

where there is a minimum pump rate Wpt required to achieve population inversion. 

  The first factor of eqn.18, which is independent of Wl, gives the small signal gain 

coefficient, whereas the second factor, which depends on Wl, gives the saturation behavior.  

  Just below the threshold of the laser oscillation, Wl = 0, eqn.18 becomes, 

      
N

N


 =    3 2N N

N

−
   

p

p 32

W

W T+
      (19) 

Example.1: The Nd: YAG laser is a four-level system with the following parameters. Estimate 

the threshold pumping rate. 

          0 = 1.06 µm; Or,    = 
142.83 10 Hz   ;  = 

111.95 10 Hz; p = 
144 10 Hz  

         tsp = 
42.3 10− s   N  = 

196 10  per cm3; µ0 = 1.82 

  Resonator cavity length d = 7 cm; R1 = 1 m; R2 = 0.90 m; Other loss factors neglected. 

 By eqn.33 sec.1.3.1, since c = 0, 

                     1 2ln R R   = 0
c

c

2μ d
2α d

ct
−   =  0

c

2μ d

ct
−  

          tc =  0

1 2

2μ d

c ln R R
−  =  

( )

2

8

2 1.82 7 10

3 10 ln 1 0.9

−  
−

 
 =  

98.06 10− s 

  For a Lorentzian line (homogeneous transition) 

    ( )g ω  = 
2

π ω
   =  

2

1

π  ν
 =  

2 11

1

π 1.95 10 
  

  By eqn.36b sec1.3.1 

  i.e.           2 1N N−  ≥  
( )

3 2
sp0

3

c

t4μ ν 1

c t g ω

 
 
 

  

  i.e.            ( )
th

N  =  
( )

3 2
sp0

3

c

t4μ ν 1

c t g ω

 
 
 
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     =  
3 2 28 4

2 11

3 24 9

4 1.82 2.83 10 2.3 10
π 1.95 10

3 10 8.06 10

−

−

    
  

  
 

     =  
213.92 10 3m−  =  

15 33.92 10 cm−  

  By eqn.19,   
N

N


   

p

p 32

W

W T+
 

    Since ( )
th

N << N,  T32 >> Wp, so that we can neglect Wp in the denominator of 

the above equation. Thus, 

            
( )

th
N

N


   

pt

32

W

T
 

   i.e.      
ptW    

( )
th

32

N
T

N


 =  

( )
th

sp

N

Nt


 =  

15 3

19 3 4

3.92 10 cm

6 10 cm 2.3 10 s

−

− −



  
 

        0.3 
1s−
 

     At this pumping rate, the number of atoms pumped from 1 to 4 is, WptN1. Also 

since N2, N3 and N4 are very small compared with N1, we can assume N1  N. Then the 

threshold pump power required per unit volume (cm−3) is, 
 
          Pth =  

pt 1 pW N hν   
pt pW Nhν  

       
19 34 140.3 6 10 6.63 10 4 10−       

        4.8 W/cm3 

  This is much less than that for ruby laser.   

Example-2: He-Ne laser. Estimate the threshold power required from the following data. 

     0 = 0.6328 µm; Or,    = 
144.74 10 Hz   ;  = 

910 Hz; p = 
155 10 Hz  

         tsp = 
710−
s  ; µ0 = 1 

  Resonator cavity length d = 10 cm; R1 = R2 = 0.98 m; Other loss factors neglected. 

  By eqn.33 sec.1.3.1, since c = 0, 

         tc =  0

1 2

2μ d

c ln R R
−  =  

( )

2

8

2 1 10 10

3 10 ln 0.98 0.98

−  
−

 
 =  

81.65 10− s 

  For an inhomogeneously broadened transition (for a Gaussian line), 

      ( )
( )

1
22 π ln2

g ω
π ω

=


 =  
( )

1
2

2

π ln2

π  ν
 =  

( )
1

2

2 9

3.14  ln2

3.14 10




 

     = 
101.5 10 s−     

  The threshold population inversion required is,   

               ( )
th

N  =  
( )

3 2
sp0

3

c

t4μ ν 1

c t g ω

 
 
 

    

     =  
3 2 28 7

3 24 8 10

4 1 4.74 10 10 1

3 10 1.6 10 1.5 10

−

− −

   
 

   
 

     =  
151.4 10 per m3 =  

91.4 10  per cm3 

    ptW    
( )

th
32

N
T

N


 =  

( )
th

sp

N

Nt


 



34 Lasers and Fibre Optics M C T 

 

   Then the threshold pump power required per unit volume (cm−3) is, 

          Pth =  
pt 1 pW N hν   

pt pW Nhν =  
( )

th
p

sp

N
Nhν

Nt


 

     =   
( )

th
p

sp

N
hν

t


 =  

9 34 15

7

1.4 10 6.63 10 5 10

10

−

−

    
 

     =  46.41 mW per cm3  50 mW per cm3.  

    Again, this is much less than that for ruby laser. 

1.6 Cavity Modes- Semiclassical theory 

 Next we deal with the semiclassical theory  of the laser developed by Lamb in 1964. In 

this analysis, we treat the electromagnetic field classically with the help of Maxwell’s equations 

and the atom will be treated using quantum mechanics. We consider a collection of two level 

atoms placed inside an optical resonator and find out the cavity modes.   

Consider an optical 

resonator consisting of two parallel 

plane mirrors facing each other as 

shown in the figure.. The active 

medium is placed inside the cavity 

of the resonator. We choose a 

coordinate system such that its z-

axis along the length of the cavity 

and origin at the centre of one of the 

mirrors. The plane mirrors are at z = 0 and z = L, where L is the separation between the mirrors. 

The Electromagnetic radiation inside the cavity can be described by the Maxwell’s 

equations. In an isotropic, homogeneous medium the equations are,    

  E  =  
t


−



B
        (1) 

   H  =   J + 
t





D
         (2) 

   D  =            (3) 

   B  =   0         (4) 

where,  is the free charge density, J is the conduction current density E is the electric field, D 

is the electric displacement, B magnetic induction and H is the magnetizing field. Inside the 

cavity we may assume, 

   Free charge density,           =  0        (5) 

                   Magnetic induction,                       B  =   μ0H     (6) 

   Electric displacement vector,         D  =   P + ε0E  = r0E   (7) 

                   Conduction current density            J  =   E     (8) 

where, ε0 is the permittivity of the free space, μ0 the permeability of free space, P the dielectric 

polarization and  the conductivity of the medium. The different types of losses like the ohmic 

loss, loss due to diffraction, loss due to the finite transmission at the mirrors etc. are taken into 

account in . These losses cause the attenuation of the wave. Taking curl of eqn.1, 
 

Active medium 

Mirror Mirror 

z = L z = 0 
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   ( ) Ε     =  
t


− 



B
  =  ( )

t


− 


B   =  ( )

t



− 


H  

     =  
t t



  
− + 

  

D
J  

    =  
2

2t



−



D
 − 

t







J
        (9) 

    =  
2 2

02 2
ε

t t
 

 
− −

 

P E
 − 

t







E
  

Or,       ( )
2

0 2
ε

t t
 

 
  +  + 

 

E E
Ε     =  

2

2t



−



P
     (10) 

Step-1: If we assume that the losses in the medium is small we can neglect the term containing 

 . Also if we assume that the medium is sufficiently dilute (i.e. the particle separation is large) 

the field that acts on a particle is the electric field of the wave and the local field created by the 

polarized surroundings is negligibly small so that we can neglect the term containing P. Then 

eqn.10 becomes, 

           ( )
2

0 2
ε

t



  + 



E
Ε     =  0        (11) 

Since P is small, eqn.7 becomes,  D =  0E and in the absence of free charges eqn. 3 gives,  

          ( )0ε .Ε   =  0       (12) 

Expanding and using eqn.12, 

                 ( ) Ε     =  ( ) ( ).Ε Ε   −     =  Ε−     (13) 

Now we assume that the electric field varies in the z-direction only. This is justified because the 

intensity variations in the directions transverse to the laser axis is small in distances of the order 

of wavelength . Then using eqn.13, eqn.11 becomes, 
 

           
2 2

02 2
ε

z t


 
−

 

E E
 =  0       (14) 

Comparing with the standard wave equation, we get the velocity of the electromagnetic wave 

in free space as, 

          c =  
0

1

ε
        (15) 

If we assume that the wave is polarized in a specific direction, say â . Then E = â E and eqn.14 

can be written the scalar form as, 
 

    
2

2

E

z




 =  

2

2 2

1 E

c t




         (16) 

The eqn.16 is an equation of two variables z and t. To solve eqn.16 by variable separable 

method, let, 

           ( )E z, t  =  ( ) ( )Z z T t        (17) 

Using eqn.17, eqn.16 becomes, 
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        ( )
2

2

d Z
T t

dz
 =  ( )

2

2 2

1 d T
Z z

c dt
  

Dividing throughout by ( ) ( )Z z T t , we get, 

        
( )

2

2

1 d Z

Z z dz
 =  

( )

2

2 2

1 1 d T

c T t dt
        

Both sides of the above equation are of different variables, the equation is correct only if both 

sides are separately equal to the same constant, say, −k2, then 
 

       
( )

2

2

1 d Z

Z z dz
 =  

( )

2

2 2

1 1 d T

c T t dt
 =  −k2     (18) 

 Then we get two separate equations, 

       
2

2

d Z

dz
+ k2Z =  0                 (18a) 

And,          ( )
2

2 2

2

d T
k c T t

dt
+  =  0                 (18b) 

where, k is called the wave number (wave vector) defined as, k = 
2π

λ
= 

2πν

c
 = 

ω

c
          (18c) 

The solution of eqn.18a is 

                   Z(z) =  ( )Asin kz θ+        (19) 

Applying the boundary condition that the wave vanishes at the cavity ends (i.e. Z = 0 at z = 0 

and z = L).  

The condition, Z = 0 at z = 0, gives  = 0, then  

                  Z(z) =  ( )Asin kz                  (19a) 

The condition, Z = 0 at z = L, gives, ( )Asin kL  = 0 

i.e.         kL =  n  

Or,          kn =  
nπ

L
 ; where, n = 1, 2, 3, ……….. is called the mode number. (20) 

The solution of eqn.18b is of the form, 

       T(t) =  ( )ncos t  

where,        n =  knc =  
nπc

L
        (21) 

Then the complete solution of eqn.16 is given by, 

            ( )E z, t  =  ( ) ( )n n n

n

A sin k z cos t       (22) 

Step-2: In presence of the different losses the field equation for a dilute medium is given by, 

(eqn.10 with term containing P neglected), 
 

          
2

2

E E

z t


 
−

 
 =  

2

2 2

1 E

c t




         (23) 
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The solution of this equation contains a space dependent part ( )nsin k z  and a time dependent 

part ni te 
. Then, 

             ( )E z, t  =   ( ) ni t

nAsin k z e


  

        
E

t




 =  ( ) ni t

n ni Asin k z e


  

       
2

2

E

t




 =  ( ) ni t2

n nAsin k z e


−  

       
2

2

E

z




 =  ( ) ni t2

n nk Asin k z e


−  

Substituting in eqn.23 we get, 

  ( ) ni t2

n nk Asin k z e


− ( ) ni t

n n i Asin k z e 

−    =  ( ) n

2
i tn

n2
Asin k z e

c


−  

i.e.      2 2 2 2

n n n i c c k −   −  =  0  

Using eqn.21,  

  2 2 2

n n n i c −   −  =  0         (24) 

The solutions of this quadratic equation are, 

          n  =  

2 2 4 2

ni c c 4

2

 

   − + 
 

Using eqn.15,    =  

2
2

n2

0 0

i
4

ε ε

2

 
 − + 

  

When  is small,       n    n

0

i

2ε


          (25) 

Then the time dependent part of the solution is 
n

0

i
i t

2ε
e

 
 

   = 0 n

 t
2ε i te e


−

 
 = 

n

n n

 t
2Q i t

e e


−

 
 (26) 

The real part of this equation is, 

     ( )
n

n

 t
2Q

ne cos t


−

        (27) 

where,         Qn =  n 0ε




        (28) 

is the quality factor, which will be discussed in detail in the next topic. Thus considering the 

real part of the eqn.26, the complete solution of eqn.23 is given by,  
  

            ( )E z, t  =   ( ) ( )
n

n

 t
2Q

n n n

n

A e cos t sin k z


−

      (29) 

Step-3: In our final step we find out the solution of eqn.10 

        
2 2

2 2 2

E E 1 E

z t c t


  
− −

  
 =  

2

2

P

t






              (30a) 

Multiplying with c2, 
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2 2

2 2

2 2

E E E
c c

z t t


  
− −

  
 =  

2
2

2

P
c

t






              (30b) 

As in the cases1 and 2 (eqns.22 and 29) we assume that the solution of this equation is of the 

form real part of the time dependent part multiplied by ( )nsin k z . That is, 
 

           ( )E z, t  =  ( ) ( )   ( ) ( )   ( )n n n ni ω t t i ω t t

n n n

n

1
E t e E t e sin k z

2

− + + +
     (31) 

Second term in the RHS is the complex conjugate of the first term. This is to make sure that E 

is necessarily real. ( )nE t  and ( )n t  are real slowly varying amplitude and phase coefficients. 

n is the frequency of oscillation of the mode, which may be, in general, slightly different from 

n. Since polarization P is proportional to electric field we assume P to be of the form, 
 

            ( )P z, t  =  ( ) ( )   ( ) ( )  n n n ni ω t t i ω t t

n n

n

1
P t, z e P t, z e

2

− + + +
      (32) 

( )nP t, z  may be complex but is a slowly varying component of the polarization.   

           
2

2

2

E
c

z




 = − ( )2 2

n n

1
c k E t, z

2
 = − 2

n n

1
E

2
    

      2 E
c

t






 =  

0

E

ε t

 


  n n

0

1
i ω E

2 ε

 
−  

 
; All other terms being small neglected.  

      
2

2

2 2

1 E
c

c t




 =  

2

2

E

t




       ( )

2

n n n n n

1
iω E ω E

2
− − +  ; All other terms neglected. 

       
2

2

2

P
c

t






 =  

2

2

0

1 P

ε t




   ( )

2

n
n

0

ω1
p t

2 ε
− ; All other terms neglected. 

Substituting in eqn.30b, we get, 

  − 2

n n

1
E

2
   n n

0

1
i ω E

2 ε

 
+  

 
( )

2

n n n n n

1
+iω E ω E

2
+ +   =  ( )

2

n
n

0

ω1
p t

2 ε
−  

Multiplying throughout by −2, we get, 

                  2

n nE n n

0

 i ω E
ε

 
−  

 
( )

2

n n n n n 2iω E  ω E− − +   =  ( )
2

n
n

0

ω
p t

ε
   (33) 

where, ( )np t  is obtained as the Fourier transform of eqn.32. 

i.e.  ( )np t  =  ( ) ( )
L

n

0

2
P z, t sin k z dz

L   

Consider,    ( )
2

2

n n n ω − +   =  ( )  ( ) n n n n n n ω  ω + +   − +   

Since n is very close to n and 2n >> 
n ,  

         ( )
2

2

n n n ω − +     ( )n n n n2ω ω − −         (34) 

Then eqn.33 becomes, 

        ( )n n n n n n n n n

0

2ω ω E  i ω E  2iω E
ε

 
 − −  − − 

 
 =  ( )

2

n
n

0

ω
p t

ε
 

Equating the real and imaginary parts of both sides, we get, 
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  ( ) ( )n n n nω E t+  −   =   ( ) n
n

0

ω
Re p t

2ε
−        (35) 

             n n

0

E E
2ε

 
+  

 
 =  ( ) n

n

0

ω
Im p t

2ε
−    

 i.e.     ( ) ( )n
n n

n

ω
E t E t

2Q

 
+  

 
 =  ( ) n

n

0

ω
Im p t

2ε
−       (36) 

where,         nQ  =  0 nε ω


       (37) 

When pn = 0, (real part of pn = Imaginary part of pn = 0), then from eqn.35, we get, 

           n  =  
n nω +    nω  

And from eqn.36, we obtain, 

      ndE

dt
 =  n

n

n

ω
E

2Q

 
− 

 
 

i.e.    n

n

dE

E
 =  n

n

ω
dt

2Q

 
− 

 
 

Integrating and taking exponential we get, 

         nE  =  

n

n

ω
t

2Q0

nE e

 
− 

   

That is, nE  decreases exponentially with time. These are consistent with our earlier findings 

(step-2).  

Polarization is proportional to the total electric field. That is,   

   ( )np t  =  ( )0 n nε E t  =  ( ) ( )0 n n nε i E t  +      (38) 

Since, in general, the susceptibility n is complex. Then from eqn.35, we get, 

    

 ( ) ( )n n n nω E t+  −   =  ( ) n
n

0

ω
Re p t

2ε
−  =  ( )n

0 n n

0

ω
ε E t

2ε
−   

     =  ( )n
n n

ω
E t

2
−   

i.e.            
n nω +   =  

n n n

1
ω

2
 −        (39) 

and from eqn.36 we get, 

           ( ) ( )n
n n

n

ω
E t E t

2Q

 
+  

 
 =  ( ) n

n

0

ω
Im p t

2ε
−  =  ( )n

0 n n

0

ω
ε E t

2ε
−   

i.e.              ( )nE t  =  ( ) ( )n
n n n n

n

ω1 1
E t ω E t

2 Q 2

 
− −  

 
    (40) 

The first term on the RHS represents the cavity losses and the second term gives the effect of 

the medium filling the cavity. We can see that if n
  is positive the cavity medium adds to the 

losses. On the other hand if n
  is negative, the cavity medium reduces the losses.  

  If       n
   = 

n

1

Q
−


        (41) 
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The cavity losses are just compensated by the gain of the cavity medium. Thus eqn.41 is referred 

to as the threshold condition. If n

n

1

Q
− 


 there will be buildup of oscillation.  

If we neglect the term 
n  in eqn.39, we can see that the oscillation frequency of the 

active medium differs from the passive cavity frequency n  by 
n n

1
ω

2
−  , which is known as 

the pulling term. In order to understand physically the gain and the pulling effects due to the 

cavity medium, we consider a plane wave propagating through the cavity medium. The 

permittivity and the susceptibility of the medium of the cavity are related by the equation, 
 

           =  ( )0 nε +   =  r 0ε ε  = K0      (42) 

where, K is the dielectric constant of the medium.  

Refractive index of the medium, n = K  = ( )n


+    

n

1

2
+   = 

n n

1 1
i

2 2
 +  +   (43) 

Then the propagation constant of the plane wave in such a medium is given by, 

          k =  
2π

λ
 = 

nω

c
 =     

ω
K

c
  n n

ω 1 1
i

c 2 2

 
 +  +  

 
  

       =  n n

ω 1 1 ω
i

c 2 2 c

 
 +  +  

 
 =  + i  (44) 

Where,         =  n

ω 1

c 2

 
+  

 
      and     =  

n

ω

2c
       (45) 

Thus, a plane wave propagating along the z-direction would have the z dependence of the form, 

         
ikze  =    ( )i α iδ z

e
+

 =   
iαz δze e−

      (46) 

In the absence of the component due to laser transition, n n 0  =  = , then 
ω

α
c

=  and  

= 0. Then the plane wave propagating through the medium undergoes a phase shift per unit 

length of 
ω

c
. The presence of the laser transition contributes both to the phase change and also 

to the loss or amplification of the beam. Thus if n
  is positive,  is positive and the beam gets 

attenuated (eqn.46) as it propagates along the z-direction. On the other hand if n
  is negative, 

 is negative and the beam gets amplified as it propagates through the medium. As the response 

of the medium is stimulated by the field, the applied field and the stimulated response are phase 

coherent.  

 

 In addition to the losses or amplification, mentioned above, caused by the cavity 

medium there is also a phase shift due to the real part of the susceptibility n
 . That is, the 

frequency of the oscillating mode is at the centre of the atomic line and it has opposite signs on 

either sides of the line centre. This additional phase shift causes the frequencies of oscillation 

of the optical cavity filled with the laser medium to be different from the frequencies of 

oscillation of the cavity in the absence of the laser medium. Thus the actual oscillation 

frequencies are slightly pulled towards the centre of the atomic line and hence this phenomenon 

is referred to as mode pulling. We can show that at resonance n
  is exactly zero.  



M C T Basic Laser Theory And Optical Resonators 41 

 

1.7 Q of cavity  

We have already seen that the laser system is formed by a resonator cavity filled with an 

active medium. Usually the mirrors are used for producing the cavity. Because of several 

reasons the loss of energy is associated with any mode in such a cavity and the cavity acts as an 

open resonator. The main loss mechanisms are due to, 

1. Finite reflectivity of the mirrors. The total energy is partially reflected and partially 

transmitted.  

2. Scattering and absorption in the medium filling the resonator cavity. 

3. The diffraction spill-over when the field undergoes reflection from the mirrors. 

 

This dissipation of energy is described in terms of the quality factor Q of the mode, 

which is defined as, 

Quality factor,       Q =  0

Energy stored in the mode
ω

Energy dissipated per second in that mode
    (1) 

where, 0 (= 20) corresponds to the oscillation frequency of the mode. Let W(t) be the energy 

stored in the mode at time t. Then, from eqn.1, we get, 
 

 Energy dissipated per second in a mode,        
dW

dt
 =  0ω

W
Q

−    (2) 

The negative sign indicates the energy loss. Eqn.2 can be written as, 

      
dW

W
 =  0ω

dt
Q

−  

Integrating,     lnW =  0
0

ω
t ln W

Q
− +  

where, 0ln W  is the constant of integration and W0 = W(t = 0). Rearranging and taking the 

exponential of the above equation we get,  

   W(t) =  
0ω

t
Q

0W e
−

        (3) 

This corresponds to an exponential decay of energy. Now we define the passive cavity lifetime 

as the time for which the energy of the passive cavity decays to 1/e of its value at t = 0. From 

eqn.3 we get, 

       Passive cavity lifetime, tc =  
0

Q

ω
 =  

0

Q

2πν
      (4) 

Considering this exponential loss of energy, the electric field can be expressed as, 

     E(t) =  

0

0

ω
t

iω t2Q

0E e e

 
− 

     =  
0

0

ω
t iω t

2Q

0E e

 
− + 

       (5) 

The frequency spectrum associated with this wave train which extends from t = 0 to t = , is 

obtained by a Fourier transform of eqn.5. That is, 
 

   ( )E ω  =  ( ) iωt

0

E t e dt



−

    = 

0
0

ω
t iω t

2Q iωt

0

0

E e e dt

  − + 
− 

   

   = 
( ) 0

0

ω
i ω ω t

2Q

0

0

E e dt

  − − + 
 

  
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Integrating we get,  

   ( )E ω  =  

( )

( )

0
0

ω
i ω ω t

2Q

0

0
0

0

e
E

ω
i ω ω

2Q



 
− − + 

 

 
 
 
  
− − +  

  

 =  

( )

0

0
0

E

ω
i ω ω

2Q
− +

  

Or,   ( )E ν  =  

( )

0

0
0

E

ν
2π i ν ν

2Q

 
− + 

 

      (6) 

And the corresponding frequency distribution of the intensity is, 

   ( )I ν  =     ( )
2

E ν  =  ( ) ( )*E ν E ν   

    =     

( ) ( )

0 0

0 0
0 0

E E

ν ν
2π i ν ν 2π i ν ν

2Q 2Q

   
   
   
      

− − + − +      
      

 

   =     

( )

2

0

2
22 0

0 2

E

ν
4π ν ν

4Q

 
− + 

 

       (7) 

As per the eqn.7 the frequency distribution of the intensity is Lorentzian as shown in the figure 

below. It is peaked at  = 0. This can be proved by equating the first derivative of I() with 

respect to  to zero. By substituting  = 0 in eqn.7 we get the peak value.  
 

[           ( )
max

I ν  =    
2 2

0

2 2

0

E Q

π ν
 

Let ν  be the frequency corresponding to the half maximum. Then, 

   
2 2

0

2 2

0

E Q

2π ν
 =  

( )

2

0

2
22 0

0 2

E

ν
4π ν ν

4Q

 
 − + 

 

 

Cross multiplying and rearranging we get, 

  
2 2

0 0 2

1
ν 2ν ν ν 1

4Q

 
 − + − 

 
 =  0 

The roots are given by, 

        ν  =  

2 2

0 0 0 2

1
2ν 4ν 4ν 1

4Q

2

 
 − − 

 
 =  

2
2 2 0

0 0 0 2

ν
ν ν ν

4Q
 − +  

   =  0
0

ν
ν

2Q
  =  0

1
ν 1

2Q

 
 

 
 

        1ν  =  0

1
ν 1

2Q

 
− 

 
  and        2ν  =  0

1
ν 1

2Q

 
+ 

 
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Then,         ν  =  2 1ν ν −  =  0ν

Q
      ] 

Then we can find out the frequency corresponding to the half maximum, which are, 0
0

ν
ν

2Q
+  

and 0
0

ν
ν

2Q
− . Thus the full width at the half maximum (FWHM) is, 

         =  0ν

Q
          (8) 

Eqn.8 shows that the width of the output spectrum depends inversely on the quality factor Q 

associated with that mode. The smaller the loss in a mode, the higher is the value of Q and hence 

smaller is the frequency half width.  

To calculate Q of a passive resonator: Let W0 be the total energy contained in the cavity when 

t = 0. R1 and R2 are the power reflection coefficients of 

the two mirrors M1 and M2. Let c be the absorption 

coefficient of the medium per unit length. In one 

complete cycle there occurs a pair of reflections, (one 

reflection in each mirror). Let d is the length of the cavity 

and n0 be the refractive index of the medium filling the 

cavity. Then, (refer sec.1.2.3), 

 

Energy remaining in the cavity after one complete 

cycle, W(t)  =  c2α d

0 1 2W R R e
−

  (9) 

Velocity of light in the medium, v  = 
0

c

n
 

Time taken for one complete cycle (one to and fro travel),    t  = 
2d

v
 =  02n d

c
 (10) 

By eqn.3, the energy in the cavity after one cycle, W(t) =  
0ω

t
Q

0W e
−

 =  
0 02πν 2n d

.
Q c

0W e
−

 (11) 

I() 

0.5 

−2.0 

1.0 

0 2.0 −1.0 1.0 
0ν ν

ν

−


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Comparing eqns.9 and 11 we obtain, 

         
0 02πν 2n d

.
Q ce

−

 =  c2α d

1 2R R e
−   

i.e.       

2α d 0 0c
4πν n d

 
Qce

−

 =  1 2R R  

Taking the natural logarithm,  

         0 0
c

4πν n d
2α d  

Qc
−  =  ( )1 2ln R R  

i.e.         0 04πν n d

Qc
 =  ( )c 1 22α d ln R R−  

i.e.        Q = 
( )

0 0

c 1 2

4πν n d 1

c 2α d ln R R

 
  − 

    (12) 

Let    =  ( )c 1 22α d ln R R−  =  0 04πν n d

Qc
       (13) 

Using in eqn.11 we get,  

      W(t) = 
0 02πν 2n d

.
Q c

0W e
−

 =  κ

0W e−  

Fractional loss per round trip,       

           x = 
κ

0 0

0

W W e

W

−−
 = 

κ1 e−−  

       
κe−

 =  1 x−   

          − =  ( )ln 1 x−  

 =  ( )ln 1 x− −  =  
1

ln
1 x

 
 

− 
     (14) 

  By eqn.4, Passive cavity lifetime, tc   = 
0

Q

ω
 =  

0

Q

2πν
 

Using eqn.12,            tc =  
( )

0

c 1 2

2n d 1

c 2α d ln R R

 
  − 

              (15a) 

Using eqn.13,     = 02n d

cκ
               (15b) 

Using eqn.14     =  02n d

1
cln

1 x

 
 

− 

               (15c) 

By eqn.8,Full width at the half maximum (FWHM) for passive cavity, (using eqn.12) 

        pν  =  0ν

Q
 =  ( )c 1 2

0

c 1
α d ln R R

2πn d 2

 
− 

 
   (16) 

For a typical cavity, d = 100 cm, ( )c 1 2

1
α d ln R R

2
−   

22 10− and assuming n0  1, we get, 

      pν    1 MHz      (17) 
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1.8 Q Switching 

Q-switching is a standard technique for the pulsed operation of a laser. It is used to 

generate pulses of high energy but nominal pulse width in the nanosecond regime. We have 

seen that the quality factor of the laser cavity is determined by the losses suffered by the modes 

of the cavity. The smaller the losses the higher is the Q value. (Refer eqn.1 sec 1.7). Let us 

consider a case in which a shutter is used in front of one of the mirrors. First the shutter is closed 

and the medium is continuously pumped. The population in the cavity goes on increasing and 

reaches a high value. Now the 

shutter is suddenly opened. Since 

the inversion would correspond to 

a value much above the threshold 

the energy stored in the cavity will 

be released in the form of a short 

pulse of light with a high peak 

value of intensity. Because of the 

opening of the shutter increases 

the Q value from very small value 

before opening to a very large value after opening, this technique of producing a short intense 

pulse of light is referred to as Q switching. Two cases may arise. (1) If the shutter is opened in 

a time much shorter than the time required for the building up of laser oscillation, the output 

would consist of a giant pulse of light. (2) If the shutter opening is slow, the output would consist 

of a series of pulses having smaller peak power. 
 

Theory of Q-switching: We now develop a theoretical basis for describing the time 

dependence of the population inversion, and also of the output pulse duration, for various 

inversion densities above threshold before the Q-switch is activated. Our aim is to obtain an 

expression for the total number of photons ‘n’ within the laser cavity at the laser frequency , 

and also for the total population difference uN N Nl = −  within the laser gain medium at any 

instant during the Q-switching procedure. 

  Let us consider the two levels involved in the laser transition in a four-level laser (or, 

three-level laser). Let they are designated as u and l; u for upper and l for lower. (For a four-

level laser transition from level 3 to 2 and for three-level laser it is from 2 to 1). We assume that 

the lower laser level (l) has very fast relaxation rate to lower levels (lower than the levels 

designated as l), so that it is essentially unpopulated. We 

also assume that only one mode has sufficient gain to 

oscillate and that the line is homogeneously broadened so 

that the same induced rate applies to all the atoms.  

  Let R represents the number of atoms that are 

being pumped into the upper level per unit time per unit 

volume. If the population density of the upper laser level 

is Nu, then the number of atoms undergoing stimulated 

emission from the upper laser level to the lower laser level 

per unit time is given by, (refer eqn.16 sec.1.2.1), 
 

     Ful = ulV =  ( )
2 3

u 3 3

0 sp

π c
N u g ω V

ћω μ t
      (1) 

where, u is the energy density of the radiation at the oscillating mode frequency ω, V is the 

volume of the active medium and µ0 is its refractive index. If n is the number of photons in the 

cavity, we can write, 
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        uV  =  nћω    

Or,           u = 
nћω

V
        (2)  

Then eqn.1 becomes,      Ful =  ( )
2 3

u 3 3

0 sp

π c nћω
N  g ω V

ћω μ t V
  

     =   
( )2 3

u2 3

0 sp

π c g ω
 nN

ω μ t
 =  KnNu    (3) 

where,          K =  
( )2 3

2 3

0 sp

π c g ω

ω μ t
 =  

( )2 3

u

2 3

0

π c g ω A

ω μ

l     (4) 

The spontaneous relaxation rate (radiating and non-radiating) from the upper level to the lower 

level per unit volume is given by, (refer eqn.3 sec.1.2), 

      udN

dt
 = u uT Nl  

For the whole volume, 

       
( )u

Spontaneous

d N V

dt
 =   u uT N Vl  =  ( )u u uA S N Vl l+     (5) 

Since the number of atoms in the upper level changes due to pumping, induced transitions 

between upper and lower levels (from upper to lower level and lower to upper level) and the 

spontaneous transitions from the upper to lower level, the rate of change of population of upper 

level is, 

        
( )ud N V

dt
 =  u u u uRV F F T N Vl l l+ − −   

     =  ( )u u u uRV KnN KnN A S N Vl l l+ − − +    (6) 

Since the Q-switched pulse is of a very short duration we will neglect the effect of pump R and 

the spontaneous emission during the generation of the Q-switched pulse. It must, at the same 

time, be noted that for the start of the laser oscillation, the spontaneous emission is essential. 

Then eqn.6 becomes, 

         
( )ud N V

dt
 =  ( )uKn N Nl− −  =  ( )u

Kn
N N V

V
l− −  

i.e.           
( )ud N

dt


 =  

Kn
N

V

 
−  

 
      (7) 

where,         uN  = uN V      and    N  =  ( )uN N Vl−      (8) 

[In Sylfvast instead of N  the symbol M is used]. 

Similarly, the rate change of population of the lower level due to induced transitions is, 

            
( )d N

dt

l


 =  
Kn

N
V

 
 

 
       (9) 

Subtracting eqn.9 from eqn.7, we get, 

           
( )d N

dt


 =  

Kn
2 N

V

 
−  

 
      (10) 

 The rate of change of photon number in the cavity depends on the following four factors. 
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1. Increase of photons by the stimulated emission from upper level to lower level. Since 

every stimulated transition from upper to lower level creates a photon, the rate of 

increase of photons n in the cavity is given by, 

      
( )ud N V

dt
−  =  uKnN       (11) 

2. Decrease of photons by the stimulated absorption from the lower level to the upper level. 

Due to the induced absorption the photon number in the cavity is decreased as per, 

       
( )ud N V

dt
 =  KnNl       (12) 

3. Decrease of photons by the finite cavity lifetime (due to passive cavity losses). The 

energy of the beam bouncing back and forth in the medium decreases due to passive 

cavity losses. Thus, when no gain is present (no laser transition) the energy of the 

medium decay according to the relationship, 

      
dE

dt
 =  

c

E

t
−         ; Or,      E =  c

t

t

0E e
−

    (13) 

where, tc is the passive cavity lifetime given by,   tc =   
Q

ω
 =  

Q

2πν
   (14) 

Here Q is the quality factor. For a passive cavity resonator, we have by eqn.13 sec.1.7 

         ( )c 1 22α d ln R R−  =  0 04πν μ d

Qc
 =  0

c

2μ d

ct
 

  Or,         tc =  
( )

0

c 1 2

2μ d 1

c 2α d ln R R

  
 

−  

 =  
( )

0

1
2

c 1 2

μ d 1

c α d ln R R

 
 
 

−  

  (15) 

  Since there are n photons in the cavity, we have,  

          E  = nh 

  Hence eqn.13 becomes, 

                  
dn

dt
 =  

c

n

t
−          (16) 

4. Increase of photons due to spontaneous emission from upper to lower level. It is equal 

to KNu           (19) 

Thus, the total rate of change of n is given by adding eqns.11, 12, 16 and 19. 

       
dn

dt
 =  u u

c

n
KnN KnN KN

t
l− − +  =  ( )u u

c

n
Kn N N KN

t
l− − +             (20a) 

Neglecting the spontaneous emission, 

       
dn

dt
   

c

Kn n
N

V t

 
 − 

 
                   (20b) 

In the threshold case, 
dn

dt
 = 0, the gain is equal to the cavity losses. Then from eqn20b we get, 

            ( )
t

N  =  
c

V

Kt
  ; Or,          

K

V
 =  

( ) ct

1

N t
    (21) 

Then eqn.10 becomes, 

            
( )d N

dt


 =  

Kn
2 N

V

 
−  

 
  =  

( ) ct

n
2 N

N t

 
−  

  

   (22) 
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Or,            
( )d N

dτ


 =  

( )
t

2n
N

N
− 


      (23) 

where,  
c

t
τ

t
=            (24) 

Eqn.23 summarizes our statement that the decrease in population inversion is twice that of the 

increase in the number of photons sue to the stimulated emission.  

Using eqn.21, eqn.20b becomes, 
 

        
dn

dt
 = 

c

Kn n
N

V t

 
 − 

 
 =   

( ) c ct

n n
N

N t t
 −


 

Or,        
dn

dτ
 = 

( )
t

N
n 1

N

  
− 

  

      (25) 

The term 
( )

t

N
n

N




represents the number of photons generated within the cavity by stimulated 

emission per unit of normalized time. Eqns.23 and 25 are the two principal equations in the 

evolution of the Q-switched pulse. These equations give us the variation of the photon number 

‘n’ and the population inversion N  in the cavity as a function of time. These two equations 

are nonlinear and the solutions to the above set of equations can be obtained numerically by 

starting from an initial condition that at t = 0,  = 0; ( ) ii
N N  and n n  =  = , where ‘i' stands 

for the initial value. Here ni represents the initial number of photons in the cavity generated by 

the spontaneous emission, which is necessary to trigger laser oscillations.  

 

  Eqn.25 can be written as, 

      N  = ( ) ( )
t t

1 dn
N N

n dτ
  +        (26) 

If the system is initially pumped 

to an inversion, N  is positive. 

That is, N  >  ( )
t

1 dn
N

n dτ
  is 

positive. This shows that 
dn

dτ
 is 

positive, i.e. the number of 

photons in the cavity increases 

with time. The maximum 

number of photons appear in the 

cavity (n is maximum when its 

first derivative is zero), when 

dn

dτ
= 0, or, when ( )

t
N N  =  . 

At such an instant n is very large 

and from eqn.23 we see that 

N  will further reduce below 

( )
t

N  and hence there is a 

decrease in n.  
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  The time dependent solution of eqns.23 and 25 requires numerical computation. But we 

can analytically obtain the variation of n with N  and from this we can draw some general 

conclusions regarding the peak power, the total energy in the pulse and the approximate pulse 

duration. 

Dividing eqn.25 with eqn.23 we get, 

         
( )
dn

d N
 =  

( )

( )

t

t

N
n 1

N

2n
N

N

  
− 

  −




 =  
( ) t

N N1

2 N

  − 


 =  

( )
t

N1
1

2 N

  
− 

  
 (27) 

i.e.                  dn =  ( )
( )

( )
t

d N1
N d N

2 N

 
  −  

 
 

Integrating, 

          n =   ( ) ( ) t

1
N ln N N C

2
    −  +      (28) 

To find the constant of integration C we apply the initial condition that when N  has an initial 

value (when t = 0) ( )
i

N , the number of photons is ni.  

i.e.           ni =  ( ) ( ) ( ) t i i

1
N ln N N C

2
    −  +      (29) 

Subtracting eqn.29 from eqn.28 we get, 

   in n−  =  ( ) ( )  ( ) ( ) ( ) t t i i

1 1
N ln N N C N ln N N C

2 2
       −  + −   −  −  

    =  ( )
( )

( )
( )

t i

i

N1
N ln N N

2 N

     
   +  −    

    

             (30a) 

Since the initial number of photons in the cavity (generated by spontaneous emission) is very 

small, eqn.30a becomes, 

         n  =  ( )
( )

( )
( )

t i

i

N1
N ln N N

2 N

     
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             (30b) 

Eqn.30a or 30b describes the relationship between the number of photons in the cavity and the 

inverted population ( )uN N N Vl
 = −  at any particular time. 

Peak power: The instantaneous power output can be approximated by multiplying the photon 

number by the photon energy h and dividing by the cavity decay time tc. That is, 

       Pout =  
c

nhν

t
   =  ( )

( )

( )
( )

t i
c i

Nhν
N ln N N

2t N
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         (31a) 

The peak power output will correspond to maximum n, which occurs when ( )
t

N N  =  . Thus, 

      Pmax = max

c

n hν

t
  

Using eqn.30b, with ( )
t

N N  =   

     Pmax =   ( )
( )

( )
( ) ( )t

t i t
c i

Nhν
N ln N N

2t N

   
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    

          (31b) 

Eqn.31b shows that the peak power is inversely proportional to the cavity lifetime.  



50 Lasers and Fibre Optics M C T 

 

Total energy: By eqn.23 we have, 

           
( )d N

dτ


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( )
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2n
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i.e.          
( )
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
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2n dτ
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Substituting in eqn.25 we get, 
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dτ
 =  

( )d N1
n 1

2n dτ

 
− − 

 
  =  

( )d N1
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i.e.         dn =  
( )d N1

dτ ndτ
2 dτ


− −  

Integrating this equation from t = 0 to t =  (i.e.  = 0 to  = ) we get, 

    
f
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n

n
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0 0
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2
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Since the initial (before pumping) photon number ni and the final (after Q-switching) photon 

number nf are very small compared with the total integrated number of photons, we can neglect 

them. Then eqn.32 becomes, 

     
0

ndτ



  =  ( ) ( ) 
i f

1
N N

2
  −                (32b) 

The total energy of the Q-switched pulse is obtained by integrating the instantaneous power 

output. That is, using eqn.31a 

          E =  outP dt   = 
c0

nhν
dt

t


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t
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Using eqn.32b,   =  ( ) ( ) 
i f

hν
N N

2
  −       (33) 

Pulse duration: An approximate estimate of the duration of the Q-switched pulse can be 

obtained by dividing the total energy by the peak power. That is,  
 

          td =   
max

E

P
  =  

( ) ( ) 

( )
( )

( )
( ) ( )

i f

t

t i t
c i

hν
N N

2

Nhν
N ln N N

2t N

  − 

     
   +  −    

    

   

     =  
( ) ( )

( )
( )

( )
( ) ( )

i f
c

t

t i t

i

N N
t

N
N ln N N

N

 
 

  −  
       +  −  
    

   (34) 



M C T Basic Laser Theory And Optical Resonators 51 

 

  In the above formulas ( )
f

N  is the final population inversion. In order to obtain this, 

we may use eqn.30a for t → . When t → , n → nf. Thus by eqn.30a, we get,  
 

  f in n−  =  ( )
( )

( )
( ) ( )f

t i f

i

N1
N ln N N

2 N

     
   +  −    

    

             (35) 

Since the initial number of photons ni and the final number of photons nf are very small we can 

write the LHS of the eqn.35 equal to zero. Thus, for t → ,  

          ( ) ( )
f i

N N  −   =  ( )
( )

( )
f
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N
N ln

N
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           (36a) 

Or,          ( ) ( )
i f

N N  −   =  ( )
( )

( )
i

t

f

N
N ln

N

  
  
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          (36b) 

from which we can obtain ( )
f

N  for a given set of ( )
i

N  and ( )
t

N . 

Different techniques for Q switching 

Now we briefly discuss some Q switching techniques such as, 

(a) Mechanical method: This method consists of a mechanical rotation of one of the mirrors of 

the laser system about an axis perpendicular to the resonator axis. When the mirrors are not 

parallel, the losses in the resonator are large and the pump increases the inversion beyond the 

threshold corresponding to the case when the mirrors are parallel. If the timing of the pump 

pulse is adjusted such that the laser rod is got excited to a steady maximum population inversion 

as the two mirrors are getting parallel, as soon as the mirrors become parallel, a giant pulse 

would appear at the output. Typical rotation speeds are 30,000 revolutions per minute. Since the 

mechanical switching is comparatively slow, one usually obtains pulse lengths of 25 to 50 

nanosecond.  

(b) Electronic switching technique using the Kerr and Pockels effects:  Another method is 

the faster electronic switching techniques such as that using Kerr and Pockels effects. [If the 

refractive index of the electro-optic material changes linearly with the applied electric field it is 

termed Pockels effect. If the dependence is quadratic it is termed Kerr effect]. In this method a 

polarizer and a birefringent material are placed in front of one of the mirrors. [Birefringence is 

an optical property of certain materials, which have refractive indices that depend on 

polarization and propagation direction of light. Anisotropic materials show birefringence]. The 

two are adjusted such that the Kerr cell rotates the linearly polarized light through 90 after two 

traversals of the light through the cell and is blocked by the polarizer. [First the Kerr cell changes 

the linearly polarized light into circularly polarized. This circularly polarized light after 

reflection again passes through the cell, which changes the circularly polarized light into linearly 

polarized in the orthogonal direction]. That is, there is no re-entry of light into the active 

medium. In such a position the losses in the resonator are large and the pump increases the 

inversion beyond the threshold value. On removing the applied voltage on the Kerr cell, the cell 

Active medium 

Mirror-2 Mirror-1 Polarizer 
Kerr cell 

Orthogonal 
linear 
polarizations 

Circular 
polarization 
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loses its birefringence and hence it does not rotate the polarization. In this position the losses 

are small, corresponds to an open shutter, and intense pulse of light appear at the output. Typical 

values of voltage required for the operation are a few kilovolts for a Pockels cell and a few tens 

of kilovolts for a Kerr cell.  

(c) Method using saturable absorbers: Q switching can also be attained by saturable 

absorbers. These absorbers have light intensity dependent transmittance, which remains 

constant at small powers and begins to increase at sufficiently high intensity. As the 

transmittance increases the absorption coefficient decreases. The saturation intensity (which is 

the intensity required to reduce the absorption coefficient to one half the low power value) for 

normal dye solutions is about 107 watt/cm2. The operation of such a device may be understood 

as follows. The saturable absorber is placed inside the cavity. At low powers losses by 

absorption is large and no laser oscillation takes place. As the pumping increases the power 

level inside the cavity goes on increasing and the dye begins to be bleached. This bleaching 

results a larger transmittance which in turn increases the power level inside the cavity. The 

increased power results a larger bleaching and thus the dye becomes almost transparent. At this 

stage the population inversion is much more than the threshold value. That is the gain is much 

more than the losses and thus a giant pulse is produced. 
 

1.9 Theory of Mode locking in lasers 
  There are many uses of very short duration laser pulses in various fields like digital 

communication, diagnostics of ultra-fast processes and ablation of materials without causing 

significant heating of the material. In the previous section we described the process of Q-

switching, which produces very high energy pulses. However, such Q-switched pulses are 

Fig.a 
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limited to minimum pulse durations of a few nanoseconds. Another technique, known as mode 

locking, has allowed the generation of optical pulses as short as 5 fs (femtosecond = 1510 s− ). 

Mode locking is achieved by combining in phase a number of distinct modes of a laser, 

all having slightly different frequencies. In such a case the output from the laser would be a 

repetitive series of pulses of light as shown in fig.d. Such a pulse train is called mode locked 

pulse train and this phenomenon is called mode locking. Mode locking is very similar to the 

case of diffraction of light from a grating. In the case of diffraction by a grating, the angular 

width of any of the diffracted order depends on the number of slits in the grating. Similar to that 

the temporal width of the mode locked pulse train depends on the number of modes that are 

locked in phase. (Refer fig.a). 

  To understand this let us consider a laser system formed by two parallel mirrors 

separated by a distance ‘d’ enclosing an active medium. It has a line width  about a central 

frequency 0 as shown in the gain profile given above (fig.b). The frequency spacing ν  of the 

longitudinal modes of the resonator is approximately 
0

v c

2d 2μ d
= . [Refer eqn.21 sec.1.10.1, or, 

referring any book on electrodynamics we can see that the resonant frequency ‘’ of a 

rectangular cavity resonator of dimensions a, b and d (d along the z-direction) is given by, 
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To calculate the frequency spacing we assume that m and n remain the same and q becomes 

q1, then,  
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If the laser medium is able to provide a net gain over a bandwidth , then the laser 

would oscillate in a number of frequencies separated by 
0
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oscillating modes is the number of frequencies within the bandwidth  (including the central 

one).                  

Number of laser oscillating modes = 1 + N =1+ integer closest to (but less than) 
ν

δν


 (1) 

where, 1 corresponds to the mode at the centre of the line. The total output from the laser can 

be written as the superposition of the fields of all frequencies within the bandwidth as, 
 

           ( )E z, t  =  
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Since we are interested in the time dependence, we suppress the space dependent part. Thus, 
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where, An represents the amplitude of the nth mode and n its phase. The complex conjugate of 

this equation can be written as, 

          ( )*E t  =  m
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 The amplitudes and phases of the various modes are arbitrary.  For such a case the output laser 

intensity is proportional to ( )
2

E z, t . (The intensity can be expressed as either a function of time 

at a fixed point or function of space coordinates (z) at a fixed time. Following the former case), 

i.e. considering intensity as a function of time, we get, 
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where, K is the proportionality constant. The first term on the RHS of eqn.3 is the n = m case. 

For arbitrary values of 

amplitudes and phases of 

various modes, eqn.3 

represents a fluctuating output 

intensity of the laser and is 

plotted in the fig.c. 

  Since 02μ d1

δν c
=  is 

exactly the time for one round 

trip z changes to z + 2d. Then 

from eqn.3 we get, 
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Thus, the intensity pattern repeats itself with a periodicity
1

δν
 even when the modes are 

uncorrelated. Eqn.3 also shows that within these quasiperiodic intensity fluctuations, the 

shortest fluctuation occurs in a time interval that corresponds to the frequency difference 

between two extreme modes. The extreme modes are (from fig.a) 
0

ν
ν

2


+  and 

0

ν
ν

2


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Frequency difference between the extreme modes =  0 0

ν ν
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2 2
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 
 = ν  

Time for shortest fluctuation,       tf =  
1

ν
 = 

1

Nδν
    (5) 

i.e. the inverse of the bandwidth of the laser medium. When the laser is oscillating below the 

threshold, the various modes are largely uncorrelated as a result of the absence of the correlation 

between various spontaneously emitting sources. These fluctuations become much less on 

passing above threshold but the different modes still remain essentially uncorrelated and the 

output intensity fluctuates with time. From eqn.3, 
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Since the second term is zero. If we assume that all the modes have the same amplitude A0, 

        Iav = ( ) 2

0N 1 KA+        (7) 

Since, there are N + 1 modes within the bandwidth.  

Now let us consider a case when all the modes locked in phase (i.e. they have the same 

phase constant). Thus, 1 = 2 = ..............= n  = 0 . For the convenience of mathematical 

calculation we also assume that all of them have the same amplitude A0. Then, 
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The output laser intensity is proportional to  ( )
2

E t   =  ( ) ( )*KE t E t  

The intensity can be expressed as either a function of time at a fixed point or function of space 

coordinates (z) at a fixed time. Following the former case, we get, 
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The intensity variation is plotted in fig.d. In this case the output is a regular sequence of well-

defined pulses. From eqn.9 one may observe the following. 

1. The output consists of a sequence of pulses which are separated by a time interval of

02μ d1

δν c
= , which is exactly the time taken by the light to complete a round trip in the 

resonator cavity. Hence the mode-locked condition can be visualised as a pulse which is 

travelling back and forth in the laser cavity and which loses a part of its energy through 

the output mirror in every round trip.  

2. Eqn.9 also gives that the duration of the pulse is approximately given by, 

         tp  
1

Nδν
 =  

1

ν
      (10) 

   i.e. the inverse of the bandwidth of the atomic line. Thus, the larger the oscillating 

bandwidth of the laser medium, the smaller will be the pulse width. For typical gas lasers 

the pulse widths are about 1 nsec. For solid state lasers, the oscillating bandwidths are 

much larger and pulse widths are about 1 psec or even smaller. Such pulses are referred 

to as ultra-short pulses and find widespread application in the study of ultrafast 

phenomena in physics, chemistry and biology.     

3. From eqn.9 we also obtain the peak intensity of the output pulse as,  

   Ipeak   ( )
2 2

0N 1 KA+  =  ( )
2

0N 1 I+      (11) 

   This is (N + 1) times the average value given by eqn.7. Since typical solid state 

lasers have 103 to 104 modes of oscillation power enhancement obtained due to mode 

locking is very large. 
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Technique of active mode locking: There are different methods for mode locking. One 

example is active mode locking. In this technique a device is introduced into the resonator cavity 

which modulates periodically either the loss or the refractive index of the medium of the cavity. 

This technique is referred to as active mode locking since the modulating device is run by a 

source other than the laser.  In order to understand the action of a loss modulator, we assume 

that the loss is modulated at a frequency equal to the intermodal spacing . As soon as the laser 

is switched on, the mode that lies nearest to the line centre frequency 0 would start oscillating 

first. Since the loss is modulated at the frequency , the amplitude of this mode would also 

oscillate at the frequency . Let the modulating wave is represented by ( )1A cos 2πδνt . Then, 

the resultant field is given by, 

          E = ( )  ( )0 1 0A A cos 2πδνt cos 2πν t+  

   =  ( ) ( ) ( )0 0 1 0A cos 2πν t A cos 2πδνt cos 2πν t+   
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0 0
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A cos 2πν t

2
+  

    =  ( ) ( ) ( )1 1
0 0 0 0

A A
A cos 2πν t cos2π ν δν t cos2π ν δν t

2 2
+ + + −  (12) 

The modulated central mode given by eqn.12 is the superposition of three oscillating modes 

with frequencies 0ν , 0ν δν+  and 0ν δν− . The oscillating fields having frequencies 0ν δν+  

and 0ν δν−  force the oscillations corresponding to these frequencies into oscillation and thus 

these new modes have a perfect phase relationship with the mode at 0ν . Just as before, these 

new modes are also modulated at the frequency δν , which in turn create additional frequencies 

0ν 2δν+  and 0ν 2δν− in addition to those already present. This process is going on and hence 

all the modes are forced into oscillation in a definite phase and this leads to mode locking. 

Mode locking can also be obtained by using saturable absorbers.      

1.10 Laser Cavity Modes 

  We have already seen that in a laser system the active medium (amplifying medium) 

which produces light amplification is placed in between two parallel mirrors facing each other. 

This arrangement is known as an optical resonator. The region between the mirrors is known 

as the cavity. In this topic we consider the properties associated with the optical cavity of the 

laser. These properties play a significant role in determining the output characteristics of the 

laser medium. The mirrors at the ends of the cavity lead to the development of both the 

longitudinal modes (also known as temporal modes) and transverse modes (spatial modes).  
 

1.10.1 Longitudinal laser cavity modes 

  When the mirrors are placed at the ends of the laser medium, they impose certain 

boundary conditions upon the electromagnetic field developed in between the mirrors. 

Comparing with the modes that developed in a cavity in thermal equilibrium (theory of 

blackbody radiation in a cavity) we can expect that similar modes may develop within the laser 

cavity with similar boundary condition that the electric field must be zero at the reflecting 

surface. To begin with our analysis, we consider the case of two-mirrored cavity, known as 

Fabry-Perot resonator, with no optical elements between the mirrors. Then we consider the 

effect of placing an amplifying medium between the mirrors. 
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  Consider the multiple reflection by two mirrors M1 and M2 as shown in the figure above. 

Here the rays 1, 2, …. in the region 3 are considered as the transmitted rays and those rays on 

the left side as reflected rays. (In a laser cavity transmitted rays are the output laser beam). The 

phase of the propagating waves is given by  = k.r = kz. The phase difference between the 

successive transmitted rays can be calculated as follows. Let d be the separation between the 

mirrors. The path difference between rays 1 and 2 is, (same as between 2 and 3, between 3 and 

4 and so on) 

          AB + BC =  a + b        (1) 

From the triangle ADB,     a =  
d

cosθ
      (2) 

From the triangle ABC,     b = a cos2θ  = ( )2a 2cos θ 1−  = ( )2d
2cos θ 1

cosθ
−  (3) 

Then, the path difference between rays 1 and 2 is 

     a + b   = ( )2d d
2cos θ 1

cosθ cosθ
+ −   

     =  ( ) 2d
1 2cos θ 1

cosθ
+ −  =  2dcosθ   (4) 

Thus, the phase difference between the successive transmitted rays is given by, 

             =  ( )
2π

a b
λ

+  =  
4π

dcosθ
λ

 =  2kdcosθ   (5) 
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 Let r


 be the phase change for one reflection. When the reflection takes place at the interface 

of the denser to the rarer medium r 0


=


 and for rarer to denser medium r π


=


. Thus, the 

resultant amplitudes of the transmitted rays is given by,   
 

          Et =  
r ri i

2 2 2 iδ 4 2 i2δ2 2
0 0 0t E r e t E e r e t E e ........

 

+ + +   

    =  
( ) ( )( )r ri δ i2 δ2 2 4

0t E 1 r e r e ........
+ +

+ + +  

    =  ( )2 2 iψ 4 i2ψ

0t E 1 r e r e ........+ + +  =   2 2n inψ

0

n 0

t E r e


=

   (6) 

where, rψ δ= +             (7) 

Using the expansion, 

         ( )
11

1 x
1 x

−
= −

−
 =  2 31 x x x .......+ + + +  

         Et =  
2

0

2 iψ

t E

1 r e−
       (8) 

Thus, the transmitted intensity, 

         It = 
2

tE  =  
( )( )

4 2

0

2 iψ 2 iψ

t E

1 r e 1 r e−− −
  =  

( )( )

2 2

0

iψ iψ

T E

1 Re 1 Re−− −
  (9) 

where, Reflectance, R =  
2

r  = r2  and Transmittance,      T =  
2

t  =  t2  (10) 

(Here, for transmission there is no phase change and for reflection the phase change is r


). 

Eqn.9 can be written as, 

          It =  2

0 iψ iψ 2

1
I T

1 Re Re R−

 
 

− − + 
  = 

2

0 2

1
I T

1 2R cos ψ R

 
 

− + 
 

    =  
2

0 2

1
I T

1 2R R 2R cos ψ 2R

 
 

− + − + 
 

   =  
( ) ( )

2

0 2

1
I T

1 R 2R 1 cos ψ

  
 

− + −  

 = 
( )

( )

2

0

2
2

2

I T 1

ψ1 R 4R sin
2

1
1 R

 
 
 
 
 

 −   
  + 

− 

 

    =  
( )

2

0

2
2

I T 1

ψ1 R 1 F sin
2

 
  
 

 −  +  
   

     (11) 

where,        F  =  
( )

2

4R

1 R−
       (12) 

Here the quantity in the brace is referred to as the Airy function. If there is no absorption, 

R T 1+ = , or, T 1 R= − , then eqn.11 becomes, 
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                     It =  0

2

I

ψ
1 F sin

2

 
+  

 

 

i.e.         t

0

I

I
 =  

2

1

ψ
1 F sin

2

 
+  

 

      (13) 

That is, the ratio of the transmitted intensity to the incident intensity is simply the Airy function. 

A plot of  t

0

I

I
 versus 

ψ

2
 for different values of R is shown in the figure below. 

   The Airy function for a particular value of R has a maximum value of unity when its 

denominator is minimum, i.e. when 
ψ

nπ
2

= ; where n = 0, 1, 2, 3, ………. It has minimum value 

when ( )
ψ π

2n 1
2 2

= + ; for n = 0, 1, 2, 3, ………. . The minimum value of Airy function depends 

on the value of R also. We refer the values of  corresponding the maximum values of t

0

I

I
 by, 

and also using eqns.5 and 7  

      max =  2nπ  =  
r

4π
dcosθ

λ
+         (14) 

We get peaks for Airy function for n = 0, 1, 2, 3, ……. . All these peaks are identical in shape. 

From the figure it is clear that for larger values of R, i.e. R > 0.6, the graph is highly sharp so 

that a peak is obtained for the range of small values of 
ψ

2
. So we can approximate 

ψ ψ
sin

2 2

 
 

 

. The values of 
ψ

2
 corresponding to the half maximum are given by eqn.13, 
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Thus, the full width at half maximum (FWHM) is given by, 

 i.e.           FWHM =   +ψ ψ−
 −  = 

4

F
     (15) 

The separation between the adjacent peaks is given by, (from the figure) 

      n 1 nψ ψ

2 2

+ −  =  ( )n 1 π nπ+ −  

i.e.      ψ  =   n 1 nψ ψ+ −  =  2π        (16) 

Now we define a function F equal to the ratio between peak separation and FWHM. That is, 

using eqn.12, 

         F =  
ψ

FWHM


  = 

2π

4

F

 =  
π F

2


  =  

( )
2

4R
π

1 R

2

−
 =  

π R

1 R−
  (17a) 

F is referred to as finesse. If the two mirrors have different reflectivities, instead of R we have 

to use ( )
1

2
1 2R R R= , then F becomes, 

          F =  
( )

( )

1
4

1 2

1
2

1 2

π R R

1 R R−
      (17b) 

Now we consider the simple case of normal incidence and the reflection takes place at the 

interface of denser to rarer medium. In this case  = 0 and r = 0. Then by eqn.14, we get, 
 

     max =  2nπ  =  
4πd

λ
        (18) 

This wavelength at which a maximum occur can be referred to as, max

nλ  is given by, 

     max

nλ  =   
2d

n
  ; where n = 1, 2, 3, ……   (19) 

Eqn.19 shows that these maxima occur at an infinite sequence of wavelengths, decreasing 

separation with increasing n. In terms of frequency eqn.19 becomes, 
 

              
max

n

v

ν
 =  

2d

n
 

Or,           
max

0 n

c

μ ν
 =  

2d

n
 

i.e.     max

nν  =  
0

cn

2μ d
       (20) 

Thus, the difference between two successive frequencies is given by, 

   
sepδν  =  max max

n 1 nν ν+ −  =  
0

c

2μ d
     (21) 

This theory is also applicable to lasers.  

 By eqn.17a, we have, 

            FWHM =  
ψ

F


  

In terms of frequency we can write this equation as, 
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          FWHMδν  =  
sepδν

F
  =   

0

1 c

F 2μ d

 
 
 

    

Using eqn.17a,  =  
0

1 R c

2μ dπ R

− 
 
 

      (22a) 

Mirrors with different reflectivities, 

          FWHMδν  = 
( )

( )

1
2

1 2

1
4

0
1 2

1 R R c

2μ dπ R R

 − 
 
  

     (22b) 

The quality factor of the resonator is given by 

         Q =  
FWHM

Resonant frequency

δν
  

Using eqn.22a,  =   0

0

ν

1 R c

2μ dπ R

− 
 
 

 =  
( )

0
0

2πμ d R
ν

1 R c−
     (23a) 

Mirrors with different reflectivities, 

         Q =  
( )

( ) 

1
4

0 1 2

01
2

1 2

2πμ d R R
ν

1 R R c−
      (23b) 

Fabry-Perot cavity modes: For a Fabry-Perot cavity we have by eqn.19, 

         d =   
max

nλ
n

2
  ; where n = 1, 2, 3, ……  (24) 

Eqn.24 shows that the integral multiple of half the wavelengths fit into the cavity spacing d. 

Each of these is a standing wave and is known as a mode. In terms of frequency, eqn.19 becomes, 
 

     max

nν  = 
v

n
2d

 = 
0

nc

2μ d
       (25a) 

If 0μ 1= ,    max

nν  = 
nc

2d
         (25b) 

This shows that there are essentially an infinite number of frequencies that would fit within such 

a cavity. If we want to consider a wide range of frequencies, the reflectivity of the mirrors would 

have to be high over that entire range of frequencies.  

Longitudinal laser cavity modes: A laser system is basically a Fabry-Perot cavity with an 

amplifying medium inserted within the cavity. So, in a laser cavity, similar modes will be set up 

in the form of standing wave patterns. Eqn.25 shows that these frequencies are equally spaced. 

The various standing waves each of a different frequency according to eqn.25 are referred to as 

longitudinal modes, because they are associated with longitudinal direction (along the length of 

the cavity) of propagation of the electromagnetic waves within the cavity. 

Longitudinal mode number: We have seen that one or more longitudinal laser mode 

frequencies can occur when a laser gain medium is placed in between two mirrors and sufficient 

time is allowed for such modes to develop, typically 10 ns to 1 µs. The total number of modes 

is determined by the separation ‘d’ between the mirrors, the laser bandwidth and the type of 

broadening (homogeneous or inhomogeneous) that present. The mode frequencies are obtained 

from the eqn.25a as, 
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      n = 
0

nc

2μ d
  (25c) 

This expression is valid for almost 

all gas lasers, solid state lasers and 

dye lasers in which the mirrors are 

placed immediately at the ends of 

the gain medium.  

  If the length ‘L’ of the laser 

medium is less than the separation ‘d’ between the mirrors, the different modes are given by, 
 

       n =   
( )C L

nc 1

2 μ d L μ L

  
 

− +  

      (25d) 

1.10.2 Transverse laser cavity modes 

  In the longitudinal mode we have considered two parallel mirrors of infinite extent and 

the light beam is normal or nearly normal to the reflecting surface. However, the laser mirrors 

are not of infinite extent and the beam is not plane wave. The finite size of the mirrors causes 

diffraction of the beam at the edges of the mirror. This leads to the loss of energy within the 

laser cavity.  

  We now consider two modifications to our previous analysis. We assume that the two 

mirrors are of finite size and are circular in shape. Since the diffraction effects are comparatively 

smaller, curved circular mirrors are more desirable for a laser cavity. We also assume that the 

source of light is in between the mirrors so that the incident beam is not plane wave. 

  In our analysis we will first obtain the expression for the transverse profile of the beam 

that builds up within the cavity after having undergone many reflections as the beam oscillates 

back and forth between the mirrors. 

  In our analysis we use the Huygens 

principle. According to this principle 

spherical wavefronts of amplitude U0 are 

emanated from the source S and reaches 

the circular aperture region of area A. 

Then the secondary wavelets are 

originated from the aperture and reaches 

any point P at which the amplitude of the 

wave UP is evaluated. Using the Fresnel-

Kirchhoff integral formula the amplitude of the wave at P is given by, 
 

       UP =  ( ) ( ) 
ikr ikr

0
A

ik e e
U cos , cos , dA

4π r r



− −
 n r n r    (1) 

where, dA = dxdy is the area element in the aperture region which lies in the x-y plane, n is a 

unit vector normal to the aperture plane over which the integration to be done, r and r are 

respectively the vectors drawn from the source and the point P to a point in the aperture region, 

symbol (n, r) is the angle between the unit vector n and r and (n, r) is the angle between n and 

the vector r.  

Transverse modes with plane parallel mirrors: Consider any point on the unprimed mirror 

as the source point. Let ( )U x, y  is the amplitude function (amplitude distribution) at any point 

on the unprimed mirror, ( )U x , y    is the amplitude function at any point on the primed mirror 
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and ( )U x , y   is amplitude distribution due to the unprimed mirror evaluated at any point on the 

primed mirror. Then it can be shown that (avoided all the steps), 
 

        ( )U x , y    =  ( )γU x , y   = ( ) ( )
A

U x, y K x, y, x , y dxdy   (2) 

where,  is a constant factor determined by the diffraction. The function K is known as the kernel 

of the equation and  is the eigenvalue of the equation.  

  There are infinite number of solutions Un and n to eqn.2; each set is associated with a 

specific value of n, where n can take values n = 1, 2, 3, ………. These solutions correspond to 

the normal modes of the resonator. They are referred to as transverse modes because they 

represent amplitude distributions of the electromagnetic field in the transverse directions to the 

laser beam within the resonator. 

Transverse modes with curved mirrors: An analysis similar to that of the parallel plane 

mirrors can be made for a laser beam developed between curved mirrors. The advantage of the 

curved mirrors is that the beam was focussed slightly after each reflection. This reduces the 

beam amplitude near the edges of the mirror and hence the diffraction loss can be reduced. The 

diffraction loss is related to the Fresnel number. 

     [The Fresnel number (N), named after the physicist Augustin-Jean Fresnel, is 

a dimensionless number occurring in optics, in particular in scalar diffraction theory. 

For an electromagnetic wave passing through an aperture and hitting a screen, the Fresnel 

number N is defined as 
2a

N
λd

= , where, ‘a’ is the characteristic size (e.g. radius for spherical 

mirrors, for plane mirrors length and breadth of the mirrors. For rectangular mirrors two Fresnel 

numbers one for x-direction and the other for y direction. For square mirror they are equal.) of 

the aperture, ‘d’ is the distance of the screen from the aperture and ‘’ is the 

incident wavelength.  

  The Fresnel number is a useful concept in physical optics. Conceptually, it is the number 

of half-period zones in the wavefront amplitude, counted from the center to the edge of the 

aperture, as seen from the observation point (the center of the imaging screen), where a half-

period zone is defined so that the wavefront phase changes by  when moving from one half-

period zone to the next.] 

  The theory of confocal 

resonator system (radii of curvature of 

the mirrors is equal to the separation 

between the mirrors), which will be 

discussed in sec.1.11, shows that for a 

confocal resonator the different modes 

are designated as TEMnpq, where, n is 

the longitudinal mode number and p 

and q are the transverse mode numbers. 

When we are concerned with 

transverse modes the designation 

becomes TEMpq. 

   Figure gives the plot of the 

fractional power loss per transit versus 

the Fresnel number in the cases of 

plane parallel and confocal resonator 

systems for two modes TEM00 and TEM01. In the next topic we will discuss the longitudinal 

and transverse modes of a confocal resonator system. 
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1.11 Confocal Resonator system*   

Figure represents a symmetric confocal resonator 

system. It consists of a pair of mirrors of equal radii of curvature 

facing each other. They are separated by a distance equal to the 

radius of curvature. Our aim is to find out the modes of this 

symmetric resonator. 

Since the resonator system is symmetric about the 

middle plane N1N2 the field distribution across any plane on one 

side of N1N2, say AB, after completing half a round trip (equal 

to the distance R; the rays from AB after reflection from mirror 

M2 reach the plane CD) must repeat itself on the plane CD. The 

phase shift suffered by the wave in half a round trip must be an 

integral multiple of . Such a condition would give us the 

transverse modes of the resonator. In this case to know the field 

distribution as it propagates 

through a distance z we use the 

Huygens principle. 

Assume a coordinate 

system with origin at the midpoint 

of the plane AB and the z-axis 

along the axis of the resonator. 

Then the coordinates of the points 

on plane AB is (x, y, 0). Then the 

field distribution at the plane AB 

can be represented by the function 

f(x, y). According to Huygens 

principle the field distribution on another plane at a distance z (coordinates x, y, z) is given by 

the superposition of all fields due to the spherical waves emanating from every point on the 

plane at z = 0. Consider a small elemental area dxdy centred at the point (x, y, 0) on the plane 

at z = 0. Then the field distribution over the elemental area dxdy is given by, ( )f x , y dx dy    . 

Since the intensity of the wave obeys inverse square law, [If I is the intensity of radiation 

scattered in all directions from the point O, intensity of radiation over unit area at a spherical 

surface of radius r is 
2

I

4πr
. Then we can write 

2

I
dS

4πr

 =  
2

I
dS

4πr



. That is the intensity is inversely 

proportional to r2. Since the intensity is proportional to 

the square of the amplitude, the amplitude of the wave 

varies inversely with r], the field produced by the 

element dxdy at the point P with coordinates (x, y, z) 

on a plane at z would be proportional to

( )
ikre

f x , y dx dy
r

−

    . Exponential factor is used for 

considering the phase change. 

Distance between the points (x, y, 0) and (x, y, z),   

           r =  ( ) ( )
1

2 2 22x x y y z  − + − +
 

         (1) 
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    =  
( ) ( )

1
2 2 2

2

x x y y
z 1

z

  − + −
+ 

  

 

In the paraxial approximation we consider only the region very close to the z-axis. Then, x, y, 

x, y << z. Thus we may write, 
 

          r    
( ) ( )

2 2

2

x x y y
z 1

2z

  − + −
+ 

  

  = 
( ) ( )

2 2
x x y y

z
2z

 − + −
+   (2) 

Total field produced (over unit area around) on any point on the plane at z by all the 

secondary wavelets emanated from the plane AB is given by,  
      

      g(x, y, z) = ( )
ikre

K f x , y dx dy
r

−

           (3) 

Using eqn.2,  =  ( )

( ) ( )

( ) ( )

2 2
x x y y

ik z
2z

2 2

e
K f x , y dx dy

x x y y
z

2z

  − + −
 − +
 
 

   
  − + − 

+ 
  

  

      ( )
( ) ( )

2 2ikikz
x x y y

2z
e

K f x , y e dx dy
z

−   − − + −          (4) 

By a rigorous treatment one can show that K = i/. Eqn.4 may be used to find the field 

distribution on any plane. 

Effect of reflection: Now we determine the effect on the field when it undergoes a reflection 

from a mirror of radius of curvature R. In the case of a spherical mirror, the diverging spherical 

wave emanating from an axial point after reflection becomes a converging spherical wave. We 

have the mirror equation, 

            
1 1

u v
+  =   

1

f
  =  

2

R
       (5) 

Thus a spherical mirror converts the incident diverging spherical wave of radius ‘u’ to a 

converging spherical wave of radius ‘v’. The phase change produced on the diverging spherical 

wave originated from ‘u’ when reaches the plane AB is given by, 
ikre−

, where ‘r’ in this case is 

r = 
2 2 2x y u+ + . Again in the paraxial approximation the transverse coordinates x, y << u. 

Then, 

           r =  

1
2 2 2

2

x y
u 1

u

 +
+ 

 
   

2 2

2

x y
u 1

2u

 +
+ 

 
 = 

2 2x y
u

2u

+
+   (6) 

 Phase distribution on the plane AB =  

2 2x y
ik u

2u
e

 +
− +  

   =  
( )2 2ik
x y

iku 2ue e
− +

−  

By omitting the constant phase term 
ikue−

, we get,  

 Phase distribution on the plane AB =  
( )2 2ik
x y

2ue
− +

 

Similarly, by considering the change in direction of k and also omitting the constant phase term 
ikve , we get, 

  Phase distribution on the plane AB due to the converging wave at ‘v’  =  
( )2 2ik
x y

2ve
+
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Now let pm represents a factor which when multiplied with incident phase distribution gives the 

emergent (reflected) phase distribution (effect of reflection). That is, 
 

    
( )2 2ik
x y

2u
mp e

− +

 =   
( )2 2ik
x y

2ve
+

  

        pm =  

( )

( )

2 2

2 2

ik
x y

2v

ik
x y

2u

e

e

+

− +

 =  
( ) ( )2 2 2 2ik ik
x y x y

2v 2ue e
+ +

 =  
( )2 2ik 1 1
x y

2 u ve

 
+ + 

   

     =  
( )2 2ik
x y

2fe
+

 =  
( )2 2ik
x y

Re
+

     (7) 

Since, as the resonator system is symmetric about the middle plane N1N2 the field distribution 

across any plane on one side of N1N2, say AB, after completing half a round trip (equal to the 

distance R; the rays from AB after reflection from mirror M2 reach the plane CD) must repeat 

itself on the plane CD we get from eqn.4 by considering the reflection effect (z = R constant), 
 

  g(x, y) = pm ( )
( ) ( )

2 2ikikz
x x y y

2z
e

K f x , y e dx dy
z

−   − − + −       

   =  ( )
( ) ( ) ( )2 2 2 2ik ikikR
x x y y x y

2R R
i e

f x , y e dx dy e
λ R

−   − − + − +          (8) 

The integration must be performed over the surface represented by the plane AB. 

To determine different modes: A field distribution f(x, y) would be mode of the resonator if 

             g(x, y) = f(x, y)        (9) 

where,  is some complex constant. The losses suffered by the field would be governed by the 

magnitude of  and the phase shift of the wave is determined by the phase of . Then eqn.8 may 

be written as, 

          f(x, y) = ( )
( )2 2 2 2 2 2ik ik

x x 2xx y y 2yy x y
ikR 2R R

i
e f x , y e dx dy e

λR

    − + − + + − +
 −        

   =  ( )
( )2 2 2 2ik ik

x 2xx y 2yy x y
ikR 2R 2R

i
e f x , y e dx dy e

λR

    − − + − +
 −       (10) 

To solve the eqn.10, let 

   u(x, y)  = ( )
( )2 2ik
x y

2Rf x, y e
− +

               (11a) 

Or,   f(x, y) =  ( )
( )2 2ik
x y

2Ru x, y e
+

               (11b) 

Now we introduce two dimensionless variables, 

 =   

1
2k

x
R

 
 
 

 =   

1
22π

x
λR

 
 
 

              (12a) 

Or,         x  = 

1
2λR

ξ
2π

 
 
 

                (12b) 

 =   

1
2k

y
R

 
 
 

 =  

1
22π

y
λR

 
 
 

             (12c) 

Or,         y =  

1
2λR

η
2π

 
 
 

               (12d) 
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Using eqns.11 and 12 in eqn.10 

   ( )
2 2ik λR λR

ξ η
2R 2π 2πλR

u ξ, η e
2π


 

+ 
   =          

 ( )
2 2 2 2 2 2ik λR λR ik λR λR λR λR ik λR λR

ξ η ξ 2 ξξ η 2 ηη ξ η
ikR 2R 2π 2π 2R 2π 2π 2π 2π 2R 2π 2πi λR λR

e u ξ , η e e dξ dηe
λR 2π 2π

     
     + − − + − +    −           

      ( )u ξ, η  =  ( ) ( )i ξξ +ηηikRi
e u ξ , η e dξ dη

2π

 −            (13) 

In order to simplify the analysis, we assume that the planes AB and CD are rectangular with 

dimensions 2a2b. Then the limits of integration are x = −a to +a and y = −b to +b. 

Corresponding limits of integration of  are −0 to + 0 and for  are −0 to +0, where,  
 

        0 =  

1
2k

a
R

 
 
 

         and       0 =  

1
2k

b
R

 
 
 

 

Then eqn.13 becomes, 

      ( )u ξ, η  =  ( ) ( )
0 0

0 0

+ξ +η

i ξξ +ηηikR

ξ η

i
e u ξ , η e dξ dη

2π

 −

− −

           (14) 

In order to solve eqn.14 we make use of the separation of variable technique. Now we write, 

 =    and   ( )u ξ, η  =  p()q()      (15) 

Then eqn.14 becomes, 

  ( ) ( )κτp ξ q η  =  ( ) ( )
0 0

0 0

+ξ +η

ikR iξξ iηη

ξ η

i
e p ξ q η e e dξ dη

2π

 −

− −

       

i.e.       ( ) ( )κp ξ τq η  =  ( ) ( )
0 0

0 0

1 1+ξ +ηkR kR2 2i i
iξξ iηη2 2

ξ η

i i
e p ξ e dξ e q η e dη

2π 2π

− −
 

− −

   
      

   
   

Splitting this equation we get, 

              ( )κp ξ  =  ( )
0

0

1 +ξkR2 i
iξξ2

ξ

i
e p ξ e dξ

2π

−


−

 
  

 
      (16) 

And,           ( )τq η  =  ( )
0

0

1 +ηkR2 i
iηη2

η

i
e q η e dη

2π

−


−

 
  

 
      (17) 

Eqns.16 and 17 are finite Fourier transforms. In the limit 0 →  and 0 → , they reduce to 

the usual Fourier transforms. It has been shown by Slepian and Pollack (1961) that the solutions 

eqns.16 and 17 are prolate spheroidal functions. We now consider only resonators of large 

Fresnel numbers, 
2

1

a
N

λR
=  and 

2

2

b
N

λR
= , so that 0 = 

1
2k

a
R

 
 
 

= 

1
2 22πa

1
λR

 
 

 
         and 0 =  

1
2k

b
R

 
 
 

= 

1
2 22πb

1
λR

 
 

 
 and in these cases we consider the limits of integration of eqns.16 

and 17 are from − to +.  
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Eqn.16 can be written as,  

              ( )κp ξ  =  ( )
0

0

1 +ξkR2 i
iξξ2

ξ

i
e p ξ e dξ

2π

−


−

 
  

 
     

  ( )
1 kR2 i

2
i

e κp ξ
2π

−

 
 
 

 =  ( )
0

0

+ξ

iξξ

ξ

p ξ e dξ


−

    

i.e.          ( )Ap ξ  =  ( )
0

0

+ξ

iξξ

ξ

p ξ e dξ


−

        (18) 

where,        A = 

1 kR2 i
2

i
e κ

2π

−

 
 
 

        (19) 

We can also write an identical equation for q(). Eqn.18 requires that, apart from some constant 

factors, p() be its own Fourier transform. Differentiating eqn.18 twice with respect to , we 

get, 

    
2

2

d p
A

dξ
 =  ( )

0

0

+ξ

2 iξξ

ξ

ξ p ξ e dξ


−

  −        (20) 

We now consider the integral, 

         I =  
0

0

+ξ 2
iξξ

2

ξ

d p
e dξ

dξ



−


       (21) 

Integrating eqn.21 by parts [ UdV UV VdU= −  ], we get, 

            
0

0

+ξ 2
iξξ

2

ξ

d p
e dξ

dξ



−


  =  

0 0

00

ξ +ξ

iξξ iξξ

ξξ

dp dp
e iξ e dξ

dξ dξ

+

 

−−

 
−   

  

Integrating once again by parts, 

     =  ( ) ( )
0 0

0

0

00

ξ +ξ
ξ

iξξ iξξ 2 iξξ

ξ
ξξ

dp
e iξ p ξ e ξ p ξ e dξ

dξ

+
+  

−
−−

 
   − −    

  

For the required mode, we assume that p() and its derivative vanish at infinity and using eqn.18, 

we get, 

            
0

0

+ξ 2
iξξ

2

ξ

d p
e dξ

dξ



−


  =  ( )2Aξ p ξ−        (22) 

Adding eqns.20 and 22, we obtain, 

     ( )
2

2

2

d p
A ξ p ξ

dξ

 
− 

 
 =  

0

0

+ξ 2
2 iξξ

2

ξ

d p
ξ p e dξ

dξ



−

 
 − 

 
      (23) 

Comparing eqns.18 and 23 we see that both p() and 
2

2

2

d p
ξ p

dξ

 
− 

 
 satisfy the same equation. 

Then one must have,  

      
2

2

2

d p
ξ p

dξ
−  =  ( )Kp ξ−        (24) 

where, K is a constant. Rewriting eqn.24 we get,   

          ( )
2

2

2

d p
K ξ p

dξ
−  =  0        (25) 
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The solutions of eqn.25 with the condition that p() vanish at large values of  are the Hermite-

Gauss functions. For each choice of the parameter K there is a different function pm. Each 

function consists of a polynomial Hm(), called Hermite polynomial, in either odd or even 

powers of , an exponential factor exp(–2/2) and a numerical coefficient which is needed for 

pn to meet the normalization condition,                                                                           

i.e            pm()     =    ( )
2ξ

2
m mN H ξ e

−
                  (26a) 

Or,          pm()     =    ( )
2ξ

2
m mN H ξ e


−

        

where,  Hm() =   ( )
( )

( )
( )( )( )

( )
m m 2 m 4m m 1 m m 1 m 2 m 3

2ξ 2ξ + 2ξ
1! 2!

− −− − − −
− − ……. 

   =   ( )
( )

( )
m

2
s m 2s

s = 0

m!
1  2ξ

m 2s !s!

−
−

−
  

where, the summation over s is up to m/2 when m is even and (m−1)/2 when m is odd.  

   Some Hermite polynomials 

 

 

 

 

 

 

 

 

             (27) 

Also we get a similar solution for eqn.17.  

     qn()    =   ( )
2η

2
n nN H η e

−
                    (26b) 

Thus the complete solution of eqn.10 may be written as, 

  f(x, y) =  ( ) ( )
( )

2 2 2 2ikξ η x y
2 2 2R

m m n nN H ξ e N H η e e
+− −

 

   =  ( ) ( )

2 2 2 2ξ η ξ η
i

2 2

m nCH ξ H η e e

   + +
−      

          (28) 

where, C is some constant. Here m and n represent the transverse mode numbers that determine 

the transverse field distribution of the mode. Hermite-Gauss function satisfies the equation, 

   ( )
2ξ

m 2
mi H ξ e

−
 =   ( ) ( )

2ξ1
iξξ22

m2π H ξ e e dξ

+ 
−− 

−

      (29) 

By eqn.16 

m Hm(y) 

0 1 

1 2y 

2 4y2 – 2 

3 8y3 – 12y 

4 16y4  –  48y2  + 12 

5 32y5 – 160y3 + 120y 
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            ( )mi κp ξ  =  ( )
0

0

1 +ξkR2 i
m iξξ2

ξ

i
i e p ξ e dξ

2π

−


−

 
  

 
       

Using eqn.26 

     ( )
2ξ

m 2
m mκN i H ξ e

−
 =  ( )

0

0

1 +ξkR2 i
m iξξ2

ξ

i
i e p ξ e dξ

2π

−


−

 
  

 
  

Using eqn.29 to RHS 

              ( ) ( )
2ξ1

iξξ22
m mκ 2π N H ξ e e dξ

+ 
−− 

−

   =  ( )
0

0

1 +ξkR2 i
m iξξ2

ξ

i
i e p ξ e dξ

2π

−


−

 
  

 
  

Eqn.26a can also be written as, 

Or,               pm()     =    ( )
2ξ

2
m mN H ξ e


−

     

Using this equation to RHS of above equation we get    

             ( ) ( )
2ξ1

iξξ22
m mκ 2π N H ξ e e dξ

+ 
−− 

−

   =  ( )
20

0

1 +ξkR2 ξi
m iξξ2 2

m m

ξ

i
i e N H ξ e e dξ

2π

− − 

−

 
  

 
  

Thus,           =  ( )
kR

i1
m 22i i e

−

  =  
1 kR

m i
2 2i e

+ −

  

Using,          i =  
π

i
2e  

Then,           =     

1
m

π kR2i i
2 2e e

+
− 

 
 

 = 

1 π kRi m i
2 2 2e e

 
+ − 

   =  

kR 1 π
i m

2 2 2e

  
− − +  

      (30) 

Similarly, from eqn.17, 

         =  ( )
kR

i1
n 22i i e

−

  =  

kR 1 π
i n

2 2 2e

  
− − +  

        (31) 

Then by eqn.15, 

         =   =  
( )

π
i kR m n 1

2e

 
− − + + 

         (32) 

We see that   = 1. This implies that there is no loss in the cavity. This is because of the mirrors 

are assumed to have extremely large transverse dimensions. The phase shift of  represents the 

phase shift suffered by the wave in half a round trip. Thus one must have,  

     ( )
π

kR m n 1
2

− + +  =  q ;  q = 1, 2, 3, ....... refers the longitudinal mode number  (33) 

i.e. ( )
2πν π

R m n 1
c 2

− + +  =  q 

i.e.  
2πν

R
c

 =  ( )
π

2q m n 1
2

+ + +  

Thus, the frequencies of oscillations in the cavity are given by, 

  mnq =  ( )
c

2q m n 1
4R

+ + +        (34) 

All the modes having the same value of ( )2q m n 1+ + + (but different q, m and n values) would 

have the same oscillation frequency and hence would be degenerate. If q changes to q+1, eqn.34 

becomes, 



72 Lasers and Fibre Optics M C T 

 

         mn(q+1) =  ( ) 
c

2 q 1 m n 1
4R

+ + + +  =   
c

2q 2 m n 1
4R

+ + + +  

Then the frequency separation between two modes having the same values of m and n but 

adjacent values of q is given by, 

                          q =  mn(q+1) − mnq =  
c

2R
      (35) 

Similarly by changing m to m+1 or n to n+1 in eqn.34 and taking difference one may get the 

frequency separation between two transverse modes corresponding to the same value of q. 

            m (or n)  =  (m+1)nq − mnq =  
c

4R
      (35) 

which is half that between two 

consecutive longitudinal modes. 

See fig.d. 

  The transverse intensity 

distribution (square of the 

amplitude) corresponding to the 

mode amplitude distribution 

given by eqn.26 is depicted in 

fig.e.  

   

The field distribution given by eqn.28 corresponds to a plane passing through the pole 

of the mirror. It can be shown that the field distribution at a plane midway between the mirrors 

is, 

         fM(x, y) =    ( ) ( )
2 2ξ η kR π

i
2 2 2

m nCH ξ 2 H η 2 e e

 +  −  − −   
          (36) 

Eqn.36 shows that the phase of the field given by the term 

KR π
i

2 2e

 
− − 

   is a constant at a plane 

midway between the mirrors and hence the phase fronts are plane there. The phase front of other 

modal distribution is curved with radius of curvature R, which is equal to the radius of curvature 

of the resonator mirror.  
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Lines with more than one set of mode numbers are degenerate 
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1.12 Analysis of optical resonators using geometrical optics 

  (ABCD Matrices and condition for stability of resonators) 

In this section we use the matrix method of the geometrical optics for the analysis of the 

general spherical resonator consisting of two mirrors of radii of curvature R1 and R2. Since we 

are using mirrors of large Fresnel numbers (see page 53) the diffraction loss is small. We assume 

that the resonator is stable. In a stable resonator the ray of light may keep bouncing between the 

mirrors indefinitely, whereas in an unstable resonator the ray may escape from the resonator 

after a few to and fro motions. 

Consider a ray of light 

propagating in a homogeneous 

medium in the x-z plane as 

shown in fig.a. The ray at any 

point may be described by two 

coordinates, say x and , where x 

is the height of the ray from z-

axis and  is the angle made by 

the ray with the z-axis. In this 

analysis we restrict ourselves to 

only paraxial rays, i.e. the rays 

very close to the z-axis. This approximation is termed as paraxial approximation. In this 

approximation x and  are very small, so that sin = tan  . Let the slope of the ray at any 

position is 
dx

x
dz

 = = tan  . Let 1x  and 2x  be the slopes of the ray at the positions z = z1 and 

z = z1 + d.  

Translation matrix: From the fig.a,      

            x2 = x1 + dtan =  x1 + 1x d        (1) 

If the two positions are in the same homogeneous medium,    

       2x  =  

1z d

dx

dz +

 = 

1z

dx

dz
  = 1x             (2) 

Eqns.1 and 2 may be combined into the following matrix equation, 

             
2

2

x

x

 
 

 
 =  

1

1

x1       d

0       1 x

  
     

        (3) 

The matrix T = 
1       d

0       1

 
 
 

 is called the translation matrix.      (4) 

Eqn.3 shows that the effect of propagation of the ray through a homogeneous medium is 

achieved by the translational operation with the translation matrix. Notice that the determinant 

of T is, 

               det T =  
1     d

0     1
  =  1        (5) 

Reflection matrix: At the point of reflection, the incident ray and the reflected ray have the 

same height. Thus, 

         x2 =  x1          (6) 

d 

A 

z1+d 

B 

x2 

X 

2 

1 

P 

Z 

 

Fig.a 

x1 

z1 
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The reflection produces a change in the direction and hence the slope of the ray. Thus the 

incident and the reflected rays have different slopes. We determine the relationships between 

the incident and the reflected rays using the mirror formula. 

   
1 1

u v
+  =   

1

f
 =  

2

R
        (7) 

Slope of the incident ray,    1x  = 1x

u
  

Slope of the reflected ray,   2x  = 1x

v
−   

Then,            2 1x x −  =  1x

v
− − 1x

u
 =  12x

R
−  

Or,         2x  =  1
1

2x
x

R
 −       (8) 

Eqns.6 and 8 can be combined to a matrix equation, 

              
2

2

x

x

 
 

 
 =  

1

1

   1         0
x

2
x       1

R

 
  
   −  

 

                 (9a) 

Then the effect of reflection by a concave mirror can be characterized by a 22 matrix called 

the reflection matrix and is given by, 

 

        R =  

   1         0

2
       1

R

 
 
 −
 

              (9b) 

It may be noted that, 

   det R = 

   1         0

2
       1

R
−

 =  1              (9c) 

System Matrix: Consider an optical system consisting of a number of reflecting and refracting 

surfaces. The ray entering into the system is specified by 
1

1

x

x

 
 

 
. When it leaves the system it 

can be specified by 
2

2

x

x

 
 

 
. Then, in general, one can write, 

    
2

2

x

x

 
 

 
 =  

1

1

xA      B

C      D x

  
     

  =    1

1

x
S

x

 
 

 
      (10) 

where the matrix,   

        S =  
A      B

C      D

 
 
 

          (11) 

is called the system matrix and is determined solely by the optical system. When the ray passes 

through an optical system we need only translation and refraction operations. (Reflection can 

be treated as a special case of refraction by choosing n2 = −n1). Hence, in general, the system 

matrix in the case of resonators using spherical mirrors is the product of reflection and 
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translation matrices. Since the determinant of product matrices is the product of the determinants 

of the matrices, we obtain, 
 
   det S =  AD − BC =  1        (13) 

Since the element ‘d’ of translation matrix has dimensions of length and the element −2/R of 

the reflection matrix has dimensions of inverse length, the elements A and D are dimensionless 

and the product BC also is dimensionless.  

To find the system matrix for a system of two facing concave mirrors: Consider a system of 

two concave mirrors M1 and M2 of radii of curvatures R1 and R2 respectively as shown in fig.b. 

Let d be the distance between them. The plane EF is at the 

midway between the two mirrors. Let a paraxial ray of light 

with coordinates 
0

0

x

x

 
 

 
 starts from the plane EF and moves 

towards M2. It reaches the mirror M2 and gets reflected at M2. 

Then this ray travels towards M1 and after undergoing a 

reflection at M1 reaches again at the plane EF. Now the ray 

undergoes a to and fro motion or it completes a cycle of 

oscillation. The coordinates 
1

1

x

x

 
 

 
 of the final ray is obtained 

by a transformation with the system matrix.  Now we take the 

radius of curvature of a concave mirror as positive and that 

of a convex mirror as negative and the distances for real 

objects and images as positive and that for imaginary as 

negative.  

  
1

1

x

x

 
 

 
 =    

0

0

xA      B

C      D x

  
     

  =  
0

0

1 2

   1         0  1            0d d
x1     d1      1      

2 22 2
     1       10     1 x

0      1 0       1R R

      
        
        − −       

      

 

    = 
0

0

1
2 2

d
   1         0  1                 d

x1      d1      2
22

2 d     1 0      1 x
       10      1 R

R R

 
               −       − −    

 

 

    =  

2

02 2

0

1

2 2

2d 3d d
 1              1         0d

xR 2 R1      
22

     1 x2 d
0      1                  1R

R R

 
− −    

     
    −      − −    

 

 

    =  

2

02 2

2
0

1 2 1 2 2 1 1 2

2d 3d d
 1                                     d

xR 2 R1     
2

x2 2 4d d 3d 2d
0     1       1

R R R R R R R R

 
− −  

   
     

− − + − − +   
 

 

    = 

2 2 2 3

01 2 1 2 1 2 1 2

2
0

1 2 1 2 1 2 1 2

d 3d 2d 3d 3d d
 1           2d

xR R R R 2R 2R R R

x2 2 4d 3d d 2d
              1

R R R R R R R R

 
− − + − − + 

  
    

− − + − − +  
 
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Thus, the system matrix for one complete traversal is given by,    

         
A      B

C      D

 
 
 

 =  

2 2 2 3

1 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2

d 3d 2d 3d 3d d
 1           2d

R R R R 2R 2R R R

2 2 4d 3d d 2d
              1

R R R R R R R R

 
− − + − − + 

 
 

− − + − − +  
 

 (14) 

The ray after two complete traversals is given by, 

  
2

2

x

x

 
 

 
 =    

1

1

xA      B

C      D x

  
     

   = 

2

0

0

xA      B

C      D x

  
      

 

The final ray after n complete traversals becomes, 

  
n

n

x

x

 
 

 
 =   

n

0

0

xA      B

C      D x

  
      

       (15) 

For a stable resonator 
n

n

x

x

 
 

 
 should not diverge after n complete traversals. In order to obtain 

the stability criterion we have to look at the nth power of the system matrix. This can easily be 

done by diagonalizing the system matrix.  

A matrix U is said to diagonalize a matrix S if       U−1SU =  
1

2

λ      0

0      λ

 
 
 

  (16) 

where, U−1 is the inverse of U defined by,    U−1U =  UU−1  =  I      (17) 

The identity matrix is defined as,   I = 
1       0

0       1

 
 
 

. 

1 and 2 in eqn.16 are called the eigen values of the matrix S. Pre multiplying by U and post 

multiplying by U−1 eqn.16 becomes, 

   UU−1SUU−1 =  U
1

2

λ      0

0      λ

 
 
 

U−1  

Using eqn.17 we get, 

          S =  U
1

2

λ      0

0      λ

 
 
 

U−1       (18) 

Then,        Sn = U
1

2

λ      0

0      λ

 
 
 

U−1 U
1

2

λ      0

0      λ

 
 
 

U−1 ............. n times 

     =  U

n

1

2

λ      0

0      λ

 
 
 

U−1 =  U

n

1

n

2

λ      0

0      λ

 
  
 

 U−1   (19) 

Now to find out 1 and 2 we write the eigen value equation, 

          
A      B ξ

C      D η

  
  
  

 = 
ξ

λ
η

 
 
 

 

i.e.   
A λ          B ξ

C             D λ η

−  
  

−  
 =  0        (20) 

In order to exist the nontrivial solution for eqn.20 the determinant of the square matrix must 

vanish, then 
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A λ          B

C             D λ

−

−
 =  0       (21) 

i.e.            ( )( )A λ D λ BC− − −  =  0 

i.e.    ( )2λ A D λ AD BC− + + −  =  0 

Using eqn.13, 

                ( )2λ A D λ 1− + +  =  0       (22) 

The two solutions of the quadratic eqn.22 are given by, 

       1λ  =  
( ) ( )

2
A D A D 4

2

+ + + −
 = 

2
A D A D

1
2 2

+ +   
+ −   

   
           (23a) 

 And      2λ  =  
( ) ( )

2
A D A D 4

2

+ − + −
 = 

2
A D A D

1
2 2

+ +   
− −   

   
           (23b) 

Eqns.23a and 23b are the eigen values of the system matrix S. Now we write, 

   cos =  
A D

2

+
           (24) 

Then,       1λ  =  cosθ isinθ+   =  ei        (25) 

      2λ  =  cosθ isinθ−   =  e−i        (26) 

From eqns.19, 25 and 26 it follows that Sn should not diverge as n increases if  must be real 

and hence cos must be such that, 

   1 cosθ <1−     i.e.   
A D

1  <1
2

+
−          (27) 

Eqn.27 represents the stability condition of the resonator system. 

By eqn.14,    
A D

2

+
 =  

2 2

1 2 1 2 1 2 1 2

d 3d 2d 3d d 2d
1 1

R R R R R R R R

2

− − + + − − +

 

   =  
2

1 2 1 2

2d 2d 2d
1

R R R R
− − +   

Then the condition for stability (eqn.27) becomes, 
2

1 2 1 2

2d 2d 2d
1 1 1

R R R R
−  − − +   

By adding 1 throughout,  
2

1 2 1 2

2d 2d 2d
0 2 2

R R R R
 − − +   

By dividing throughout by 2, the condition for stability becomes,  

     
1 2

d d
0 1 1 1

R R

  
 − −   

  
            (28a) 

Or,     1 20 g g 1                 (28b) 

where,   1

1

d
g 1

R

 
= − 

 
 and 2

2

d
g 1

R

 
= − 

 
      (29) 

Thus, for a resonator to be stable R1, R2 and d must satisfy eqn.28.   
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 This condition can be expressed in the form of a stability diagram as shown in fig.b. The 

clear regions are regions where eqn.28 is not satisfied, i.e. g1g2 > 1. In this region the values of 

R1, R2 and d are such that the condition given by eqn.28 is not satisfied and the cavity is unstable. 

For the shaded regions the condition for stability is satisfied and the cavity is stable. Along the 

curved line g1g2 = 1. Three particular 

points (white spots) in the fig.b are of 

special interest. They are the cases of 

(1) two parallel plane mirrors separated 

by a distance d. In this case, g1 = g2 = 1, 

(2) confocal mirrors with R1 = R2 = d, 

so that g1 = g2 = 0 and (3) symmetric 

concentric case with R1 = R2 = d/2 so 

that g1 = g2 = −1. All these three points 

are on the edge of the stability diagram 

and can become highly lossy. It is wise to choose the values of R1, R2 and d such that the 

parameters g1 and g2 lie in the stable zone of the stability diagram.    
 

1.13 Stable and unstable resonators 

  An open resonator with plane mirrors would have significant diffraction losses on 

account of the finite transverse size of the mirrors. These losses can be much reduced by 

replacing plane mirrors by spherical mirrors that provide focussing of light beam. 

  A spherical mirror resonator is formed by a pair of spherical mirrors (convex or concave) 

or a plane mirror and a concave mirror. Figure given in the next page shows the various spherical 

mirror resonators. 

(a) Using two plane parallel mirrors separated by a distance d. 

(b) Using two long radius concave mirrors, R1 = R2 >> d, facing each other separated by a 

distance d. 

(c) Symmetric resonator using two concave mirrors, R1 = R2 > d, facing each other with 

separation d. 

(d) Half symmetric resonator using a concave mirror with R1 > 2d and a plane mirror with 

a separation d. 

(e) The symmetric confocal resonator using a pair of identical concave mirrors each having 

a radius of curvature R and with the separation between the mirrors d = R so that the 

foci of the mirrors coincide at the centre of the resonator. 

(f) Half symmetric confocal resonator consists of a concave mirror with R1 = 2d and a plane 

mirror separated by a distance d.  

(g) A concave-convex resonator consists of a concave mirror with R1 > d and a convex 

mirror with R2 = −(R1 − d) with separation d. 

(h) near concentric spherical resonator is formed by two identical concave mirrors each with 

a radius of curvature equal to half the distance between them. That is, R1 = R2 > d/2. 
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d 

(b) Long radius mirrors; R1R2>>d 
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2
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(i) A hemispherical resonator consists of a concave mirror of R1 = d and a plane mirror with 

separation d.  
 

  In general, one can form a spherical mirror resonator with plane, concave or convex 

mirrors. Depending on the curvature of the mirrors and the separation between the mirrors, the 

resonator is stable or unstable. In the language of geometrical optics, we can define stable and 

unstable resonators as follows. 
 
Stable resonator: If a family of light rays may keep bouncing back and forth between the 

mirrors of the cavity indefinitely 

without ever escaping from the 

cavity, the resonator is called a 

stable resonator. Because of the 

focussing action of the mirrors 

the beam remains concentrated 

within the cavity and hence there 

is no loss of energy in the case of stable resonator. They satisfy the condition for stability 

discussed in sec.1.12.  
 
Unstable resonator: If the rays diverge away from the axis after every pass and thus escape 

from the resonator 

after a few reversals, 

the resonator is 

known as unstable 

resonator. Thus, for 

an unstable resonator 

there are no ray 

families that can 

bounce back and forth 

without escaping 

from the cavity. Such 

resonators do not 

satisfy the condition 

for stability. Unstable 

resonators provide 

useful laser output with reasonable beam quality. 

  The most common unstable resonator cavity has two mirrors of different diameters 

(different areas) and different radii of curvature. The large diameter rear mirror has a radius of 

curvature Rr and small diameter mirror at the output end of the cavity has a radius of curvature 

Ro as shown in the figure. Then, 

   Unstable resonator magnification ratio,  Mus = r

o

R

R
      

Such unstable resonator cavities have transverse mode envelops. The losses in such resonators 

are dominated by diffraction.  

  The constraints associated with the unstable resonators are that 1 2g g 1 , or, 1 2g g 0 , 

where, 1

1 o

d d
g 1 1

R R
= − = −  and 2

2 r

d d
g 1 1

R R
= − = − . The unstable resonators can be classified 

as being either positive or negative branch according to whether, 

           1 2g g 1  (positive branch) 

Or,    1 2g g 0  (negative branch)  

Gain medium 
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Output 

Output 

Output 
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Unstable resonator 

Rr 

R
o
 



M C T Basic Laser Theory And Optical Resonators 81 

 

Figures a and b show the two types 

of unstable resonators that produce 

a collimated output beam. These 

are referred to as positive branch 

and negative branch confocal 

unstable resonators. The positive 

branch confocal unstable resonator 

has a constraint that r oR R 2d− = , 

whereas, for negative branch 

requires that r oR R 2d+ = . Q-

switched lasers and mode locked 

lasers are examples of unstable 

resonators. 

d 

Fig.a 

Fig.b 
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