
Chapter-5 

Optical Fibers 

5.1 Introduction 

Communication may be broadly defined as the transformation of information from one 

point to another. From the very beginning of the human kind people used many communication 

methods. In the prehistoric era fires, beacons, smoke signals, communication drums, horns, etc. 

were used for communication purposes. In B.C. mailing, pigeon post, etc. were used. Acoustic 

mechanical (sound through stretched string) telephone 1672, optical telegraphs 1790, electrical 

telegraphy by Samuel B Morse 1838, cable telegraph 1858, signal lamps 1867, telephones 1876 

by Alexander graham bell, acoustic phonograph by Thomas Alva Edison 1877, telephony via 

light-beam photophones by Graham Bell 1880, wireless telegraphy Nikolai Tesla (Marcony) 

1893, radio by Marconi 1896, transcontinental telephone calling by Graham Bell 1915, 

television 1927, radio-telephone service 1927, videophone 1930, commercial telephone service 

1934 videophone network 1936, Transatlantic telephone cable 1956, satellite communication 

1962 were the major events in the communication history before the introduction of fiber optic 

telecommunications in 1964 by Charles Kao and George Hockham. The invention of lasers in 

early 1960s started a leap in the history of optical communication.    

For large distance communication a system, known as communication system, was 

required.   In communication systems, the information is carried through copper wires, co-axial 

cables, wave guides etc. The main drawback of them is the limited band width. That is the 

information carrying capacity is limited. Because of the energy losses, a large number of 

repeaters are required. For copper cables, the repeater spacing is only a few kilometres. 
 

5.2 What are optical fibers? 

Since the optical frequencies (1015Hz) are extremely large compared with radio waves 

(106Hz) and microwaves (1010Hz), light beam acting as a carrier wave is capable of carrying 

far more information than radio waves and microwaves. The optical fiber is a guiding medium, 

usually made of glass or plastic, through which the light waves carrying information can be 

transmitted efficiently. The light used is the coherent light (laser) and not the ordinary composite 

light. Modern optical fiber systems are able to send 140 Mbit/s information through a 220km 

link of one optical fiber. This is equivalent to about 450000 voice channel-km. The invention of 

solid state lasers and fabrication of low loss glass fibers made the optical communication easier 

and cheaper. The optical fibers are mainly used for long distance communication systems, 

LANS (Local area network systems) – a network that wires up telephones, television, computers 

or robots. In addition to this, they are used as sensors to detect electrical, mechanical and thermal 

energies, copying machines and in medical diagnostics (endoscopy). 

   In general, an optical fiber is a very thin and flexible medium having a cylindrical shape 

consisting of three sections. They are, 

1.  The core:  The innermost light guiding cylindrical region having a diameter 50m.  

2.  The cladding: The middle region of thickness 37.5 m surrounded by the core. It is 

optically rarer than the core.  

3. The sheath: The outermost region having a thickness 12.5m which protects the core and 

the cladding. It also gives the mechanical strength to the fiber. 
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In practical fibers, the cladding is 

usually coated with a tough resin buffer layer, 

which may be further surrounded by a jacket 

layer, usually plastic. These layers add strength 

to the fiber but do not contribute to its optical 

wave guide properties.  

The glass fibers are drawn from a 

furnace containing molten silica (SiO2) with 

small amounts of additives such as germanium 

dioxide (GeO2) to permit control of refractive 

index. Most of the cable bulk is made up of 

strengthening and buffering materials for 

mechanical, moisture and chemical protection.  

Usually a cable contains a large number 

of fibers in a single jacket. The main function 

of the optical fiber is to accept maximum light 

carrying information and transmit it with minimum loss. The light gathering power of a fiber 

depends on the acceptance angle.  
 
Optical fibers in communication system: An optical fiber communication system has the same 

basic principle of any type of communication system. A general communication system consists 

of an information source 

from which the signals are 

carried over through a 

transmission medium to 

the destination. In an 

optical fiber 

communication system the 

optical fiber cable is used 

as the transmission medium.  

The figure above represents the block diagram of a typical optical fiber communication 

system. The information source provides electrical signals to a transmitter comprising an 

electrical stage which drives an optical source to give modulation of the light wave carrier. The 

optical source which provides the electrical-optical conversion may be either a semiconductor 

laser or light emitting diode (LED). The transmission medium consists of an optical fiber cable. 

The receiver consists of an optical detector which drives a further electrical stage. The optical 

detector provides the demodulation of the optical carrier. Photodiodes, in some instances 

phototransistors and photoconductors are utilized for the detection of the optical signal and the 

optical-electrical conversion. Finally, the signal from the electrical receiver is sent to the 

destination.  
 

5.3 Importance of optical fibers 

The importance of the optical fiber communication is that it has very clear cut 

advantages over wire or radio system. So telecommunication industries have used the fiber optic 

systems significantly. The optical fiber communication system is widely used in the public 

network applications like (1) trunk network, (2) junction network, (3) local access network, (4) 

submerged systems and (5) synchronous networks. The following are its main advantages. 

Advantages of fiber optic communication 

1. Very large information transmission capacity. Its data rate is much higher.  

2. Very large repeater spacing because the attenuation is markedly lower than that of a 

twisted pair or coaxial cables since low loss material medium is used in optical fibers. 
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http://en.wikipedia.org/wiki/Buffer_%28optical_fiber%29


 

M C T Optical Fibers 3 

 

3. Since the optical fibers are composed of dielectric materials, they are totally isolated 

from extraneous interfering electromagnetic signals. 

4. There is virtually no signal leakage from optical fiber. Hence the cross-talks between 

neighboring fibers are almost absent. Thus the transmission is more secure and private. 

Since the optical fibers are resistant to intrusion, they are best suited in defence 

communication networks. 

5. Due to non-inductive non-conductive nature of the fiber they do not affect other circuits 

and systems by radiation and interference.  

6. Since the optical fibers are immune to electromagnetic signals and also do not pick up 

line currents, they can be safely used in high voltage environments.  

7. They are much smaller in size than other signal transmission devices. 

8. Low cost of production. The basic raw material used in the fabrication of optical fiber is 

silica, which is abundantly available in nature. 

9. Small size and lighter weight. The optical fibers are considerably thinner than coaxial or 

bundled twisted pair cables. 

10. The system is highly reliable and maintenance is very easy. It can withstand 

environmental conditions, such as pollution, radiation, corrosion due to salt. Moreover, 

it is only nominally affected by the nuclear radiation. Its life is longer than that of copper 

wire.  

11. No physical electrical connection is required between the sender and the receiver. 

12. Bandwidth of the optical fiber is higher than that of an equivalent wire transmission line. 

13. As the fibers are very good dielectrics no isolation coating is required. 
 
5.4 Structure of the optical fiber and propagation of light waves in an optical 

fiber 

    

The optical fiber 

consists of a very thin 

cylindrical central core made 

of glass or plastic. The core is 

cladded by a material of 

slightly lower refractive index. 

The basic principle of 

propagation of modulated 

optical signals through the 

fiber is the total internal 

reflection. The conditions for 

the light ray to undergo total 

internal reflection and 

propagates through the fiber 

are that it must travel from a 

denser to a rarer medium, such 

that the angle of incidence is 

greater than the critical angle given by 
1 2

c

1

n
θ  = Sin

n

−  
 
 

, where n1 and n2 are the refractive 

indices of core and cladding respectively . [When refraction takes place at the interface of two 

media, we have the Snell’s law of refraction as, n1 sin1 = n2 sin2. For total internal reflection 

1 = c and 2 = 90.]  Light rays incident on the core-cladding interface at an angle greater than 

the critical angle are trapped inside the core of the optical fiber. Rays making larger angles with 
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the axis undergo greater number of repeated reflections and hence travel greater distances and 

take more time to traverse the length of the fiber.  

If the light that enters in the fiber at one end in proper conditions reach at the other end 

without considerable loss, the fiber is called a light-guide or sometimes light-pipe.   
 

5.5 Acceptance angle and acceptance cone of a fiber 
 
   Consider an optical fiber with a core of material with refractive index n1 (1.48) and a cladding 

of refractive index n2 (1.46). Let n0 be the refractive index of the medium from which the light 

rays enter into the fiber. For most practical purposes n0 is unity. The incident ray makes an angle 

‘i’ with the axis of the fiber. Let  be the angle between the refracted ray and the axis. By Snell’s 

law we have,  
 

   
Sin i

Sin 
 =  1

0

n

n
            (1) 

 
As ‘i’ increases,  increases and  decreases. If  < c no total internal reflection takes place and 

the ray escapes through the cladding. The largest value of ‘i’ corresponds to  = c. From the 

figure,  = 90 − , then, 
 
   Sin   =   Sin(90−) =  cos 
 
Then, eqn.1 becomes, 

   Sin i =   1

0

n

n
cos 

And,         Sin (imax) =   (Sin i)max =  1

0

n

n
cosc    

For critical angle c, the Snell’s law becomes, 
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When the incident ray enters from air, n0 = 1 and let imax= 0. Then, 

  Sin0 =   
2 2

1 2n n−  

Or,       0  =   
1 2 2

1 2Sin n n− −           (2) 

Eqn.2 is valid only when 0 < ( )2 2

1 2n n−  < 1. For all values of 2 2

1 2n n− >1,  0 = 90. The angle 

imax = 0 is called the acceptance angle of the fiber, which may be defined as the maximum 

value of the angle of incidence of the incident ray for which the ray can be guided through the 

fiber. The acceptance angle is a measure of the light gathering power of a fiber. Indeed, the light 

rays contained within a cone having semi-vertex angle 0 are accepted and transmitted through 

the fiber. This cone is called the acceptance cone of the fiber.  
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5.6 Numerical aperture   
  
   The sine of the acceptance angle is called the numerical aperture. It is sometimes called the 

figure of merit for optical fiber.  

   i.e. Numerical aperture, N. A =  Sin0   = 2 2

1 2n n−  =  ( )( )1 2 1 2n +n n n−  
 
But n1 is not far different from n2. Thus, n1+ n2  2n1 
 

Then,    N. A    ( )1 1 22n n n−     2 1 2
1

1

n n
2n

n

 −
 
 

   1n 2    

where,    =  1 2

1

n n

n

−
 is the fractional difference of the refractive indices of the core and the 

cladding. It is clear that N.A depends only on the refractive indices n1 and n2 of the core and the 

cladding respectively. Larger the value of N A, the more light will be accepted from the source 

by the fiber.  

It has been observed that the numerical apertures for the fibers used in short distance 

communication are in the range of 0.4 to 0.5, whereas for long distance communication they are 

in the range 0.1 to 0.3. It also has been observed that smaller the numerical aperture harder to 

launch power into the fiber.  
 

5.7 Dispersion* 

In a digital communication system, the information to be sent is first coded in the form 

of pulses of light from the transmitter. These pulses are then decoded by the receivers. A pulse 

of light sent into a fiber broadens in time as it propagates through the fiber. This phenomenon 

is known as pulse dispersion (modal dispersion), which occurs because of different times taken 

by the waves propagating in different directions through the fiber. The dispersion may, 

therefore, be defined as the output light pulse width produced by an input pulse of zero line 

width.  

Let W1 be the input pulse width and W2 be the output pulse width with W2 > W1. Then 

the fiber dispersion dT is defined as, 
 

       dT =   
2 2

2 1W W−  

Dispersion is measured in units of time either in nanoseconds or picoseconds. Since the total 

dispersion produced by a fiber depends directly on its length, the total dispersion dT is given 

by, 

       dT =   L(dispersion/km) 
 
where, L is the length of the fiber expressed in kilometre (km). 

The dispersion is divided into (1) intermodal dispersion and (2) intramodal dispersion.  

Intermodal dispersion is due to the difference in the propagation times for the different 

propagation modes. It can be shown that  
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      dT =  
( )

2

1

L N.A

2n c
 =  1Ln

c


 

where, N.A is the numerical aperture. 
 
Intramodal dispersion, also called the chromatic dispersion, is due to the fact that the light 

signal propagating through the fiber consists of not a single frequency but a group of 

frequencies. It is related to line width of the light pulse. It is expressed in terms of picoseconds 

per kilometre per nanometre of line width. 

The smaller the pulse dispersion, the greater will be the information carrying capacity 

of the fiber. 
 

5.8 Classification of optical fibers 
 

Optical fibers are classified into three groups according to the way light propagates through 

the fiber core. They are, 

1. Stepped index monomode fiber 

2. Stepped index multi-mode fiber, and 

3. Graded index multi-mode fiber 
 

Fibers which support many propagation paths or transverse modes are called multi-mode 

fibers (MMF), while those which can only support a single mode are called single-mode fibers 

(SMF). Multi-mode fibers generally have a larger core diameter, and are used for short-distance 

communication links and for applications where high power must be transmitted. Single-mode 

fibers are used for most communication links longer than 550 meters (1,800 ft). 

Stepped index fibers 

As we have already 

seen, the simplest type of an 

optical fiber consists of a core 

of uniform refractive index n1 

and a cladding of uniform 

refractive index n2. This type 

of fibers is referred to as step 

index fibers due to the step 

discontinuity of the refractive 

index profile at the core-cladding interface.  

Graded index fibers 

The information 

carrying capacity of the fiber 

can be improved by reducing 

the pulse dispersion. In an 

optical fiber this is achieved by 

using graded index fibers.  

In a graded index fiber 

the refractive index of the core 

is not a constant but it decreases 

continuously in a nearly 

parabolic manner from maximum value at the centre of the core (axis of the fiber) to a constant 

value at the core-cladding interface. Since the refractive index of the core decreases as one move 

away from the axis, the rays entering into the fiber are continuously bent towards the axis of the 

fiber and the ray paths inside the fiber are sinusoidal. From the figure it is clear that light waves 

with large angles of incidence travel more distance than those with smaller angles. But the 
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decrease in refractive index allows higher velocity of wave propagation. Hence all the waves 

travel without pulse dispersion and reach a point at the same time.  
 
Modes of propagation - Single mode and multimode fibers 

In the case of step index fibers we can consider the wave propagation as many rays 

bouncing back and forth at the core-cladding interface, since the diameter of the fiber is small 

or if the difference of the refractive indices of the core and cladding is small. Then one has to 

apply the wave theory rather than the geometrical optics. In an optical fiber there are axial rays 

and zigzag rays (rays other than the axial rays). Along certain paths, the zigzag rays may 

interfere constructively and hence the intensity will be increased. But certain others may 

interfere destructively and intensity may be reduced to zero. Only those paths (or directions) 

along which constructive interference takes place are useful for optical fiber transmission. Those 

particular paths or particular directions  are called modes. The possible number of modes 

depends on the ratio d/ between the diameter of the core and the wavelength of the light 

transmitted.  

The number of modes supported by a fiber is determined by a dimensionless parameter 

called cut-off parameter and is denoted by V. It is also known as normalized frequency cut-off 

or sometimes called the V number or value of the fiber. It can be shown that 
 

         V =  ( )
2π

a N A
λ

 = 
1

2π
an 2

λ
          (1) 

where, ‘a’ is the core radius, ‘n1’ is the core refractive index,  is the relative refractive index 

difference, N A is the numerical aperture and  is the operating wavelength.  
 

The total number of guided modes also known as mode volume denoted by Ms is related to the 

normalized frequency V.  

For a step index fiber      Ms        
2V

2
  =  ( )

2 2
2

2

2π a
N A

λ
    (3) 

For a graded index fiber     Ms   
2p V

p+2 2

 
 
 

 =  ( )
2 2

2

2

p 2π a
N A

p+2 λ

 
 
 

  (4) 

where, p is the index profile parameter. p =  for step index profile, p = 1 for triangular profile 

and p = 2 for parabolic profile. The value of mode volume is doubled to account for the possible 

polarizations.     

In a single mode fiber there is only one guided mode (only one path or direction) 

possible. Since there is only one ray path possible in a single mode fiber there will be no pulse 

dispersion. 

Theory of wave guides shows that for single mode propagation in step index fibers the 

V value ranges from 0 to 2.405, so that the cut off value Vc = 2.405.  From the rearrangement 

of eqn.1 gives the theoretical cut off wavelength for single mode operation, 
 

       c =  ( )
c

2π
a N A

V
 = 1

c

2π
an 2

V
  

For graded index fibers the cut of value of the normalized frequency Vc to support single mode 

propagation is given by, 
 

      Vc =  
2

2.405 1+
p

 
 
 

  

For parabolic profile  Vc = 2.405 2  . In multimode fibers, a number of modes are possible.  
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Comparison between single mode and multimode fibers 

 Single mode fiber (SMF) Multimode fiber (MMF) 

1 Only a single mode propagates in SMF Many modes propagate MMF 

2 Diameter is much less than MMF Diameter is much larger than SMF 

3 Largest transmission bandwidth Transmission bandwidth is lower 

4 Exhibits lowest loss Comparatively more loss 

5 SMFs have superior transmission quality 

due to the absence of modal noise 

Lesser transmission quality than SMF 

6 Offers a substantial upgrade capability for 

future wide bandwidth services 

MMF is not much future proof. 

 

Comparison between step index and graded index fibers 

 Step index fiber (SIF) Graded index fiber (GIF) 

1 Bandwidth is 50 MHz Bandwidth is 200, 600, MHz etc. up to 

infinity theoretically 

2 Mode dispersion is higher Mode dispersion is lower 

3 Numerical aperture is 0.2 to 0.5  (for 

12db/km loss) 

Numerical aperture is 0.16 to 0.2  (for 5 to 

10db/km loss) 

4 Attenuation in SIF is higher than GIF Attenuation in GIF smaller than SIF 

 

Plastic fibers 
 

Instead of glass we can use plastic to make optical fibers. There are two types, all plastic and 

plastic-clad fibers. For former type both core and cladding are plastic, while for latter only the 

cladding is plastic.  

Because of the following disadvantages it is rarely used in commercial communication 

systems 

1. It is more sensitive to abrasive damages. 

2. It has poorer transmission characteristics. 

3. Its loss is much higher. 

4. Its bandwidth is lower. 
 
All plastic fiber is stronger mechanically and it does not break easily. Thus it is easier to handle 

and is often used for short distance low bandwidth applications such as closed circuit television 

and demonstration systems etc.  
 

5.9 Stepped index monomode fibers 

The transit-time dispersion problem can be solved by making the core very thin. The 

diameter of the core is of the same order of wavelength of light wave to be propagated. This 

type of fiber is referred to as 

stepped index monomode fiber. 

The chief characteristics of it 

are, 

1. Very small core diameter 

2. Low numerical aperture 

3. Low attenuation 

4. Very high bandwidth 

 In order to get a single 

mode (with all other modes cut 
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off) the diameter ‘d’ of the core must satisfy the relation,         

             d <  
0.766λ

NA
 

If the operating wavelength is 1.3 m, the core diameters are in the range of 6 to 10 m. 

Figure 3.9 gives the optical power 

distribution across the cone of the step index single 

mode fiber. Another important parameter associated 

with the single mode fiber is the ‘mode field 

diameter’ (2Fd) as shown in the figure. This 

parameter indicates the boundary where the electric 

field of the optical wave falls to 1/e (=36.8%) of the 

field at the core centre (along the axis). It gives the 

light guiding property of the fiber. From the figure it 

is clear that a significant amount of power resides 

outside the core.  

The distribution of the optical electric field 

with the radial position across the core 

(perpendicular to the core axis) can be described 

approximately by a Gaussian expression near the cut 

off wavelength as, 

           ( )E x  = 

2

d

x

F

0E e

 
− 

   

where, Fd is half of the mode field diameter. Greater 

the ratio dF

a
 (mode field diameter greater than core 

radius), a larger amount of light propagates through the cladding. In the case of stepped index 

monomode fibers the cladding is very thick so that the field outside the cladding is very 

insignificant. The field, if any, outside the cladding will be radiated out. It can be shown that 

the theoretical value of mode field diameter is given by, 

 

       2Fd =  

2 6

c c

λ λ
2a 0.65 0.434 0.0149 ..........

λ λ

    
 + + +   
     

  

where,  is the operating wavelength, c the cut off wavelength and 2a is the core diameter. 

From the above equation it is clear that for a given c, the value of Fd increases with the operating 

wavelength.  
 

5.10 Disadvantage of monomode fiber 

The core of the monomode fiber is very thin. So the main disadvantage of the monomode 

fibers is the mechanical difficulties in the manufacture, handling and splicing the fibers. Hence 

this type of fibers is very expensive. Monomode fiber is mainly used as undersea cables.  
 

5.11 Graded index multimode fibers 

Graded index multimode fibers have intermediate bandwidth and capacity. In this fiber 

the transit-time dispersion is avoided by a less expensive method. The refractive index of the 

core is gradually decreasing from the centre to the outside. In fig.3.7 the refractive index fiber 

together with its refractive index profile is given. From the figure it is clear that waves with 

larger angles of incidence should travel larger distances within the fiber. As the refractive index 
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deceases gradually (see the parabolic variation of the profile) the optical path lengths of all the 

waves will be the same. Since the decrease in refractive index allows an increase in velocity the 

transit time of all the waves will be the same. This type of light wave propagation is referred to 

as graded index multimode propagation. The variation in refractive index of the core is given 

by, 

   (x) =   
( )

( ) ( ) ( )

1
p 2

1

1
2

1 1 2

x
μ 1 2                    ; for x a   core

a

μ 1 2 μ 1 μ    ; for x a   cladding

    −     
    


 −  −  = 

     

where, 1 is the refractive index at the centre 

of the core, x is the distance from the centre of 

the core. p is the index profile,  is the 

fractional difference between the refractive 

indices between the core and the cladding and 

a is the radius of the core. The refractive index 

is maximum at the centre where the velocity 

of light is minimum and refractive index is 

minimum at the core boundary where the 

velocity of light is maximum. For an 

approximately parabolic refractive index 

profile p = 2 and the time of transit for various 

modes are equal. Mode volume is given by 

eqn.4 above.  
 

5.12 Graded index monomode fibers  

There are several types of single mode graded-index fibers. These fibers are not standard 

fibers and are typically only used in specialty applications. 
 

5.13 Specification of certain optical fibers* 

(a) Multimode step index fibers 
 
 Core diameter   :  50 to 400m 

  Cladding diameter   :  125 to 500m 

 Buffer jacket diameter  :  250 to 1000m 

 Numerical aperture  :  0.16 to 0.50 

Attenuation: 2.6 to 50dB per kilometer at a wavelength of 0.85m, limited by absorption or 

scattering. 

 Fabrication: Either multicomponent glass compounds (glass-clad glass) or doped silica 

(silica-clad silica). 

 Bandwidth    :  6 to 50MHz km 

  Applications:  These fibers are best suited for short-haul, limited bandwidth and relatively 

low cost applications. 
 
(b) Multimode graded index fibers 
 

 Core diameter   :  30 to 100m 

  Cladding diameter   :  100 to 150m 

 Buffer jacket diameter  :  250 to 1000m 

x −a a Core  

axis 

(x) 

2 2 

1 

P=1 

P=2 

P=10 

P= 



 

M C T Optical Fibers 11 

 

 Numerical aperture  :  0.20 to 0.30 

Attenuation: 2 to 10dB per kilometer at a wavelength of 0.85m, generally limited by 

scattering. 

 Fabrication: Either multi-component glass compounds (glass-clad glass) or doped silica 

(silica-clad silica) with higher purity. 

 Bandwidth    :  300MHz to 3GHz km 

  Applications:  These fibers are best suited for medium-haul, medium to high bandwidth 

applications using incoherent (LEDs) and coherent (injection lasers) multimode lasers. 
 
(c) Single-mode fibers: With step index or graded index profile. 
 
 Core diameter   :  5 to 10m, around 8.5m 

  Cladding diameter   :  Generally 125m 

 Buffer jacket diameter  :  250 to 1000m 

 Numerical aperture  :  0.08 to 0.15, around 0.10 

Attenuation: 2 to 5dB per kilometer at a wavelength of 0.85m, limited by scattering. 

 Fabrication: Doped silica (silica-clad silica). 

 Bandwidth    : Greater than 500MHz km 

  Applications:  These fibers are best suited for high bandwidth very long-haul applications 

using single mode injection laser sources. 
 
(d) Plastic-clad fibers: With step index or graded index profile. 
 
 Core diameter : Step index :  100 to 500m 

      Graded index :  50 to 100m  

  Cladding diameter : Step index :  300 to 800m 

     Graded index :  125 to 150m  
 
 Buffer jacket diameter:Step index:  500 to 1000m 

     Graded index :  250 to 1000m  
 
 Numerical aperture: Step index :  0.20 to 0.50 

     Graded index :  0.20 to 0.30  
 

Attenuation : Step index :  5 to 50dB per kilometer. 

    Graded index :  4 to 15 dB per kilometer. 

 Fabrication: Plastic clad and glass core which is silica (PCS). 

 Applications: Improved performance in certain environments and slightly cheaper than glass 

fibers.  
 
(e) All-plastic fibers : (exclusively multimode step index) 
 
 Core diameter   :  200 to 600m 

  Cladding diameter   :  450 to 1000m 

 Buffer jacket diameter  :  No need of buffer jacket 

 Numerical aperture  :  0.50 to 0.60 

Attenuation: 50 to 1000dB per kilometer at a wavelength of 0.65m.  

 Bandwidth : Usually not specified as transmission is generally limited to tens of meters.   

  Applications:  These fibers can only be used for very short-haul low cost links (i.e. in house). 

However, fiber coupling and termination are relatively easy and do not require sophisticated 

techniques. 
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5.14 Optical fibers as cylindrical waveguides 

In an isotropic, linear, non-conducting, nonmagnetic and inhomogeneous (varying 

refractive index) medium with no free charges,  = 0, J = 0, r = 1, D = E = r0E = K0E = 

n20E, where K = n2 is the dielectric constant and n is the refractive index of the medium. The 

Maxwell’s equation become, 
 
   D∇.  =    =  0        (1) 

   B∇.  =  0          (2) 

   E∇  =
t


−



B
 = 

0μ
t


−



H
       (3) 

   H∇  = 
t


+



D
J   =  2

0ε n
t





E
       (4) 

Eqn.1 can be written as, 

   D∇.  =  0         

 i.e.     ( )2

0ε n E∇.  =  0 

In an inhomogeneous medium there is a spatial variation of refractive index (as in the case of a 

graded index optical fiber). Thus, the above equation becomes, 
 

         ( ) 2 2

0ε n n+E E∇ . ∇.  =  0   

i.e.     E∇.  =  ( )2

2

1
n

n
− E∇ .       (5) 

Taking curl of eqn.3 we obtain, 

      ( ) E∇ ∇  =  ( )0μ
t


− 


H∇  = 2

0 0μ ε n
t t

  
−  

  

E
 = 

2
2

0 0 2
μ ε n

t


−



E
 

i.e.    ( ) ( )−E E∇∇. ∇.∇  =  
2

2

0 0 2
μ ε n

t


−



E
   

Using eqn.5 we get, 

         2 2

2

1
n

n

 
− − 

 
E E∇ ∇ . ∇  =  

2
2

0 0 2
μ ε n

t


−



E
   

i.e.   
2

2 2 2

0 02 2

1
n μ ε n

n t

 
+ − 

 

E
E E∇ ∇ ∇ .  =  0      (6) 

Taking curl of eqn.4 we get, 

     ( )  H∇ ∇  =  2

0ε n
t

 
 

 

E
∇   

i.e.    ( ) ( )−H H∇∇. ∇.∇  =  ( ) 2

0ε n
t





E∇   

Using eqn.2,             
2− H∇  =  2 2

0ε n n
t


 + 


E E∇ ∇  =  ( )2 2

0ε n n
t t

  
 +  

  

E
E∇ ∇  

Using eqn.4 and 3 in RHS, we get, 

    
2− H∇  =  

2
2 2

0 02 2

0

1
ε n μ n

ε n t

    
  −  

   

H
H∇ ∇  

i.e.          ( )
2

2 2 2

0 02 2

1
n μ ε n

n t


+   −



H
H H∇ ∇ ∇  =  0     (7) 
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Now for an infinitely extended homogeneous medium n is constant. Then eqnns.6 and7 reduce 

to, 

  
2
E∇  =  

2
2

0 0 2
μ ε n

t





E
  (8) 

  
2
H∇  =  

2
2

0 0 2
μ ε n

t





H
  (9) 

Since the optical fiber is cylindrical in 

shape we use the cylindrical coordinate system 

for the analysis of the propagation of the 

electromagnetic wave through the fiber. Using 

cylindrical coordinate system a point is 

specified by the radial distance ‘r’ from the 

axis, the azimuthal angle  and the Z-

coordinate z as shown in fig.3.10. If  is the z-

component of the propagation vector the 

electric and magnetic fields of the 

electromagnetic wave propagating in the z-

direction through the homogeneous medium 

are given by the solutions eqns.8 and 9, 
 

                  E = ( ) ( )i ωt βz

0 r, e
−

E          (10) 

 i.e.   
r z

ˆˆ ˆE E E+ +r z  = ( ) ( )i ωt βz

r0 z0
ˆˆ ˆE E E e

−

+ +r z                    (10a) 

 Thus, we get  

           ( )rE r, z, t  = ( ) ( )i ωt βz

r0E r, e
−

                 (10b) 

           ( )E r, z, t   = ( ) ( )i ωt βz

0E r, e
−

                  (10c) 

           ( )zE r, z, t  = ( ) ( )i ωt βz

z0E r, e
−

                 (10d) 

And, 

                  H = ( ) ( )i ωt βz

0 r, e
−

H         (11) 

 i.e.   
r z

ˆˆ ˆH H H+ +r z  = ( ) ( )i ωt βz

r0 z0
ˆˆ ˆH H H e

−

+ +r z                    (11a) 

 Thus, we get  

           ( )rH r, z, t  = ( ) ( )i ωt βz

r0H r, e
−

                 (11b) 

           ( )H r, z, t   = ( ) ( )i ωt βz

0H r, e
−

                  (11c) 

           ( )zH r, z, t  = ( ) ( )i ωt βz

z0H r, e
−

                 (11d) 

In cylindrical coordinate system the curl of a vector point function F can be written as, 

              F =   z r z
FF F F1 ˆˆ

r z z r

    
− + −   

     
r  ( ) rF1

ˆrF
r r



 
+ − 

  
z    (12) 

Using eqn.12, Maxwell’s third equation in homogeneous medium becomes, 

   E∇  =  
0μ

t


−



H
 

X 

Y 

Z 

(r, , z) 
r 

 

z 

r 
r sin 

r cos 

z 

Fig.3.10 

Core 

Cladding 
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i.e.  ( )z r z r
EE E E E1 1ˆˆ ˆrE

r z z r r r





       
− + − + −     

         
r z  = ( )0 r z

ˆˆ ˆμ H H H
t




− + +


r z  (13) 

Equating the coefficients of r̂  on both sides of eqn.13 we get 

    z
EE1

r z


−

 
 =  r

0

H
μ

t


−


 

Using eqn.10c and 11b, 

         zE1
iβrE

r


 
+ 

 
 =  0 riωμ H−           (13a) 

Equating the coefficients of ̂  on both sides of eqn.13 we get, 

     r zE E

z r

 
−

 
 =  

0

H
μ

t


−


 

Using eqns. 10b and 11c, we get, 

     z
r

E
iβE

r


+


 =  

0iωμ H
          (13b) 

Equating the coefficients of ẑ on both sides of eqn.13 we get. 

    ( ) rE1
rE

r r


 
− 

  
 =  z

0

H
μ

t


−


 

Using eqn.11d 

    ( ) rE1
rE

r r


 
− 

  
 =  0 ziωμ H−            (13c) 

Similarly from Maxwell’s fourth equation we get 

          zH1
iβrH

r


 
+ 

 
 =  2

0 riωε n E           (14a) 

    z
r

H
iβH

r


+


 =  

2

0iωε n E−           (14b) 

   ( ) rH1
rH

r r


 
− 

  
 =  2

0 ziωε n E            (14c) 

Knowing Ez and Hz one can solve the set of eqns.13 and 14 for other transverse components of 

E and H. From eqns.13a and 14b we get, 
 

            
0 rωμ H βE+  =  zEi

r




       (15) 

          
2

r 0βH ωε n E+  =  zH
i

r




       (16) 

Multiplying eqn.15 by 2

0ωε n  and eqn.16 by  and subtracting, 

      
2 2

0 0 r 0ωε n ωμ H ωε n βE+  =  2 z
0

Ei
ωε n

r




 

       
2 2

r 0β H βωε n E+  =  zH
iβ

r




 

    ( )2 2 2

0 0 rμ ε ω n β H−  =  
2

0z z
ωε nH E

i β
r r

  
− − 

  
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       Hr =  
( )

2

0z z

2 2 2

0 0

ωε nH Ei
β

r rμ ε ω n β

  
− − 

 −  
 

        Hr =  
2

0z z

2

ωε nH Ei
β

p r r

  
− − 

  
            (17a) 

where, p2  = 2 2 2

0 0μ ε ω n β−  = 2 2k β−         (18) 

Multiplying eqn.16 by 0ωμ  and eqn.15 by  and subtracting, 

     ( )2 2 2

0 0μ ε ω n β E−  =  z z
0

E Hβ
i ωμ

r r

  
− − 

  
 

        E
 =  z z

02

E Hi β
ωμ

p r r

  
− − 

  
              (17b) 

Similarly, from eqns.13b and 14a we get, 

   
r 0βE ωμ H− +  =  zE

i
r


−


       (18) 

            
2

0 rωε n E βH−  =  zHi

r


−


       (19) 

Multiplying eqn.18 by  and 19 by 0ωμ  and adding 

      ( )2 2 2

0 0 rμ ε ω n β E−  =  0z z
ωμE H

i β
r r

  
− + 

  
 

         rE  =  0z z

2

ωμE Hi
β

p r r

  
− + 

  
              (17c) 

Multiplying eqn.18 by 2

0ωε n  and eqn.19 by  and adding, we get, 

    ( )2 2 2

0 0μ ε ω n β H−  =  
2z z

0

H Eβ
i ωε n

r r

  
− + 

  
 

        H
 =  

2z z
02

H Ei β
ωε n

p r r

  
− + 

  
             (17d) 

[Recall that 2

0ε n  = 0ε K  = 0 rε ε  =  and for magnetic medium instead of 0 we must use  in all 

equations, from eqn.8 onwards].  

Substituting for Hr (eqn.17a) and H (eqn.17.d) in eqn.14c we get, 

        
2

2 0z z z z
02

ωε nH E H Ei
β ωε n r β

rp r r r r

       
− + + −   

         
 =  2

0 ziωε n E  

2
2 0z z z z

02

ωε nH E H E1
β ωε n r β

rp r r r r r

         
− − + −    

           
 =  2

0 ziωε n E  

                 
2 2

z z z

2 2

E E E1 1

r r r r 

  
− − −

  
 =  2

zp E  

i.e.          
2 2

2z z z
z2 2

E E E1 1
p E

r r r r 

  
+ + +

  
 =  0       (20) 

Similarly substituting for Er (eqn.17c) and E (eqn.17.b) in eqn.13.c, we get, 
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2 2

2z z z
z2 2

H H H1 1
p H

r r r r 

  
+ + +

  
 =  0       (21) 

It is to be noted that eqn.20 contains only Ez whereas eqn.21 contains only Hz. This 

shows that the longitudinal components of E and H are uncoupled and can be chosen arbitrarily, 

provided that they satisfy the eqns.20 and 21. However, in general, coupling of Ez and Hz is 

required by the boundary conditions of the electromagnetic field components. If the boundary 

conditions do not lead to coupling between field components, mode solutions can be obtained 

in which either Ez = 0 or Hz = 0. When Ez = 0, the modes are called transverse electric (TE) 

modes and when Hz = 0 they are called transverse magnetic (TM) modes. Hybrid modes exist 

if both Ez and Hz are nonzero. These are designated as HE modes if Hz > Ez or EH modes if 

z zE H . The hybrid modes present in the waveguides makes their analysis more complex than 

the simpler case of hollow metallic waveguides where only TE and TM modes are found.        
 

5.15 Scalar wave equation and the modes of a fiber 

For an inhomogeneous medium, since the refractive index is not a constant, the electric 

field E and the magnetic field H satisfy the equations, (eqns.6 and 7 sec.3.14) 

   
2

2 2 2

0 02 2

1
n μ ε n

n t

 
+ − 

 

E
E E∇ ∇ ∇ .  =  0      (1) 

       ( )
2

2 2 2

0 02 2

1
n μ ε n

n t


+   −



H
H H∇ ∇ ∇  =  0      (2) 

In an infinitely extended homogeneous medium, since n is constant, the second term on 

the LHSs of the above equations are zero everywhere. Then the above equations become, 

      
2
E∇  =  

2
2

0 0 2
μ ε n

t





E
        

i.e.  ( )2

x y z
ˆ ˆ ˆE E E+ +i  j k∇  =  ( )

2
2

0 0 x y z2
ˆ ˆ ˆμ ε n E E E

t


+ +


i  j k     (3a) 

Or,          ( )2

x y z+ +E  E E∇  =  ( )
2

2

0 0 x y z2
μ ε n

t


+ +


E  E E      (3b) 

And,          
2
H∇  =  

2
2

0 0 2
μ ε n

t





H
       (4a) 

i.e.  ( )2

x y z+ +H  H H∇  =  ( )
2

2

0 0 x y z2
μ ε n

t


+ +


H  H H      (4b) 

Now we represent one of the Cartesian components of eqns.3b by . Then by eqn.3b we see 

that each Cartesian component of the electric field satisfies the wave equation, 

    
2∇  =  

2
2

0 0 2
μ ε n

t






       (5) 

The solutions of eqn.5 can be written in the form of plane waves, 
( )i ωt

0e
− −

=
k.r

  . We can also 

easily show the waves are transverse. 

For a medium having weak inhomogeneity, i.e. the variation of n is small in a region of 

the order of , the second term of the LHS of eqn.1 can be assumed to be negligible and hence 

the waves can be assumed to be nearly transverse with the transverse component of the electric 

field satisfies the eqn.5. This equation is obtained after neglecting the term on
2n∇ in the eqn.1. 

This is known as scalar wave approximation and in this approximation the modes have been 

assumed to be nearly transverse and can have arbitrary state of polarization. Thus with respect 

to the given Cartesian coordinate system the two independent sets of modes can be assumed to 
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be the x-polarized and the y-polarized. In the scalar approximation these polarizations can have 

the same propagation constants. These linearly polarized modes are usually referred to as LP 

(linearly polarized) modes. When n1  n2 the modes are nearly transverse and the propagation 

constants of these modes, TE (transverse electric) and TM (transverse magnetic) modes, are 

almost equal.  

Since n2 depends only on the transverse coordinates r and  we may write, 

  ( )r, , z, t  =  ( ) ( )i ωt βz
ψ r, e

−
           (6) 

where,  is the angular frequency and  is the propagation constant. Eqn.6 represents the modes 

of the system. Using eqn.6 in eqn.5 we get, 
 

  ( ) ( )  ( ) ( ) ( ) 
2

i ωt βz i ωt βz2 2

0 0 2
ψ r, e μ ε n r, ψ r, e

t

− −
 −  


∇  =  0 

i.e. ( )  ( ) ( ) ( )  ( ) ( ) ( ) 
2

i ωt βz i ωt βz i ωt βz2 2 2

0 0 2
ψ r, e ψ r, e μ ε n r, ψ r, e

t

− − −
 +  −  


∇ ∇   =  0 

i.e. ( )  ( ) ( ) ( ) ( ) ( ) ( )i ωt βz i ωt βz i ωt βz2 2 2 2

0 0ψ r, e β ψ r, e μ ε n r, ω ψ r, e
− − −

 −  +  ∇  =  0 

i.e. ( )  ( ) ( )
2

2 2 2

2

ω
ψ r, n r, β ψ r, 

c

 
 +  −  

 
∇  =  0     (7) 

If n varies with r only (i.e. the case of optical fibers), owing to the cylindrical symmetry of the 

situation we can use the cylindrical coordinate system, in which we have, 
 

   2T  = 
2 2

2 2

1 T 1 T T
r

r r r r z

    
+ + 

    
 =  

2 2 2

2 2 2

1 T T 1 T T

r r r r z

   
+ + +

   
 

  ( ) 2 ψ r, ∇  =  
2 2

2 2

1 ψ ψ 1 ψ

r r r r 

  
+ +

  
      (8) 

since, ( )ψ r,   is independent of z, 
2

2

ψ

z




 = 0. 

Then using eqn.8 in eqn.7 we obtain, 

       ( )
2 2 2

2 2

2 2 2

ψ 1 ψ 1 ψ ω
n r β ψ

r r r r c

   
+ + + − 

    
 =  0 

        ( )
2 2

2 2 2

02 2

ψ 1 ψ 1 ψ
k n r β ψ

r r r r 

  
 + + + −   

 =  0     (9) 

where, 0
0

0

2πνω 2π
k

c c λ
= = =  is the free space propagation constant. Since  is a function of r 

and  we use the method of separation of variables to solve the eqn.9.  That is, 

 

           ( )ψ r,   = ( ) ( )R r           (10) 

Then eqn.9 becomes 

( ) ( )  ( ) ( )  ( ) ( )  ( ) ( ) ( ) 
2 2

2 2 2

02 2

1 1
R r R r R r k n r β R r

r r r r 

  
   +   +   + −     

 = 0 

( )
( )

( )
( )

( )
( ) ( ) ( ) ( ) 

2 2

2 2 2

02 2

R r R r1 1
R r k n r β R r

r r r r 

    
   +   + + −     

 =  0 

Multiplying with r2 and dividing with ( ) ( )R r    throughout and rearranging we get,    
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  ( )
2 2

2 2 2 2

02

r d R r dR
r k n r β

R dr R dr
 + + −   =  

21 d

d 


−

 
     (11) 

Since both sides of eqn.11 are equations of different variables eqn.11 is correct only if both sides 

are equal to the same constant, say l2. Then we get two equations, 
 

        
21 d

d 


−

 
 = l2   

i.e.      
2

2d

d
l




+ 


 =  0        (12) 

and,      ( )
2 2

2 2 2 2

02

r d R r dR
r k n r β

R dr R dr
 + + −   =  l2   

i.e.  ( ) 
2

2 2 2 2 2 2

02

d R dR
r r r k n r β R

dr dr
l + + − −

 
 =  0     (13) 

The solution of eqn.12 can be written as, 

                                 =  
iAe l

 

Since  is single valued,        ( )   =  ( )2π  +  

i.e.      iAe l  =  
( )i 2π

Ae
l +

 =  i i 2πAe el l  

i.e.          1 =  
i 2πe l

 = ( ) ( )cos 2π isin 2πl l+  

This equation is true when l = 0, 1, 2, 3, ......... The negative integers are avoided since they 

correspond to the same field distribution. Later we will see that modes with l  1 are four fold 

degenerate and mode with l = 0 is twofold degenerate.  

Before going to the solution of eqn.13 we make some general comments on the solutions 

of it for an arbitrary cylindrically symmetric index profile of the core. The refractive index of 

the core at its axis (r = 0) is n1. It decreases monotonically from the axis to a value n2 at the core-

cladding interface at r = a. The solutions of eqn.13 can be divided into two distinct classes. 

(a) 2 2 2 2 2

0 1 0 2k n β k n   

 For 2 lying in the above range the solutions (fields) R(r) are oscillatory in the core 

and gets decayed in the cladding. It is very important that 2 cannot have all values but it 

can have only certain discrete values known as the guided modes of the system. For a 

given value of l (mentioned in the solution of eqn.12) there are several guided modes 

designated as LPlm modes with m = 1, 2, 3, ......... Here LP stands for linearly polarized. 

Further these modes are the solutions of scalar wave equations (eqn.5) they can be 

assumed to satisfy the orthonormality condition given by, 
 

( ) ( )
2π

*

m m

0 0

ψ r, ψ r, rdrdl l



      =   mmδ δll       (14) 

[Remember that the area element is dA = dr.rd]  

We can write, 

       Er =  x yE cos E sin+                  (15a) 

      E = x yE sin E cos− +                  (15b) 

Thus for the given (l, m) the four degenerate LPlm modes are 

       E1 =  m
ˆψ cosl lx                 (16a) 

      E2 =  m
ˆψ cosl ly                 (16b) 
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      E3 =  m
ˆψ sinl lx                 (16c) 

      E4 =  m
ˆψ sinl ly                 (16d) 

(b) 2 2 2

0 2β k n   

  For such  values, the fields are oscillatory even in the cladding and  can have 

continuum values. These are known as the radiation modes.  

The guided and the radiation modes form a complete set of modes in the sense that an 

arbitrary field distribution can be expanded in terms of these modes. That is, 
 

     ( )ψ x, y, z  =  ( ) ( ) ( )νiβ z iβz

ν ν

ν

a ψ x, y e a β ψ β, x, y e dβ
− −+      (17) 

where the first term represents a sum over discrete modes and the second term an integral over 

the continuum of modes. The quantity 
2

νa  is proportional to the power carried by the th mode. 

The constants a can be determined by knowing the incident field at z = 0 and using the 

orthonormality condition.  

The importance of the calculation of modal field distributions and the corresponding 

propagation constants are, 

(a) Knowing the frequency dependence of the propagation constant one can calculate the 

temporal broadening of a pulse which determines the information-carrying capacity. 

(b) Knowledge of the modal field distribution is essential for the calculation of the excitation 

efficiencies, splice losses at joints and in the development of new fiber optic devices like 

directional couplers etc. 
 

5.16.1 Modal analysis for a step index fiber 

For a step index fiber, 

      n(r) =  
1

2

n    ;  for r < a

n    ;  for r > a





        (1) 

For most practical fibers used in communication the relative refractive index difference 

1 2

1

n n
1

n

−
 . In such a case the radial part of the transverse component of the electric field 

satisfies the equation given by (eqn.13 sec 3.15), 
 

  ( ) 
2

2 2 2 2 2 2

02

d R dR
r r k n r β r R

dr dr
l + + − −

 
 =  0     (2) 

The complete transverse field is given by (eqn.6 sec 3.15) 

 ( )r, , z, t  =  ( ) ( )i ωt βz
ψ r, e

−
           (3) 

But,                      ( )ψ r,   = ( ) ( )R r      

Then,   ( )r, , z, t  =  ( ) ( ) ( )i ωt βz
R r e

−
   

Since as we have seen earlier ( )   is either a cosine function or a sine function of  we can 

write, 

    ( )r, , z, t  =  ( ) ( ) ( )i ωt βz
R r e

−
   =  ( )

( )

( )
( )i ωt βz

cos
R r e

sin

l

l

−
 

 
  

  (4) 
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Using eqn.1 in eqn.2, we obtain, 

          ( )
2

2 2 2 2 2 2

0 12

d R dR
r r k n β r R

dr dr
l + + − −

 
 =  0  ; for r < a  

i.e.                 ( )
2 2

2 2 2 2 2 2

0 12 2

d R dR r
r r a k n β R

dr dr a
l

 
+ + − − 

 
 =  0  ; for r < a  

i.e.                       
2 2 2

2 2

2 2

d R dR U r
r r R

dr dr a
l

 
+ + − 

 
 =  0     ; for r < a  (5a) 

where, ( )
1

2 2 2 2

0 1U a k n β= −          (6a) 

and                    ( )
2

2 2 2 2 2 2

0 22

d R dR
r r k n β r R

dr dr
l + + − −

 
 =  0  ; for r > a   

i.e.                      
2 2 2

2 2

2 2

d R dR W r
r r R

dr dr a
l

 
+ − + 

 
 =  0     ; for r > a  (5b) 

where, ( )
1

2 2 2 2

0 2W a β k n= −          (6b) 

Now we define the normalized waveguide parameter V by, 

        V =  ( )
1

2 2 2U W+   = ( ) ( ) 
1

22 2 2 2 2 2 2 2

0 1 0 2a k n β a β k n− + −  

    =  ( )
1

2 2 2

0 1 2k a n n−  =  ( )
0

2π
a NA

λ
     (7a) 

Also     
2

2

W

V
 =  

( )
( )

2 2 2 2

0 2

2 2 2 2

0 1 2

a β k n

k a n n

−

−
 =  

( )
( )

2 2 2

0 2

2 2 2

0 1 2

β k n

k n n

−

−
    (7b) 

Guided modes correspond to 2 2 2 2 2

0 2 0 1k n β k n  and therefore for guided modes both U and W are 

real.  

Eqns.5a and 5b are of the form of standard Bessel’s equations, [ ( )2 2 2x y xy x α y + + −  

= 0    and   ( )2 2 2x y xy x α y + − +   =  0] with x = 
Ur

a
 and 

Wr
x

a
= . 

The general solution of the first Bessel’s equation is given by ( ) ( )AJ x BY xl l+ , where, 

( )
( )

( )

j 2 j

j 0

1x x
J x

2 j! j 1 2

l

l
l



=

−   
=    

 + +   
  and ( ) ( )

( )

( )

j

2 j

2j
j 0

1
Y x x x

j!2 j 1

l

l l l


−

−
=

−
=

 − +
 . There are 

different forms of Bessel’s function. Here we choose only one of them. In our case we reject the 

second part ( )BY xl  since ( )Y xl diverges (tends to ) as x→0. The general solution of the 

second Bessel’s equation is given by ( ) ( )AK x BI xl l+ , where, ( )K xl  and ( )I xl  are the 

modified Bessel’s function. In the asymptotic form, they are given as, 

( )
1

2
x

as x

π
K x e

2x
l

−

→

 
→  

 
 and ( )

1
2

x

as x

1
I x e

2πx
l →

 
→  

 
      (8) 

Again we reject ( )I xl  in our case since ( )I xl diverges (tends to ) as x →. Thus the solutions 

of eqns.5a and 5b respectively are 
Ur

AJ
a

l

 
 
 

 and 
Wr

AK
a

l

 
 
 

.  By eqn.10 sec.3.15  

          ( )ψ r,   = ( ) ( )R r            
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We assume that ( )ψ r,   and 
ψ

r




 are continuous at the core-cladding interface (r = a). In order 

to satisfy these conditions we modify the solutions of eqns.5a and 5b, respectively, as 

( )
A Ur

J
J U a

l

l

 
 
 

 and 
( )
A Wr

K
K W a

l

l

 
 
 

. Also assuming ( )   is either a cosine function or a sine 

function of , (refer eqn.4) we write, 

 

        ( )1ψ r,   = ( ) ( )1R r    =  
( )

( )

( )

cosA Ur
J ;      for r < a

J U a sin
l

l

l

l

  
  

    

       (9a) 

        ( )2ψ r,   = ( ) ( )2R r    =  
( )

( )

( )

cosA Wr
K ;      for r > a

K W a sin
l

l

l

l

  
  

    

      (9b) 

We can easily show that when r = a eqn.9a and 9b reduce to a single equation showing that  is 

continuous at the core-cladding interface,  

        ( )1ψ r,   =  ( )2ψ r,   = 
( )

( )

cos
A

sin

l

l

 
 

  

       (10) 

 Since
ψ

r




 is continuous at r = a,  

          1

r a

ψ

r =

 
 

 
 =  2

r a

ψ

r =

 
 

 
 

i.e.       
( )

( )

( )
r a

cosA U Ur
J

J U a a sin
l

l

l

l
=

    
    

      

 =  
( )

( )

( )
r a

cosA W Wr
K

K W a a sin
l

l

l

l
=

    
    

      

 

i.e.         
( )

( )

UJ U

J U

l

l


 =    

( )

( )

WK W

K W

l

l


     (11) 

Now we use the two identities of the Bessel’s function, 

         ( )α

2α
J x

x
 =  ( ) ( )α 1 α 1J x J x+ −+  

And,   ( ) α

d
2 J x

dx
 =  ( ) ( )α 1 α 1J x J x− +−   

In our case the identities become, (considering the functions and their derivatives at r = a), 

         ( )
2

J U
U

l

l
 =  ( ) ( )1 1J U J Ul l+ −+       (12) 

And            ( )2J Ul
  =  ( ) ( )1 1J U J Ul l− +−       (13) 

Using eqn.12 in eqn.13 we obtain, 

           ( )2J Ul
  =  ( ) ( ) ( )1 1

2
J U J U J U

U
l l l

l
+ +− −    

     = ( ) ( )1

2
J U 2J U

U
l l

l
+−  

i.e.          ( )UJ Ul
  =  ( ) ( )1J U UJ Ul ll +−  
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Or,        ( )UJ Ul
  =  ( ) ( )1J U UJ Ul ll −       (14) 

Similarly we can show that,  

      ( )WK Wl
  =  ( ) ( )1K W WK Wl ll       (15) 

By eqn.11        
( )

( )

UJ U

J U

l

l


 =   

( )

( )

WK W

K W

l

l


   

Using eqns.14 and 15 we get, 

i.e.    
( )

( )

( )

( )
1J U UJ U

J U J U

l l

l l

l +
−  =   

( )

( )

( )

( )
1K W WK W

K W K W

l l

l l

l +
−  

i.e.   
( )

( )
1UJ U

J U

l

l

l +
−  =  

( )

( )
1WK W

K W

l

l

l
+

−  

i.e.       
( )

( )
1UJ U

J U

l

l

+  =  
( )

( )
1WK W

K W

l

l

+               (16a) 

Or eqn.11 can also be written as, 

       
( )

( )
1UJ U

J U

l

l

−  =  
( )

( )
1WK W

K W

l

l

−
−              (16b) 

However, using the proper limiting forms one can show that  

    
( )

( )
1

W 0

WK W
Lt

K W

l

l

−

→

 
  
 

 →   0    ;  for l = 0, 1, 2, ..........    (17) 

Therefore we use eqn.16b for studying the modes. Also we have ( )1J U−  = ( )1J U−  and 

( ) ( )1 1K W K W− = . Then from eqn.16b for l = 0, we obtain, 
 

         
( )

( )
1

0

UJ U

J U
 =  

( )

( )
1

0

WK W

K W
        (18) 

We would like to mention here that the boundary conditions used in deriving the eigenvalue 

equation (eqn.16b) are consistent with the approximation involved in using the scalar wave 

equation.  

Now we define the normalized propagation constant as, 

         b =  

2
2

22

0

2 2

1 2

β
n

k

n n

−

−
  = 

( )
( )

2 2 2

0 2

2 2 2

0 1 2

β k n

k n n

−

−
 =  

2

2

W

V
      (19) 

(Refer eqn.7). 

Also we have,       
2V  =  

2 2U W+  

Using eqn.19,    =  
2 2U V b+  

Thus,        
2U  =  ( )2V 1 b−  

Or,         U =  ( )
1

2V 1 b−        (20) 

Then eqn.16b becomes, 

        
( )

( )
1UJ U

J U

l

l

−  =  
( )

( )
1WK W

K W

l

l

−
−               (21) 
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( ) ( )( )

( )( )

1 1
2 2

1

1
2

V 1 b J V 1 b

J V 1 b

l

l

−− −

−
 =  

( )
( )

1 1
2 2

1

1
2

Vb K Vb

K Vb

l

l

−

−   ;    l  1  (22) 

And eqn.18 becomes, 

                   
( )

( )
1

0

UJ U

J U
 =  

( )

( )
1

0

WK W

K W
        

    
( ) ( )( )

( )( )

1 1
2 2

1

1
2

0

V 1 b J V 1 b

J V 1 b

− −

−
 =  

( )
( )

1 1
2 2

1

1
2

0

Vb K Vb

K Vb

  ;   l = 0    (23) 

For guided modes we must have, 

   2 2 2 2 2

0 2 0 1k n β k n   

i.e.   
2

2 2

2 12

0

β
n n

k
   

i.e.   
2

2 2 2 2 2

2 2 2 1 22

0

β
n n n n n

k
−  −  −  

i.e   
2

2 2 2

2 1 22

0

β
0 n n n

k
 −  −   

i.e.   

2
2

22

0

2 2

1 2

β
n

k
0 1

n n

−

 
−

  

i.e.   0 b 1    (24) 

For a given value of l, there will be a 

finite number of solutions for eqn.22 and the 

mth solution (m = 1, 2, 3, ....) is referred to as 

the LPlm mode. To find the modes we follow 

a graphical method. The values of LHS and 

RHS of eqn.22 are plotted against different 

values of b which satisfies eqn.24. The 

points of intersection of the two curves 

represent the discrete modes of the 

waveguides. It is clear that since 0 b 1  , 

there will be only a finite number of guided 

modes. 

The guided modes (for a given l 

value) which are given by the points of 

intersection are designated in decreasing 

values of ‘b’ as LPl1,  LPl2, LPl3, etc. 

The variation of ‘b’ with ‘V’ forms a 

set of universal curves, which are plotted in fig.c. We can see from the fig.c that at a particular 

V value there are only a finite number of modes.  

1.0 
0 

0.5 

−10 

5 

−5 

10 

b 

Solid curves    : Variation of LHS   

Dashed curves:  Variation of RHS 
Fig.a: for l = 0 and V = 8 
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1.0 
0 

0.5 
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b 

Solid curves    : Variation of LHS   

Dashed curves:  Variation of RHS 
Fig.b: for l = 1 and V = 8 
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The condition b = 0 (i.e. by eqn.19, 2 2 2

0 2β k n= ) corresponds 

to what is known as the cut off of the mode. For b<0, 2 2 2

0 2β k n  

and the fields are oscillatory even in the cladding and the modes 

are known as radiation modes. At cut off, b = 0, by eqn.19, W = 0 

and by eqn.20, U = V = Vc.  

Then the cut offs of the various modes are determined from 

the following equations. 

l = 0 modes; ( )1 cJ V    =  0 [by eqn.18 when W = 0] 

l = 1 modes; ( )0 cJ V   =  0 [by eqn.16b when W = 0] 

l  2 modes; ( )1 cJ Vl−  =  0 [by eqn.16b when W = 0]; Vc0 

It should be noted that for l  2, the root Vc = 0 must not be included since, 

         
( )

( )
1

V 0

VJ V
Lt

J V

l

l

−

→

 
  
 

   0;  for l  2      (25) 

Thus the cut off ‘V’ values, also known as the normalized cut off frequencies occur at 

the zeros of Bessel functions and are tabulated in the table given above.  

By the above analysis and also from the graph shown in fig.c it is clear that for a step 

index fiber with,  

   0 < V < 2.4048        (26) 

there will be only one guided mode, namely LP01 mode (refer the table also). Such a fiber is 

called a single mode fiber, which has tremendous importance in the optical fiber communication 

systems.  

Fig.d represents a plot of the radial intensity distribution of some low order modes in a 

step index fiber for V = 8. Notice that higher modes have greater fraction of power in the 

cladding.  

Fig.e represents the intensity distribution with respect to r and  and the modal field 

patterns for some low order modes in a step index fiber.  

Fig.f gives the modal intensity pattern of the LP23, 12 mode in a multimode fiber. 

l = 0 

modes 

J1(Vc) = 0 

Mode Vc 

LP01 0 

LP02 3.8317 

LP03 7.0156 

LP04 10.1735 
l = 1 

modes 

J0(Vc) = 0 

Mode Vc 

LP11 2.4048 

LP12 5.5201 

LP13 8.6357 

LP14 11.7915 
l = 2 

modes 

J1(Vc) = 0; 

Vc  0 

Mode Vc 

LP21 3.8317 

LP22 7.0156 

LP23 10.1735 

LP24 13.3237 

 
l = 3 

modes 

J2(Vc) = 0; 

Vc  0 

Mode Vc 

LP31 5.1356 

LP32 8.4172 

LP33 11.6198 

LP34 14.7960 

 

Table of cut off frequencies 

of various LPlm modes 
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The following points are to be noted. 

(a) The l = 0 modes are twofold degenerate corresponding to two independent states of 

polarization.  

(b) The l  1 modes are four fold degenerate because for each polarization, the  dependence 

could be either cos l  or sin l . 

Further, 

Number of zeros in the  direction = 2l      (27) 

Number of zeros in the radial direction excluding that at r = 0 is = m − 1  (28) 

Fig.f shows the mode filed distribution represents a typical higher order mode, say LP23, 

12 mode, in a multimode fiber. When V>>1, the total number of modes in a step index 

multimode fiber is given by, 

         N   
2V

2
         (29) 

Such a fiber that can support large number of guided modes is known as a multimode fiber. For 

a typical multimode step index fiber, n1 = 1.47, n2 = 1.46, a = 25 m and for 0 = 0.8m, V  

34. Such a fiber can support approximately 580 modes. 

Fig.f: Modal intensity pattern of LP23, 12 mode 

         in a multimode fiber 
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Fig.d: Radial intensity distributions of some low order modes in a step index fiber for V = 8 
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Fig.e 
Large circle represents the core of the fiber 
Shaded region represents field distribution area 
Arrows in the shaded region represents electric field direction 
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5.16.2 Fractional modal power in the core 

One of the important parameters associated with the fiber optic waveguide is the 

fractional power carried in the core. The intensity of a wave is the energy flowing through unit 

area in one second, or it is the power per unit area. Thus  
 
Power flowing through an area element dA  =  IdA     (1) 

Since the intensity is proportional to square of the amplitude of the wave, the power flowing 

through an area element dA of the core of the cylindrical optical fiber is given by, 
 

    dPcore   
2

ψ dA  

     
2

ψ dr.rd  

  Total power flowing through the core of the cylindrical optical fiber is given by, 

   Pcore   
a 2π

2

0

ψ rdrd


         (2) 

Using eqn.9a of sec.3.16.1, we obtain (constant A is included in the constant 2C and considering 

the cosine function) 
 

    Pcore =  
( )

( )
a 2π

2 2

2

0

2C Ur
J rdr cos d

J U a
l

l

l


 
  

 
       (3) 

    =  
( )

a

2

2

2πC Ur
J rdr

J U a
l

l 

 
 
 

       (4) 

Since, ( )
2π

2

0

cos dl   =   

Put 
Ur

a
 =  x 

      dr =  
a

dx
U

  

Then,   Pcore =  
( )

( )
U2

2

2 2

2πC a
J x xdx

J U U
l

l 

       (5) 

[ ( )
U

2J x xdxl



  is evaluated as follows. Let y = ( )J xl  is the solution of the Bessel’s differential 

equation,  

           ( )2 2 2x y xy x yl + + −   = 0 

Multiplying with 2y , we get, 

        ( )2 2 2 22x y y 2xy x 2yyl   + + −  =  0 

i.e.  2 2 2 2 2 2 2d
x y x y y 2xy

dx
l + − −   =  0 

i.e.   22xy  =  2 2 2 2 2 2d
x y x y y

dx
l + −   
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Then,        
U

22xy dx


  =  2 2 2 2 2 2x y x y yl + −  

i.e.  ( )
U

22J x xdxl



  = ( ) ( ) ( )2 2 2 2 2x J x x J xl ll + −     ] 

Then,   Pcore =  
( )

( )
U2

2

2 2

2πC a
J x xdx

J U U
l

l 

  =  
( )

( ) ( ) ( )
2

U
2 2 2 2 2

2 2 0

πC a
x J x x J x

J U U
l l

l

l  + −
 

 

 Using eqn.13and eqn.12   

   = 
( )

( ) ( )
( )

( ) ( )
U

2 2
2

1 1 1 12 2 2 2

2 2

0

J x J x J x J xCπa
x x x

U J U 2 2

l l l l

l

l
l

− + + −
 − +   
 + −   
     

  

  =  
( )

( ) ( ) ( ) ( )2 22
1 1 1 12

2 2

J x J x 2J x J xCπa
x

U J U 4

l l l l

l

− + − +
  + − 

+  
   

 

      ( )
( ) ( ) ( ) ( )

U
2 2

1 1 1 12 2 2

2

0

J x J x 2J x J x
x x

4

l l l l
l

l

− + − +
 + + 

−  
  

  

   =  
( )

( ) ( ) ( ) ( )
( ) ( ) 

U
2 22

1 1 1 14 2

1 12 2 2

0

J x J x 2J x J xCπa
x x J x J x

U J U 4

l l l l

l l

l l

− + − +

− +

  + + 
−  

    

 

Using eqn12 in the first term    

   =  
( )

( ) ( ) ( ) 
2

U
2 2 2

1 12 2 0

Cπa
x J x x J x J x

U J U
l l l

l

− +
 −   

   =  
( )

( ) ( ) ( ) 
2

2 2 2

1 12 2

Cπa
U J U U J U J U

U J U
l l l

l

− +
 −      ] 

  =   
( ) ( )

( )
1 12

2

J U J U
Cπa 1

J U

l l

l

− +
 

− 
 

 

Using eqns.16a and 16b, 

  Pcore =  
( ) ( )

( )

2
1 12

2 2

K W K WW
Cπa 1

U K W

l l

l

− +
 

+ 
 

      (6) 

Similarly the total power in the cladding 

         Pcladding =  
( ) ( )

( )
1 12

2

K W K W
Cπa 1

K W

l l

l

− +
 

− 
 

      (7) 

Therefore, the total power in the fiber is given by, 

 Ptotal =  Pcore + Pcladding = 
( ) ( )

( )

( ) ( )

( )

2
1 1 1 12

2 2 2

K W K W K W K WW
Cπa

K W U K W

l l l l

l l

− + − +
 

+ 
 

 

      =  
( ) ( )

( )

2
1 12

2 2

K W K W W
Cπa 1

K W U

l l

l

− +
  

+  
  

 

     =   
( ) ( )

( )

2
1 12

2 2

K W K WV
Cπa

U K W

l l

l

+ −
 
 
 

   (8) 

(Refer eqn.7a or eqn.20)  
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Then the fractional power propagating through the fiber is given by, 

        = core

total

P

P
 =  

( ) ( )
( )

( ) ( )
( )

2
2 1 1

2 2

2
2 1 1

2 2

K W K WW
Cπa 1

U K W

K W K WV
Cπa

U K W

l l

l

l l

l

+ −

+ −

 
+ 

 

 
 
 

= 
( ) ( ) ( )

( ) ( )

2 2 2

1 1

2

1 1

U K W W K W K W

V K W K W

l l l

l l

+ −

+ −

+

  
 

  =  
( )

( ) ( )

22 2

2 2

1 1

K WW U

V V K W K W

l

l l+ −

  
+  

  

      (9) 

As the mode approaches cut off value, W → 0,  U → Vc and  V → Vc. 

Also ( )0

W 0

W
K W ln

2→

 
→ −  

 
  and ( )

( )1

W 0

2 1 !
K W

W

l

l l

l−

→

−
→  = 

( )1 ! 2

2 W

l
l −  

 
 

  (10) 

Then,          →  

0             for 0  and  1

1
    for 2

l

l
l

l

=


− 
 

 

      (11) 

[When l = 0, ( )0K W  = 
2

ln
W

 
 
 

, then from eqn.9, 

      co =   
( )

( ) ( )

2

0

1 1

K W

K W K W−

 =  
( )

( )

2

0

2

1

K W

K W
; since ( ) ( )1 1K W K W−=  

   =     

2

2

2
ln

W

1

W

  
  

  

 
 
 

  =  

2

2 2
W ln

W

  
  

  
→ 0 as W → 0. 

When l = 1, from eqn.9, 

        co =  
( )

( ) ( )

2

1

2 0

K W

K W K W
 = 

2

2

1

W
2 2

ln
W W

 
 
 

  =  
1

2
2ln

W

 
 
 

 → 0 as W → 0. 

When l = l, from eqn.9, 

       co =   
( )

( ) ( )

2

1 1

K W

K W K W

l

l l+ −

 = 

( ) ( )

( )

2

1 1

1 ! 1 ! 2

2 2 W

2 !! 2 2

2 W 2 W

l

l l

l l

ll
+ −

− −  
 
 

−   
   
   

 =  ( )

2

2

2

1 W
1

2

W

l

l
l

l

 
 
 −
 
 
 

 

   =  
1l

l

−
 as W → 0.         ] 

Figure below gives the variation of fractional powers in the core and cladding plotted in 

the same graph as a function of V for the various modes of a step index fiber. From the graph it 

is clear that the power associated with a particular mode is concentrated in the core for large 

values of V, i.e. far from cut off.   
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5.17 Solved problems   
 
1. A glass clad fiber is made with core glass of refractive index 1.55 and cladding is doped to 

give a refractive index 1.5. Calculate its numerical aperture the acceptance angle and the 

fractional index change. 
 
 Refractive index of core     n1 =  1.55 
 
 Refractive index of cladding n2 =  1.50 
 

     Numerical aperture, N. A =      Sin0  = 2 2

1 2n n−  

       =  
2 21.55 1.5−  =   0.3905 

 Acceptance angle, 0   =  1 2 2

1 2Sin n n− −   
 

        =  
1Sin 0.3905−

  =  23 
 

 Fractional index change         =   1 2

1

n n

n

−
 

 

      =  
1.55 1.5

1.55

−
   = 0.03226 

2. Find the numerical aperture, acceptance angle and the critical angle of the fiber if light enters 

from air. Given refractive index of the core = 1.52 and the refractive index of the cladding 

= 1.47. 
 
 Refractive index of core     n1 =  1.52 
 
 Refractive index of cladding n2 =  1.47 

     Numerical aperture, N. A =      Sin0  = 
2 2

1 2n n−  
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       =  
2 21.52 1.47−  =   0.38665 

 

 Acceptance angle, 0   =  1 2 2

1 2Sin n n− −   
 

        =  1Sin 0.38665−   =  2245 
 

                Sinc =  2

1

n

n
 = 

1.47

1.52
  

 
         c =   7516   
 
3. A typical relative refractive index difference for an optical fiber designed for long distance 

transmission is 1%. Estimate the critical angle at the core-cladding interface, numerical 

aperture, the acceptance angle and the solid acceptance angle in air for the fiber when the 

core index is 1.46. 
 
  Relative refractive index difference 
 

         =   1 2

1

n n

n

−
 =   2

1

n
1

n
−  =  0.01 

        2

1

n

n
 =   1 − 0.01 =  0.99  

 
  Critical angle at the core-cladding interface 

         c =  
1 2

1

n
sin

n

−  
 
 

 =  ( )1sin 0.99−
 =   81.89 

 

   Numerical aperture     1n 2  =  1.46 0.02   =  0.2065 

   Acceptance angle, 0  = ( )1sin N A−
 =  ( )1sin 0.2065−

 =  11.92 
 

   Solid acceptance angle = 2

0πθ   2

0π sin θ  

      =  ( )
2

π N A  =  ( )
2

π 0.2065  =  0.1339 steradian 

4. Calculate the maximum radius for optic fiber with core of refractive index 1.515 and 

cladding of refractive index 1.495 if the fiber supports one mode at wavelength 1500 nm. 

[Knr. U April 2009] 
 
  Relative refractive index difference 

          =   1 2

1

n n

n

−
 =  

1.515 1.495

1.515

−
  =  0.0132 

For step index fiber for single mode propagation the maximum value of V is 2.4.   
 

i.e.        V =   2.4 
 

But,         V =  ( )
2π

a N A
λ

 = 
1

2π
an 2

λ
  

 

i.e.         
1

2π
an 2

λ
  =  2.4 

Thus, the maximum radius for single mode propagation 
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      a =   
1

2.4 λ

2πn 2
 =  

92.4 1500 10

2 3.14 1.515 2 0.0132

− 

   
 =  2.3310−6 m = 2.33 m  

 
5.  A multimode step index fiber with a core diameter of 80 m and a relative index difference 

of 1.5% is operating at a wavelength of 0.85 m. If the core refractive index is 1.48, calculate 

the normalized frequency of the fiber and the number of guided modes.   
 

          V =    
1

2π
an 2

λ
   

    =     
6

6

2 3.14 40 10 1.48 2 0.015

0.85 10

−

−

     


   =   75.757 

   Number of guided modes        Ms    
2V

2
  =  

275.757

2
 =  2869 

6. A graded index fiber has a core with a parabolic refractive index profile which has a diameter 

of 60 m. The fiber has a numerical aperture of 0.22. Estimate the total number of guided 

modes propagating in the fiber when it is operating at a wavelength of 1 m. 
 

         V =  ( )
2π

a N A
λ

 = 
6

6

2 3.14 30 10 0.22

1 10

−

−

   


 =   41.45 

       Ms    
2α V

α+2 2

 
 
 

    

 For graded index fiber       =  2 

 Then,   Ms    
2V

4
 =  

241.45

4
 =   429   

7. A 6 km optical link consists of multimode step index fiber with a core refractive index of 

1.5 and a relative refractive index difference of 1%. Calculate the delay difference between 

the slowest and the fastest modes at the fiber output. 
 

    dT =    1Ln

c


 =  

3

8

6 10 1.5 0.01

3 10

  


 =  300 ns  

5.18 Model questions 

Objective type questions 

1.  The basic principle of propagation of modulated signals through optical fiber is  

  (A) Total internal reflection (B) Scattering of light 

  (C) Refraction   (D) Diffraction 
 
2. Cladding material of an optical fiber has a refractive index 

   (A) Greater than that of core material   

(B) Equal to that of core material  

(C) Lower than that of core material   

(D) None of these 

3. The buffer and jacket layers 

  (A) Contribute to the optical properties of the wave guide 

 (B) Do not contribute to the optical properties of the wave guide (C) Contribute a 

little to the optical properties of the wave guide  (D) None of these 

4. The light gathering power of the fiber depends on 
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  (A) Acceptance angle  (B) Diameter of the core 

  (C) Cross sectional area of both core and cladding  (D) None of these 

5.  The information carrying capacity of a fiber is greater when, 

(A) the pulse dispersion is greater (B) the pulse dispersion is infinity (C) the 

pulse dispersion is smaller (D) None of these 

6. The possible number of modes of an optical fiber depends on 

  (A) 
d

λ
  (B) 

λ

d
  (C) 

2

2

d

λ
  (D) 

2

2

λ

d
 

Short questions 

1. Describe an optical fiber. Give the dimensions of different parts. 

2. What is the basic principle of fiber optic communication?  

3. What is acceptance angle? 

4. What is acceptance cone? 

5. What is a step index fiber? 

6. What is numerical aperture? 

7. Explain dispersion in optical fibers. 

8. What do you mean by step index fibers? 

9. What is pulse dispersion? How does it affect the transmission through step index fibers? 

10. What is a graded index fiber?  

11. What is the advantage of graded index fiber over step index fiber? 

12. Explain how the pulse dispersion is reduced in graded index fibers. 

13. Distinguish between step index fibers and graded index fibers. 

14. Explain the modes of propagation in optic fibers. 

15. There is no pulse dispersion in single mode fibers. Why? 

16. What are single mode and multimode fibers? 

17. What is a plastic fiber? 

18. What are the advantages of fiber optic communication? 

19. Give the salient features of an optical fiber. Write some applications of optical fiber. 

20. Briefly mention the uses of optical fibers. 

21. Briefly explain the working of the optical fiber sensors. 

22. What are the different types of optical fibers? 

23. Explain the principle underlying the use of optical fibers in communication. 

24. Explain why light passing through an optical fiber has very small energy loss. 

25. What is an optical fiber? Give some applications. 

26. Explain with a block diagram the use of optical fiber in communication. 

27. Explain with a block diagram the principle and application of optical sensors. Mention the 

different types of optical sensors 

28. How the optical fibers are used in military applications? 

29. Explain the medical applications of optical fibers. 

30. What is an optical fiber? 

31. What are fiber characteristics? 
 
Short essay type questions 
 
1. Explain the terms ‘acceptance angle’, ‘acceptance cone’ and numerical aperture of optical 

fiber. 

2. Derive the expression for the acceptance angle of the fiber. 

3. What is a plastic fiber? Mention its advantages and disadvantages. 
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Essay type questions 

1. Explain how light wave is propagated through a fiber. Derive the formula for numerical 

aperture. Show that it is approximately 1n 2 .   

2. Describe an optical fiber. Mention its applications. 

3. What is an optical fiber? With the help of a block diagram explain how optical fibers are 

used for communication. Mention the advantages of this type of communication. 

4. Explain the different applications of optical fibers. 

5. Explain dispersion of optical fibers. What are its different types? 

6. Write a note on the classification of optical fibers. 

7. Write a note on fiber losses. 
 
5.19 Problems 

1. Calculate the numerical aperture and acceptance angle if the refractive index of the core is 

1.48 and that of cladding is 1.46. [Ans. 0.2425, 14] 

2. Find the refractive indices of the core and the cladding materials of a fiber if numerical 

aperture is 0.22 and  = 0.012. [Ans. n1 = 1.42, n2 = 1.403] 

3.  Assuming the outside medium is air, calculate the maximum value of angle of incidence that 

a ray can make with the axis of a step index fiber such that it gets guided through the fiber 

for the following fiber parameters (a) n1 = 1.6, n2 = 1.5, (b) n1 = 2.1, n2 = 1.5. [Ans. 3350, 

90]  

4. A silica optical fiber has a core of refractive index 1.5 and cladding of refractive index 1.47. 

Determine (a) the critical angle at the core-cladding interface, (b) the N A for the fiber and 

(c) the acceptance angle in air for the fiber. [Ans. (a) 78.5, (b) 0.30, (c) 17.4] 

5.  A graded index fiber has a core with a parabolic refractive index profile which has a 

diameter of 50 m. The fiber has a numerical aperture of 0.2. Calculate the total number of 

guided modes propagating in the fiber when it is operating at a wavelength of 1000 nm. 

[Ans. 247]  

6.  A step index fiber with a relative index difference of 1.5% is operating at a wavelength of 

0.85 m. If the core refractive index is 1.48, calculate the maximum core diameter for single 

mode operation of the fiber. [Ans. 2.534 m]  

7. A graded index fiber with a parabolic refractive index profile core has a refractive index at 

the core axis of 1.5 and a relative index difference of 1%. Estimate the maximum possible 

core diameter which allows single-mode operation at a wave length of 1300 nm. [Ans. 6.624 

m]  

8. Determine the cut off wavelength for a step index fiber to exhibit single mode operation 

when the core refractive index and radius are 1.46 and 4.5 m respectively, with the relative 

index difference being 0.25%. [Ans. 1213 nm] 

9. An optical fiber has a numerical aperture of 0.2 and a cladding refractive index of 1.59. 

Determine the acceptance angle for the fiber in water which has a refractive index 1.33 and 

the critical angle at the core-cladding interface. [Ans.8.6, 83.6] 

10. The mean optical power launched into an 8 km length of fiber is 120 W and the mean 

optical power at the fiber output is 3 W. Determine (a) the overall signal attenuation or loss 

in decibels through the fiber , (b) the signal attenuation per kilometre for the fiber, (c) the 

overall signal attenuation for a 10 km optical link using the same fiber with splices at 1 km 

intervals, each giving an attenuation of 1 dB and (d) the numerical input/output power ratio 

in (c). [Hint- Power ratio = i

o

P

P
 = 

dB

1010 . Ans. (a) 16dB, (b) 2 dB/km, (c) 29 dB, (d) 794.3].  
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5.20 Pulse dispersion in single mode fibers 

In the modal analysis of step index fiber we have seen that for single mode step index 

fiber the normalized V parameter is such that (eqn.26 sec.3.16.1) 
 
  0 < V < 2.4048        (1) 

That is, with this V parameter there is only one guided mode that can propagate through 

the fiber. Using equation for V eqn.1 becomes (by eqn.7a sec 3.16.1), 
 

( )
1

2 2 2

0 1 20 < k a n n 2.4048−   

( )
1

2 2 2

1 2

0

2π
0 < a n n 2.4048

λ
−   

( )
1

2 2 2

1 2 0

2π
0 < a n n λ

2.4048
−   

Thus, for a single mode step index fiber, the wavelength ( )
1

2 2 2

co 1 2

2π
λ a n n

2.4048
= −  is called the 

cut off wavelength of the given step index fiber. Then we can write, 
 

   ( )
1

2 2 2

0 co 1 2

2π
λ λ a n n

2.4048
 = −       (2) 

The fibers satisfying conditions given by eqn.1 or 2 are referred to as single mode fibers 

and they play very important role in high bandwidth optical fiber communication systems. Since 

there is only one mode they are free from intermodal dispersion, the major factor that limits the 

information capacity of multimode fibers.  

The only form of dispersion in single mode fibers is the intramodal dispersion which is 

the broadening of a particular mode due to the finite spectral width of the source. It includes the 

material dispersion and the waveguide dispersion.  

Material dispersion is caused by the dependence of refractive index of the material of 

the fiber on the wavelength of the propagating waves and the waveguide dispersion is the result 

of wavelength-dependence of the propagation constant of the optical waveguide. The phase 

velocity of the wave in a structure depends on its frequency simply due to the structure's 

geometry. The larger the wavelength, the more the fundamental mode will spread from the core 

into the cladding. This causes the fundamental mode to propagate faster. More generally, 

"waveguide" dispersion can occur for waves propagating through any inhomogeneous structure 

(e.g., a photonic crystal), whether or not the waves are confined to some region. 

The dispersion is usually measured in picoseconds per kilometre length of the optical 

fiber per nanometre spectral width of the source. The material dispersion depends on the 

refractive index variation with wavelength and the spectral width of the source. (This is beyond 

the scope of the syllabus). It is given by, 
 

    m =  
2

2 01
0 2

0 0

λd nL
λ

c dλ λ

 
−  

 
       (3a) 

Or,        m

0

τ1

L λ

 
 

 
 =  

2

0 1

2

0

λ d n

c dλ

 
−  

 
 ps/km nm      (3b) 

where, m is the pulse spread (in terms of time), L is the length of the waveguide, n1 refractive 

index of the core and 0 is the free space wavelength. The suffix m in m stands for material 

dispersion. 

https://en.wikipedia.org/wiki/Photonic_crystal
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In a single mode step index fiber even if the material dispersion is absent there may be 

waveguide dispersion that can be calculated as follows.  

We have, by eqn.7a sec.3.16.1, the normalized waveguide parameter V by, 

        V =  ( )
1

2 2 2U W+   =  ( )
1

2 2 2

0 1 2k a n n−  =   ( )
1

2 2 2

1 2

0

2π
a n n

λ
−    (4) 

     
0

dV

dλ
 =  ( )

1
2 2 2

1 22

0

2π
a n n

λ
− −  =  

0

V

λ
−      (5) 

The variation of propagation constant  of the wave in the fiber medium with respect to 0 is 

given by, 

     
0

dβ

dλ
 =   

0

dβ dV

dV dλ
 = 

0

V dβ

λ dV
−       (6) 

Here we have neglected the wavelength dependence of n1 and  which is the fractional 

difference between the core and the cladding refractive indices given by 
 

         = 1 2

1

n n

n

−
          (7) 

For weakly guiding fibers, n1  n2, then we can write, 

   1 2n n−  =  n1  n2        (8) 

And, (by eqn.19 sec.3.16.1) the normalized propagation constant, 

         b =  

2
2

22

0

2 2

1 2

β
n

k

n n

−

−
 =  

( ) ( )

2 2

0 0

1 2 1 2

β β
n n

k k

n n n n

   
+ −   

   

+ −
 

But propagation constant,  = 
2π

λ
  and  k0 = 

0

2π

λ
. Hence 

0

β

k
= 0λ

λ
 n1. Also using eqn.8 

Then,        b   

2

0

2

β
n

k

n

−


 

Or,      
0

β

k
   2 2bn n +  

Thus,          ( )0 2k n 1 b+   = ( )2

0

2π
n 1 b

λ
+        (9) 

     
dβ

dV
  ( ) ( )2 2

0 0

d 1 2π d
2πn 1 b n 1 b

dV λ λ dV

 
+  + +  

 
 

     ( ) ( )0
2 2

0 0 0

dλd 1 2π d
2πn 1 b n 1 b

dλ λ dV λ dV

 
+  + +  

 
 

    ( ) 02 2

2

0 0

dλ2πn 2πn db
1 b

λ dV λ dV
− +  +        (10) 

The theory of optical fibers shows that the group delay in an optical fiber of length L, 

         =
dβ

L
dω

  = 

0

dβ
L

2πc
d

λ

 
 
 

 = 
2

0

0

Lλ dβ

2πc dλ
−  = 

2

0

0

Lλ dβ dV

2πc dV dλ
−  
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       ( )
2

0 02 2

2

0 0 0

Lλ dλ2πn 2πn db dV
1 b

2πc λ dV λ dV dλ

 
− − +  +  

 
 

      ( )
2 2

0 0 02 2

2

0 0 0 0

Lλ dλ Lλ2πn 2πndV db dV
1 b

2πc λ dV dλ 2πc λ dV dλ
+  −   

Using eqn.5,    ( )
2 2

0 02 2

2

0 0 0

Lλ Lλ2πn 2πn db V
1 b

2πc λ 2πc λ dV λ
+  +   

i.e.         2Ln db
1 b V

c dV

 
+  +  

 
      (11) 

The broadening of the pulse due to the waveguide dispersion is given by, 

      w =  0

0

d
λ

dλ

 
 

 
   2

0

0

Lnd db
1 b V λ

dλ c dV

   
+  +     

   
 

     2
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V λ

c dλ dλ dV
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     2
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c dλ dλ dV dλ dV
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  
  

Using eqn.5,    2
0

0 0

Ln db V d db V
2 V λ

c dV λ dV dV λ

   
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     
2

02

2

0

λLn db d b
V 2 V

c λ dV dV

   
− +  
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     
( )2

02

2

0

d bVλLn
V

c λ dV

 
−  

 
      (12) 

We have already seen the universal curves (fig.c sec.3.16.1) for ‘b’ as a function of ‘V’ 

in the case of a step index fiber. Thus for step index fibers the quantity 
( )2

2

d bV
V

dV
 depends only 

on the v value. This is true only when n1  n2 (since for the derivation of eqn.12 we have assumed 

n1  n2). This is indeed the case for all practical fibers.  

Now in order to get a numerical appreciation we use the following empirical relation by 

Rudolph and Neumann in 1976.  
 

        b =  

2
B

A
V

 
− 

 
    ;  1.5 < V < 2.5     ;  A = 1.1428 and B = 0.996    (13) 

This relation is accurate to only within 0.2% of the exact values. Even though the eqn.13 is not 

accurate we use it to get an idea of the comparison between the material dispersion and the 

waveguide dispersion.  
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By eqn.13 we have, 

      bV =  
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Using eqn.14, eqn.12 becomes, 

      w   
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−  
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But we have, by eqn.7a sec3.16.1 

          V =  ( )
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Then from eqn.15 we get, 

        w

0
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Eqn.17 shows that the relationship between w

0

τ1

L λ

 
 

 
 and 0λ  is linear and the graph between 

them will be straight line with negative slope.  
  

The total dispersion in a step index fiber is approximately, 

    tot   m + w        (18) 

We next study the relative contributions of the material and waveguide dispersions to 

the total dispersion. Figure below gives the variation of m

0
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, w
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 and tot

0

τ1

L λ

 
 

 
 as 

a function of 0 for pure silica.  

Calculation of dispersions for typical cases:  

Case-a: Material dispersion: For 0 = 0.8m; 
2

1

2

0

d n

dλ
   410−2 m−2  

Then,        m

0

τ1

L λ

 
 

 
 = 

2

0 1

2

0

λ d n

c dλ

 
−  

 
 =  

6 2 12

8

0.8 10 4 10 10

3 10

− −   
−


 



 

M C T Optical Fibers 39 

 

       − 410− s/m2  =  −100 ps/km nm  

Since, 
ps

km nm
 =  

12

3 9

10 s

10 m 10 m

−

−
 = 610−

2

s

m
;   Or, 

2

s

m
 = 6 ps

10
km nm

    

[The value −100 ps/km nm 

corresponding to 0 = 0.8m is 

not plotted in the graph in which 

only values corresponding to 0 

= 1m to 1.8m are plotted]. 

  

Case-b: Waveguide dispersion: 

For a step index single mode 

fiber with 0 = 0.8m; a = 3m; 

 = 0.00154; n2 = 1.45. The 

values are chosen such that 

V 1.9 at 0 = 0.8m. Using 

B 0.996= , we obtain, 

    

     w
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   
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  65 10− m/s2 = −5 ps/km nm 

These results show that in the wavelength region around 0.8m, the contribution due to material 

dispersion is much greater than that due to waveguide dispersion. Therefore the dispersion in 

optical fiber is mainly due to material dispersion. 

Case-c: Special case for 0 = 1.3m: It is evident from the graph that the material dispersion is 

very small and changes sign for the wavelength around 0  1.3m, so that the total dispersion 

is zero there. We can illustrate this by calculating the material and waveguide dispersions as 

done above. 

  For, 0 = 1.3m; 
2

1

2

0

d n

dλ
   −5.510−4 m−2  we get,  

         m

0

τ1

L λ

 
 

 
   2.4 ps/km nm 

For a step index single mode fiber with 0 = 1.3m; a = 5.6m;  = 0.00117; n2 = 1.45. The 

values are chosen such that V 1.9 at 0 = 1.3m. Using B 0.996= , we obtain,  

            w

0

τ1

L λ

 
 

 
   − 2.4 ps/km nm 

Thus, the material and waveguide dispersion cancel each other so that the total dispersion is 

zero and hence the fiber has a very large bandwidth. We mention here that the material 

dispersion calculated here is quite accurate, whereas the waveguide dispersion is not very 

accurate because of the use of the empirical formula given by eqn.13. Nevertheless, the above 

procedure tells us one may get zero dispersion in the fiber. (Complete the note and add more 

problems before print). 
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(Kimura in 1979) 


