PROVIDENCE WOMEN'S COLLEGE (AUTONOMOUS)

KOZHIKODE, KERALA

Syllabus

Four Year Under Graduate Programme

BSc MATHEMATICS HONOURS

(Major, Minor and General foundation Courses)

w.e.f. 2024-25 Admissions

NOTIFICATION

It is hereby notified that the following members have been nominated to the Board of Studies in Mathematics of Providence Women's College (Autonomous), Kozhikode as per the sub section 68 H Amendment of Calicut University Act 5 of 1975. The nominated members shall hold the office for a period of three years from the date of this notification. Their appointments are ratified by the Governing Body meeting held on 22/05/2024.

	Name and Designation	Institution
1.	Aiswarya Paul Assistant Professor, Department of Mathematics. Chairman, Head of the Department.	Providence Women's College, Calicut.
2.	(i) Dr. Sunil MathewAssociate Professor,Department of Mathematics.External expert.	NIT, Calicut.
	(ii) Dr. Vani Lakshmi RAssistant Professor,Department of Data Science.External expert.	Prasanna School of Public Health, Manipal Academy of Higher Education.
3.	Dr. Aswin VS Associate Professor, Industry Expert.	School of Digital Sciences, Thiruvananthapura m.
4.	Dr. Vineesh KP Assistant Professor, Department of Mathematics. Member.	Sree Narayana Guru College, Chelannur, Kozhikode.
	Ms. Reshmi KM Assistant Professor, Department of Mathematics. Member.	Govt. Arts and Science College, Kozhikode.

PROVIDENCE WOMEN'S COLLEGE

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS

w.e.f. 2024 Admission Onwards

(PWC FYUGP Regulations 2024)

CONTENTS

1.	Programme Outcomes (PO)	5
2.	Programme Specific Outcomes (PSO)	6
3.	Minimum credit requirement of the different pathways in the three-year programme in PWCFYUGP	-
4.	B.Sc. Mathematics Honours Programme course structure for pathways 1-	4
5.	Credit distribution for pathways 1-4	14
6.	Distribution of major courses in mathematics for pathway 1-4	15
7.	Elective courses in mathematics with specialization	17
8.	Elective courses in mathematics with no specialization	18
9.	Grouping of minor courses in mathematics	19
10.	. Grouping of vocational minor courses in mathematics	21
11.	. Course structure for batch A1 (B2) in pathway 5: Double major	24
12.	. Course structure for batch B1 (A2) in pathway 5: Double major	29
13.	. Evaluation scheme	34
14.	. Major courses	47
15.	. Elective courses	138
16.	. Research Methodology	. 198
17.	. MDC	. 203
18.	. Skill Enhancement Course	218
19.	. Value Added Courses	. 228
20.	. Vocational Minors	. 245
21.	. Minor	291
22.	. Double major courses	359
23.	. Online equivalent courses	378

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at Providence Women's College, a student would:

PO1	Knowledge Acquisition:
	Demonstrate a profound understanding of knowledge trends and their impact
	on the chosen discipline of study.
PO2	Communication, Collaboration, Inclusiveness, and Leadership:
	Become a team player who drives positive change through effective
	communication, collaborative acumen, transformative leadership, and a
	dedication to inclusivity.
PO3	Professional Skills:
	Demonstrate professional skills to navigate diverse career paths with
	confidence and adaptability.
PO4	Digital Intelligence:
	Demonstrate proficiency in varied digital and technological tools to understand
	and interact with the digital world, thus effectively processing complex
	information.
PO5	Scientific Awareness and Critical Thinking:
	Emerge as an innovative problem-solver and impactful mediator, applying
	scientific understanding and critical thinking to address challenges and advance sustainable solutions.
PO6	Human Values, Professional Ethics, and Societal and Environmental
	Responsibility:
	Become a responsible leader, characterized by an unwavering commitment to
	human values, ethical conduct, and a fervent dedication to the well-being of
	society and the environment.
PO7	Research, Innovation, and Entrepreneurship:
	Emerge as a researcher and entrepreneurial leader, forging collaborative
	partnerships with industry, academia, and communities to contribute enduring
	solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the B.Sc. Mathematics Honours Programme at Providence Women's College, a student would:

	Programme Specific Outcome (Major)
PSO1	Advanced Mathematical Knowledge: Understand core mathematical
	abstract concepts/theories and demonstrate a high level of mathematical
	rigor and logical reasoning
PSO2	Modelling and Problem-Solving Skills: Apply mathematical techniques
	to solve complex problem situations across various domains and
	interpret the result, demonstrating critical thinking and analytical skills.
PSO3	Computational Proficiency: Apply mathematical understanding to solve
	problems and explicitly work out step by step either by self or by
	software based computational tools.
PSO4	Research Aptitude: Analyse mathematical abstract ideas effectively and
	present/communicate mathematical arguments and solutions in a clear
	and coherent manner leading to research in Mathematics
	Programme Specific Outcome (Minor)
PSO5	Mathematics Proficiency: Demonstrate a strong understanding of
	mathematical principles and problem solving
PSO6	Interdisciplinary Integration: Integrate Mathematics with relevant
	disciplines to develop more holistic approaches to solve problems,
	leading to innovative solutions and advancements in various fields.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS

Sl. No.	Academic Pathway	Major Eachco 4 cr	Minor/ Other Disciplin es urse has redits	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3 Each course has 3 credits	Intern- ship	Total Credits	Example
1	Single	68	24	39	2	133	Major:
	Major	(17	(6	(13			Mathematics +
	(A)	courses)	courses)	courses)			six courses in
		,	,)			different
							disciplines in
							different
							combinations
2	Major (A)	68	12+12	39	2	133	Major:
	with	(17		(12)			Mathematics
	Multiple	(17	(3+3=6)	(13			+
	Discipline	courses)	courses)	courses)			Statistics and Computer
	s (B, C)						Science
3	Major (A)	68	24	39	2	133	Major:
	with	(17					Mathematics
	Minor(B)	courses)	(6	(13			Minor:
			courses)	courses)			Physics
4	Major (A)	68	24	39	2	133	Major:
	with						Mathematics
	Vocational	(17	(6	(13			Vocational
	Minor (B)	courses)	courses)	courses)			Minor: Data
	D 11			10 + 0+0	2	122	Analysis
5	Double	A: 48	-	12 + 9+9	2	133	
	Major			+9			

IN THE THREE-YEAR PROGRAMME IN PWC FYUGP

(A, B)	(12 courses)	The 24 credits in the Minor stream are distributed between the two Majors.		Mathematics and Physics double major
	B: 44	the highers.		double major
	(11	2 MDC, 2 SEC, 2 VAC and the		
	courses)	Internship should be in Major A.		
		Total credits in Major A should be		
		48 + 20 = 68 (nearly 50% of 133)		
		1 MDC, 1 SEC and 1 VAC should be in Major B. Total credits in Major B should be $44 + 9 = 53$ (40% of 133)		
Exit	t with UG D	egree / Proceed to Fourth Year with	133 Credi	ts

B.Sc. MATHEMATICS HONOURS PROGRAMME

COURSE STRUCTURE FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Total Hours		Credits	Marks		
						Interna	Externa	Total
1	MAT1CJ101/ MAT1MN100	Core Course 1 in Major – Differential Calculus	60	4	4	30	70	100
		Minor Course 1	60/75	4/5	4	30	70	100
		Minor Course 2	60/75	4/5	4	30	70	100
	ENG1FA101 (2)	Ability Enhancement	30+30	2+2	2+1	25	50	75
	(_)	Course 1– English	(T+P)	(T+P)	(T+P)			
		(with Theory T & Practicum P)						
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major	45	3	3	25	50	75
		Total		22/24	21			525
2	MAT2CJ101/ MAT2MN100	Core Course 2 in Major – Integral Calculus	60	4	4	30	70	100
	Minor Course 3		60/75	4/5	4	30	70	100
		Minor Course 4	60/75	4/5	4	30	70	100
	ENG2FA103 (2)	Ability Enhancement Course 3– English	30+30	2+2	2+1	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 – Other than Major	45	3	3	25	50	75
		Total		22/24	21			525
3	MAT3CJ201	Core Course 3 in Major– Multivariable Calculus (with Theory T & Practicum P)	45+30 (T+P)		3+1 (T+P)	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 4 in	60	4	4	30	70	100
		Minor Course 5	60/75	4/5	4	30	70	100
		Minor Course 6	60/75	4/5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV108 (2)	Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/25	22			550
4	MAT4CJ203	Core Course 5 in Major –Real Analysis I	45+30	3+2	3+1	30	70	100
	MAT4CJ204	MAT4CJ204 Core Course 6 in Major – Basic Linear Algebra		4	4	30	70	100
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (with Theory T & Practical P)	45+30 (T+P)		3+1 (T+P)	30	70	100

	ENG4FV109 (2)	Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
	ENG4FS111 (2)	Skill Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Total		24	21			525
5	MAT5CJ301	Core Course 8 in Major –Real Analysis II	45+30	3+2	3+1	30	70	100
	MAT5CJ302	Core Course 9 in Major –Abstract Algebra I	60	4	4	30	70	100
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	60	4	4	30	70	100
		ElectiveCourse 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		24	23			575
		Core Course 11 in Major – Complex Analysis II (For choosing this course as minor from other departments, students must have acquainted themselves with necessary contents of MAT5CJ303, as prerequisites)	60	4	4	30	70	100
	MAT6CJ305/ MAT8MN305	Core Course 12 in Major–Elementary Number Theory	60	4	4	30	70	100

	MAT6CJ306/	Core Course 13 in	60	4	4	30	70	100
	MAT8MN306			-				
		Elective Course 3 in Major	60	4	4	30	70	100
		Elective Course 4 in Major	60	4	4	30	70	100
	MAT6FS113	Skill Enhancement Course 3 – Data Science with Python	45	3	3	25	50	75
	MAT6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		23	25			625
Total Cre	dits for Three	Years			133			3325
7	MAT7CJ401	Core Course 14 in Major–Mathematical Analysis	45+30	3+2	3+1	30	70	100
	MAT7CJ402	Core Course 15 in Major –General Topology	45+30	3+2	3+1	30	70	100
	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	45+30	3+2	3+1	30	70	100
	MAT7CJ404	Core Course 17 in Major–Linear Algebra	45+30	3+2	3+1	30	70	100
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	45+30	3+2	3+1	30	70	100
		Total		25	20			500
8	MAT8CJ406/ MAT8MN406	Core Course 19 in Major–Basic Measure Theory	45+30	3+2	3+1	30	70	100

MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	60	4	4	30	70	100	
MAT8CJ408 / MAT8MN408	Core Course 21 in Major–Differential Equations	60	4	4	30	70	100	
OR (instead	of Core Courses 19 to 21	in Maj	or)	1	•		1	
MAT8CJ449	Project (in Honours programme)	360*	13*	12	90	210	300	
OR (instead	of Core Courses 19 to 21	in Maj	or)		1	1	I	
MAT8CJ499	Project (in Honours with Research programme)	360*	13*	12	90	210	300	
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100	
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100	
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100	
OR (instead of Elective Course 7 in Major, in the case of Honours with Research Programme)								
MAT8CJ489	Research Methodology in Mathematics	60	4	4	30	70	100	
	Total		25	24			600	
Total Credits for Four Years1774425								

^{*} The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1-4

1. Single Major

3. Major with Minor

2. Major with Multiple Disciplines

Semester	Major		General					
	Courses	Minor	Foundation Courses	Internship/	Total			
			Courses	Project				
		Courses		110jeet				
1	4	4+4	3+3+3	-	21			
2	4	4 + 4	3 + 3 + 3	-	21			
3	4+4	4 + 4	3+3	-	22			
4	4 + 4 + 4	-	3 + 3 + 3	-	21			
5	4+4+4+4+	-	3	-	23			
	4							
6	4 + 4 + 4 + 4 +	-	3	2	25			
	4							
Total for	68		39		133			
Three								
Years		24		2				
7	4+4+4+4+	-	-	-	20			
	4							
8	4 + 4 + 4	4 + 4 + 4	-	12*	24			
		Instead of the	ree Major course	S				
Total for	88 + 12 = 100		39		177			
Four Years								
		36		2				

4. Major with Vocational Minor

DISTRIBUTION OF MAJOR COURSES IN Mathematics

FOR PATHWAYS 1-4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	MAT1CJ101 /MAT1MN100	Core Course 1 in Major – Differential Calculus	4	4
2	MAT2CJ101 /MAT2MN100	Core Course 2 in Major – Integral Calculus	4	4
3	MAT3CJ201	Core Course 3 in Major – Multivariable Calculus	5	4
	MAT3CJ202 /MAT3MN200	Core Course 4 in Major – Matrix Algebra	4	4
4	MAT4CJ203	Core Course 5 in Major – Real Analysis I	5	4
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	4	4
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (P)	5	4
5	MAT5CJ301	Core Course 8 in Major – Real Analysis II	5	4
	MAT5CJ302	Core Course 9 in Major – Abstract Algebra I	4	4
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	4	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4
6	MAT6CJ304/ MAT8MN304	Core Course 11 in Major – Complex Analysis II	4	4

	MAT6CJ305 /MAT8MN305	Core Course 12 in Major – Elementary Number Theory	4	4
	MAT6CJ306 /MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	4	4
		Elective Course 3 in Major	4	4
		Elective Course 4 in Major	4	4
	MAT6CJ349	Internship in Major	-	2
	Total	for the Three Years		70
	MAT7CJ401	Core Course 14 in Major - Mathematical Analysis	5	4
	MAT7CJ402	Core Course 15 in Major – General Topology	5	4
7	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	5	4
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	5	4
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	5	4
	MAT8CJ406/ MAT8MN406	Core Course 19 in Major – Basic Measure Theory	5	4
	MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	4	4
	MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	4	4
		OR (instead of Core Courses 19 - 21 in	Major)	
	MAT8CJ449	Project (in Honours programme)	13	12
	MAT8CJ499	Project (in Honours with Research programme)	13	12
		Elective Course 5 in Major	4	4
		Elective Course 6 in Major	4	4

		Elective Course 7 in Major	4	4				
8	OR (instead of Elective course 7 in Major, in Honours with Research programme)							
	MAT8CJ489	Research Methodology in Mathematics	4	4				
	Total		114					

ELECTIVE COURSES IN MATHEMATICS WITH SPECIALISATION

	Sl.	Course	Title						Marks			
Group No.	No	Code		Semester	Total Hrs	Hrs/Week	Credits	Internal	External	Total		
1			MATHEMATICAL COMPUTING									
	1	MAT5EJ301 (1)	Mathematical Foundations of Computing	5	60	4	4	30	70	100		
	2	MAT5EJ302 (1)	Data Structures and Algorithms	5	60	4	4	30	70	100		
	3	MAT6EJ301 (1)	Numerical Analysis	6	60	4	4	30	70	100		
	4	MAT6EJ302 (1)	Mathematics for Digital Images	6	60	4	4	30	70	100		
2					<u> </u>	CIENC	· T *					
	1							20	70	100		
	1	MAT5EJ303 (2)	Convex Optimization	5	60	4	4	30	70	100		
	2	MAT5EJ304 (2)	Applied Probability	5	60	4	4	30	70	100		
	3	MAT6EJ303 (2)	Machine Learning I	6	60	4	4	30	70	100		
	4	MAT6EJ304 (2)	Machine Learning II	6	60	4	4	30	70	100		

Sl.	Course	Title	r	s				Marks	
No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1	MAT5EJ305	Higher Algebra.	5	60	4	4	30	70	100
2	MAT5EJ306	Linear Programming	5	60	4	4	30	70	100
3	MAT6EJ305	Topology of Metric Spaces.	6	60	4	4	30	70	100
4	MAT6EJ306	Introduction to Fourier Analysis	6	60	4	4	30	70	100
5	MAT8EJ401	Advanced Topology	8	60	4	4	30	70	100
6	MAT8EJ402	Partial Differential Equations	8	60	4	4	30	70	100
7	MAT8EJ403	Rings and Modules	8	60	4	4	30	70	100
8	MAT8EJ404	Coding Theory	8	60	4	4	30	70	100
9	MAT8EJ405	Foundations of Mathematics	8	60	4	4	30	70	100
10	MAT8EJ406	Operations Research	8	60	4	4	30	70	100
11	MAT8EJ407	Cryptography	8	60	4	4	30	70	100
12	MAT8EJ408	Introduction to Fractals	8	60	4	4	30	70	100

ELECTIVE COURSES IN MATHEMATICS WITH NO SPECIALISATION

*These courses are beyond the minimum course requirements and their syllabi are under preparation and will be updated soon.

**

GROUPING OF MINOR COURSES IN MATHEMATICS

								Ma	rks
SI. No.	Course Code	Minor Group I - Mathematic	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
		Minor Group I - Mathema	tical M	lethod	s for Sc	ience	<u> </u>		
1	MAT1MN101	Calculus	1	60	4	4	30	70	100
2	MAT2MN101	Differential Equations and Matrix Theory	2	60	4	4	30	70	100
3	MAT3MN201	Calculus of Several Variables	3	60	4	4	30	70	100
		Minor Group II – Foundations	for Ma	thema	tical Ap	plicat	ions		
1	MAT1MN102	Differential Calculus	1	60	4	4	30	70	100
2	MAT2MN102	Calculus and Matrix Algebra	2	60	4	4	30	70	100
3	MAT3MN202	Differential Equations and Fourier Series	3	60	4	4	30	70	100
		Minor Group III - Integrate	ed Mat	hemat	ical Me	thods			
1	MAT1MN103	Basic Calculus	1	60	4	4	30	70	100
2	MAT2MN103	Analysis and Some Counting Principles	2	60	4	4	30	70	100
3	MAT3MN203	Matrix Algebra and Vector Calculus	3	60	4	4	30	70	100
	1 2 3 1 2 3 1 2 3	1 MAT1MN101 2 MAT2MN101 3 MAT3MN201 1 MAT1MN102 2 MAT2MN102 3 MAT3MN202 1 MAT2MN102 3 MAT3MN202 1 MAT3MN202 3 MAT3MN202 1 MAT3MN202 3 MAT3MN202 1 MAT1MN103 2 MAT2MN103	Image: Marge of the second	Image:	Image: Minor Group I - Mathematical Method 1 MAT1MN101 Calculus 1 60 2 MAT2MN101 Differential Equations and Matrix Theory 2 60 3 MAT3MN201 Calculus of Several Variables 3 60 3 MAT3MN201 Calculus of Several Variables 3 60 1 MAT1MN102 Differential Calculus 1 60 2 MAT1MN102 Differential Calculus 1 60 2 MAT2MN102 Calculus and Matrix Algebra 2 60 3 MAT3MN202 Differential Equations and Fourier Series 3 60 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 MAT3MN202 Differential Equations and Fourier Series 3 60 5 MAT3MN103 Basic Calculus 1 60 6 MAT2MN103 Analysis and Some Counting Principles 2 60 3 MAT3MN203 Matrix Algebra and Vector 3 60	Image: Ample and Amp	Minor Group I - Mathematical Methods for Science 1 MAT1MN101 Calculus 1 60 4 4 2 MAT2MN101 Differential Equations and Matrix Theory 2 60 4 4 3 MAT3MN201 Calculus of Several Variables 3 60 4 4 4 MAT3MN201 Calculus of Several Variables 3 60 4 4 1 MAT1MN102 Differential Calculus 1 60 4 4 2 MAT2MN102 Differential Calculus 1 60 4 4 3 MAT2MN102 Calculus and Matrix Algebra 2 60 4 4 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 4 Minor Group III - Integrated Mathematical Methods 1 60 4 4 4 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 1 MAT1MN103 Basic Calculus 1 60 4 4 2 MAT2MN103	Minor Group I - Mathematical Methods for Science1MAT1MN101Calculus16044302MAT2MN101Differential Equations and Matrix Theory26044303MAT3MN201Calculus of Several Variables36044304MAT3MN201Calculus of Several Variables36044305MAT3MN201Calculus of Several Variables36044306MAT3MN202Differential Calculus Algebra16044307MAT2MN102Calculus and Matrix Algebra26044303MAT3MN202Differential Equations and Fourier Series36044304MAT3MN202Differential Equations and Fourier Series36044301MAT1MN103Basic Calculus Counting Principles16044302MAT2MN103Analysis and Some Counting Principles2604430	90 91 92 9391 91 9191 91 91 9191 91 91 91 9191 91 91 91 91 9191 91 91 91 91 91 91 91 91 91 91 91 91 91

4			Minor Group IV - D	iscrete	Mathe	ematics					
	1	MAT1MN104	Mathematical Logic, Set Theory and Combinatorics	1	60	4	4	30	70	100	
	2	MAT2MN104	Graph theory and Automata	2	60	4	4	30	70	100	
	3	MAT3MN204	Boolean Algebra and System of Equations	3	60	4	4	30	70	100	
		Minor Group V – Linear Algebra									
	1	MAT1MN105	Matrix Theory	1	60	4	4	30	70	100	
	2	MAT2MN105	Vector Spaces and Linear Transformations	2	60	4	4	30	70	100	
	3	MAT3MN205	Optimization Techniques	3	60	4	4	30	70	100	
			Minor Group VI – Mat	hemati	ical Ec	conomic	cs				
	1	MAT1MN106	Principles of Micro Economics	1	60	4	4	30	70	100	
	2	MAT2MN106	Optimization Techniques in Economics	2	60	4	4	30	70	100	
	3	MAT3MN206	Applied Mathematics for Economic Analysis	3	60	4	4	30	70	100	

* Students from other disciplines can choose up to one group (comprising three courses in total) from the first three options, as these groups share partially overlapping topics.

** Students from major mathematics can enrol only in minor group VI or a vocational minor group as per the clauses 7.2.12 and 7.2.13 (amended).

		VOCA	ATIONAL MATH	HEMA	TICS	-DAT	A ANAI	YTICS		
				-	-					
		le							Marks	
Group No.	Sl. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1				Int	troduc	tion to	AI		•	
	1	MATIVN 101	Python Programming	1	75	5	4	30	70	100
	2	MAT2VN 101	Linear Algebra for Machine Learning	2	75	5	4	30	70	100
	3	MAT3VN 201	Introduction to Machine Learning	3	75	5	4	30	70	100
	4	MAT8VN 401	Introduction to Artificial Intelligence	8	75	5	4	30	70	100
2			Intro	oducti	on to I	Data So	cience			
	1	MAT1VN 102	Statistics for Data Science	1	75	5	4	30	70	100
	2	MAT2VN 102	R Programming	2	75	5	4	30	70	100
	3	MAT3VN 202	Data Mining	3	75	5	4	30	70	100
	4	MAT8VN 402	Data Visualization	8	75	5	4	30	70	100

(i). Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.

(ii). Students in the Mathematics with Multiple Disciplines pathway who wish to choose a minor from within the same department are limited to selecting either the sixth minor group (Mathematical Economics) or one of the vocational minor groups listed above as one of their

multiple disciplines. For their second multiple discipline choice, students must select a Minor or Vocational Minor group offered by a discipline other than mathematics. If students opt for Mathematical Economics or another vocational group from mathematics, the title of that group will serve as their multiple discipline title.

(iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by a discipline other than their Major discipline. If the students from other major disciplines choose any two Minor groups in Mathematics as given above, then the title of the Minor will be Mathematics.

(iv). Students in Major with Vocational Minor pathway can choose all the courses from any two Vocational Minor groups offered by a discipline other than their Major discipline. If the students from other Major disciplines choose any two Vocational Minor groups in Mathematics as given above, then the title of the Vocational Minor will be Data Analytics.

	lle	le		ek			Marks	
Semester	Course Code	Course Title	Total Hours	Hours / Week	Credits	Internal	External	Total
1	MAT1FM105(1)	Multi-Disciplinary Course 1 - Matrices and Basics of Probability theory	45	3	3	25	50	75
1	MAT1FM105(2)	Multi-Disciplinary Course 2 -Mathematics for Competitive Examinations - Part I	45	3	3	25	50	75
2	MAT2FM106(1)	Multi-Disciplinary Course 3 -Graph Theory and LPP	45	3	3	25	50	75
2	MAT2FM106(2)	Multi-Disciplinary Course 4 – Mathematics for Competitive Examinations - Part II	45	3	3	25	50	75

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MATHEMATICS

3	MAT3FV109(1)	Value-Added Course 1 - History of Mathematics	45	3	3	25	50	75
3	MAT3FV109(2)	Value-Added Course 2 - Computational Logic	45	3	3	25	50	75
4	MAT4FV110(1)	Value-Added Course 3 - Statistics and Mathematics with R	45	3	3	25	50	75
4	MAT4FV110(2)	Value-Added Course 4 - The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
5	MAT5FS112	Skill Enhancement Course 2 - Mathematical Type Setting System - LaTeX	45	3	3	25	50	75
6	MAT6FS113	Skill Enhancement Course 3 - Data Science with Python	45	3	3	25	50	75

COURSE STRUCTURE FOR BATCH A1(B2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

	Course Title	Total	Hours/ Week	Credits	_	Marks		
Semester		Hours			Internal	External	Total	
1	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100	
	Core Course 1 in Major B	60/75	4/5	4	30	70	100	
	Core Course 2 in Major Mathematics – Matrix Algebra (for batch A1 only)	60	4	4	30	70	100	
	Ability Enhancement Course 1 English	30+30	2+2	2+1	25	50	75	
	Ability Enhancement Course 2 Additional Language	45	3	3	25	50	75	
	Multi-Disciplinary Course 1 in Mathematics – Matrices and Basics of Probability theory <i>Or</i> Mathematics for Competitive Exams – Part I (for batch A1 only)	45	3	3	25	50	75	
	Total		24/25	21			525	

2	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
	Core Course 2 in Major B	60/75	4/5	4	30	70	100
	Core Course 3 in Major B – (for batch B2 only)	60/75	4/5	4	30	70	100
	Ability Enhancement Course 3 English	30+30	2+2	2+1	25	50	75
	Ability Enhancement Course 4 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 2 in Mathematics – Graph Theory and LPP <i>Or</i> Mathematics for Competitive Exams – Part II	45	3	3	25	50	75
	Total		23 / 25	21			525
3	Core Course 4 in Major Mathematics – Multivariable Calculus.	75	5	4	30	70	100
	Core Course 5 in Major Mathematics – Basic Linear Algebra	60	4	4	30	70	100
	Core Course 4 in Major B	60/75	4/5	4	30	70	100
	Core Course 5 in Major B	60/75	4/ 5	4	30	70	100
	Multi-Disciplinary Course 1 in B	45	3	3	25	50	75

	Value-Added Course 1 in Mathematics – History of Mathematics <i>Or</i> Computational Logic (for batch A1 only)	45	3	3	25	50	75
	Total		23 / 25	22			550
4	Core Course 6 in Major Mathematics – Real Analysis	45+30	3+2	2+2	30	70	100
	Core Course 6 in Major B	60/75	4/5	4	30	70	100
	Core Course 7 in Major Mathematics - Abstract Algebra I	60	4	4	30	70	100
	Value-Added Course 2 in Mathematics – Statistics and Mathematics with R <i>Or</i> The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
	Value-Added Course 1 in B	45	3	3	25	50	75
	Skill Enhancement Course 1 in Mathematics – Fundamentals of Python and SageMath	30+30	2+2	3	25	50	75
	Total		23/24	21			525
5	Core Course 8 in Major – Complex Analysis	45+30	3+2	2+2	30	70	100
	Core Course 7 in Major B –	60/75	4/5	4	30	70	100

	Core Course 9 in Major Mathematics – Methods of Differential Equations (for batch A1 only)	60	4	4	30	70	100
	Elective Course 1 in Major Mathematics	60	4	4	30	70	100
	Elective Course 1 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 1 in B	45	3	3	25	50	75
	Total		24/25	23			575
6	Core Course 10 in Major Mathematics – Elementary Number Theory	60	4	4	30	70	100
	Core Course 8 in Major B –	60/75	4/5	4	30	70	100
	Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
	Elective Course 2 in Major Mathematics	60	4	4	30	70	100
	Elective Course 2 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 2 in Mathematics – Mathematical Type Setting System - LaTeX (for batch A1 only)	45	3	3	25	50	75
	Internship in Major Mathematics (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
	Total		24/25	25			625
				133			3325

CREDIT DISTRIBUTION FOR BATCH A1 (B2)

IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in Mathematics	General Foundation Courses in Mathematics	Internship/ Project in Mathematics	Majo Courses in B	General Foundation Courses in B	AEC	Tota 1
1	4 + 4	3	-	4	-	3+3	21
2	4	3	-	4+4	-	3+3	21
3	4 + 4	3	-	4+4	3	-	22
4	4+4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4+4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68			53	12	133
	Major Courses in Mathematics	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		Instead	d of three Major	courses			
Total for Four Years	88 + 12 = 100	12					177

COURSE STRUCTURE FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

Note: Unless the batch is specified, the course is for all the students of the class

ster	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Semester		Hours	W CON		Internal	External	Total
1	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
	Core Course 1 in Major B	60/75	4/5	4	30	70	100
	Core Course 2 in Major B (for batch B1 only)	60/75	4/ 5	4	30	70	100
	Ability Enhancement Course 1 English	60	4	3	25	50	75
	Ability Enhancement Course 2 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
	Total		23 / 25	21			525
2	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
	Core Course 3 in Major B –	60/75	4/5	4	30	70	100
	Core Course 2 in Major Mathematics – Elementary Number Theory (for batch A2 only).	60	4	4	30	70	100
	Ability Enhancement Course 3 English	60	4	3	25	50	75

	Ability Enhancement Course 4 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 1	45	3	3	25	50	75
	Matrices and Basics of Probability theory <i>or</i>						
	Mathematics for Competitive Exams - Part I						
	Total		24/25	21			525
3	Core Course 5 in Major Mathematics – Multivariable Calculus	45+30	3+2	3+1	30	70	100
	Core Course 4 in Major Mathematics – Elementary Linear Algebra	45+30	3+2	3+1	30	70	100
	Core Course 4 in Major B	60/75	4/5	4	30	70	100
	Core Course 5 in Major B	60/75	4/ 5	4	30	70	100
	Multi-Disciplinary Course 2 in B –	45	3	3	25	50	75
	Value-Added Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
	Total		23/25	22			550
4	Core Course 6 in Major Mathematics – Real Analysis	45+30	3+2	3+1	30	70	100
	Core Course 6 in Major B	60/75	4/5	4	30	70	100
	Core Course 7 in Major B – (for batch B1 only)	60/75	4/5	4	30	70	100

	Value-Added Course 1 in Mathematics – History of Mathematics <i>or</i> Computational Logic	45	3	3	25	50	75
	Value-Added Course 2 in B –	45	3	3	25	50	75
	Skill Enhancement Course 1 in Mathematics – Fundamentals of Python and SageMath		4	3	25	50	75
	Total		22 / 24	21			525
5	Core Course 7 in Major Mathematics – Abstract Algebra I	60	4	4	30	70	100
	Core Course 8 in Major B –	60/75	4/5	4	30	70	100
	Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100
	Elective Course 1 in Major Mathematics	60	4	4	30	70	100
	Elective Course 1 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 1 in B	45	3	3	25	50	75
	Total		24/25	23			575
6	Core Course 8 in Major Mathematics – Methods of Differential Equations	60	4	4	30	70	100
	Core Course 10 in Major B –	60/75	4/ 5	4	30	70	100
	Core Course 9 in Major Mathematics – Complex Analysis (for batch A2 only)	45+30	3+2	2+2	30	70	100

Elective Course 2 in Major Mathematics	60	4	4	30	70	100
Elective Course 2 in Major B	60	4	4	30	70	100
Skill Enhancement Course 2 in B – (for batch B1 only)	45	3	3	25	50	75
Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
Total		24/25	25			625
Total Credits for Three Ye	133			3325		

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Mathematics	General Foundation Courses in Mathematics	AEC	Total
1	4+4	3	-	4	-	3 + 3	21
2	4	-	-	4+4	3	3+3	21
3	4+4	3 + 3	-	4+4	-	-	22
4	4+4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4+4	-	-	23
6	4+4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68			53	12	133
	Major	Minor					
	Courses in B	Courses					
7	4+4+4+	-			-	-	20
	4 + 4						
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		ir	nstead of three	e Major courses			
Total for Four Years	88 + 12 = 100	12					177

CREDIT DISTRIBUTION FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

EVALUATION SCHEME

1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks are from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation Course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks are from internal evaluation and 50 marks, from external evaluation.

2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit Practical/Practicum.

In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

In 4-credit courses with 3-credit theory and 1-credit Practical/Practicum components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for Practical/Practicum. The Practical/Practicum component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Mathematics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature o	of the Course	Internal Evalua (About 30%	tion in Marks of the Total)	External Exam	Total Marks
			Open-ended Module / Practical/Prac	On the other 4 Modules	on 4 Modules (Marks)	
			ticum		(Warks)	
1	4-credit course	only theory	10	20	70	100
		(5 modules)				
2	4-credit course	Theory (4 modules) + Practical/Pra cticum	20	10	70	100
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl.	Components of	Internal Marks for the Theory Part						
No.	Internal Evaluation of Theory Part of a Major/Minor Course	of a Theory	Major / Minor y Only	edits eory + /Practicum				
		4 Theory Modules	Open-ended Module	4 Theory Modules	Practical/Pra cticum			
1	Test paper/ Mid-semester Exam	10	4	5	-			
2	Seminar/ Viva/ Quiz	6	4	3	-			
3	Assignment	4	2	2	-			
		20	10	10	20*			
	Total	3	0	30				

^{*} Refer the table in section 1.2 for the evaluation of Practical/Practicum component

1.2. EVALUATION OF PRACTICAL/PRACTICUM COMPONENT

The evaluation of Practical/Practicum component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of Practical/Practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester Practical/Practicum examination and viva-voce, and the evaluation of Practical/Practicum records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of Practical/Practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of Practical/Practicum component shall be as given below:

Sl. No.	Evaluation of Practical/Practicum Component	Marks for	Weightage
	of Credit-1 in a Major / Minor Course	Practical/Pra cticum	
1	Continuous evaluation of Practical/Practicum/	10	50%
	exercise performed in Practical/Practicum classes		
	by the students		
2	End-semester examination and viva-voce to be	7	35%
	conducted by teacher-in-charge along with an		
	additional examiner arranged internally by the		
	Department Council		
3	Evaluation of the Practical/Practicum records	3	15%
	submitted for the end semester viva-voce		
	examination by the teacher-in-charge and		
	additional examiner		
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the Providence Women's College based on 10-point grading system (refer section 5).

Duration	Туре	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
2 Hours	Short Answer	10	8-10	3	24
	Paragraph/ Problem	8	6 – 8	6	36
	Essay	2	1	10	10
Total Marks					

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in Research Institutions, Universities, Firms, Industry or Organizations, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Mathematics or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In B.Sc. Mathematics Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical results, ideas, expressions, experimental conditions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. VALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship		Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through	Acquisition of skill set	10	40%
2	interim presentations and reports by the committee	Interim Presentation and Viva-voce	5	
3	internally constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ S	5	10%	
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally	Presentation of the work	5	
7	constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva–voce examination before the committee internally constituted by the Department Council		8	15%
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- The approved research centres or any HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University, which are not the approved research centres of the University, should get prior approval from the Providence Women's College to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.

The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME

AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Mathematics or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of theoretical/ experimental /computational in nature.

- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - Wide review of a topic.
 - Investigation on a problem in a systematic way using appropriate techniques.
 - Systematic recording of the work.
 - Reporting the results with interpretation in a standard documented form.

Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical models and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
 - 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
 - 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
 - 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
 - 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks are from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the Providence Women's College.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Sl.	Components of Evaluation of Project	Marks for the Project	Weightage
		(Honours/	
No		Honours with	
		Research)	
1	Continuous evaluation of project work	90	30%
	through interim presentations and reports		
	by the committee internally constituted by		
	the Department Council		
2	End-semester viva-voce examination to	150	50%
	be conducted by the external examiner		
	appointed by the Providence Women's		
	College.		
3	Evaluation of the day-to-day records and	60	20%
	project report submitted for the end-		
	semester viva-voce examination		
	conducted by the external examiner		
	Total Marks	300	

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva- Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

INTERNAL EVALUATION OF PROJECT

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/
		Honours with Research)
		12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

All the General Foundation Courses (3-credits) in Mathematics are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General	Internal Marks of a General Foundation Course of 3-credits in Mathematics		
	Foundation Course in Mathematics	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
Total			25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the Providence Women's College based on 10-point grading system (refer section 5)

Duration	Туре	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
1.5 Hours	Short Answer	10	8-10	2	16
	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
	•	-		Total Marks	50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

Sl.	Percentage of Marks	Description	Letter	Grade	Range of	Class
No.	(Internal & External		Grade	Point	Grade Points	
	Put Together)					
1	95% and above	Outstanding	0	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9. 49	with Distinction
3	75% to below 85%	Very Good	А	8	7.50-8.49	
4	65% to below 75%	Good	B+	7	6.50-7.49	
5	55% to below 65%	Above Average	В	6	5.50-6.49	First Class
6	45% to below 55%	Average	С	5	4.50-5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50-4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0-3.49	Fail
9	Not attending the examination	Absent	Ab	0	0	Fail

LETTER GRADES AND GRADE POINTS

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i$$
 (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	$3 \ge 6 = 18$
Ι	Course 4	3	0	10	$3 \ge 10 = 30$
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	$4 \ge 6 = 24$
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in FYUGP shall be calculated by the following formula.

CGPA for the four-year programme in FYUGP shall be calculated by the following formula.

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the Providence Women's College shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR COURSES

Programme	B. Sc. Mather	natics Honours					
Course Code	MAT1CJ101	MAT1CJ101/MAT1MN100					
Course Title	DIFFERENT	FIAL CALCULUS					
Type of Course	Major						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4 4 - 60						
Pre-requisites		dge of Sets, Relations and F	unctions, Schoo	l Level Algebra			
	and Real Nur	nbers (0-99 level).					
Course Summary	The course c	overs fundamental concept	ts in calculus, i	ncluding functions,			
	shifting of g	raphs, limits, continuity, d	lifferentiation, e	extreme values, the			
	Mean Value Theorem, graphing with derivatives, and limits at infinity with						
	asymptotes. Students learn techniques for evaluating limits, finding extrema,						
	and graphing functions using derivatives, preparing them for further studies						
	in calculus an	d related fields.					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Analyse a function for its limits,	An	F	Internal			
	continuity and differentiability and			Exam/Assignment			
	evaluate limits and derivatives.			/Seminar/Viva/			
				End Sem Exam			
CO2	Apply first and second derivatives and	Ар	F	Internal			
	related theorems to find extrema of			Exam/Assignment			
	functions.			/Seminar/Viva/			
				End Sem Exam			
CO3	Sketch the graph of functions by	An	F	Internal			
	analysing critical points and			Exam/Assignment			
	asymptotes			/Seminar/Viva/			
				End Sem Exam			
# - Factua	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)						

Detailed Syllabus:

Textbook		lus and Analytic Geometry, 9 th Edition, George B. Thor L. Finney, Pearson Publications, 2010, ISBN: 978-81749		
Module	Unit	Content	Hrs	Marks
		Module I	(48+12)	Ext: 70
	1	Preliminaries: Section 3 - Functions		
	1			
	2	Preliminaries: Section 4 - Shifting Graphs.		
	2	Section 1.1-Rates of Change and Limits - Limits of		
	3	Function Values onwards.		
I	4	Section 1.2 - Rules for Finding Limits. Topics up to and including Example 3.	12	Min.15
	5	Section 1.2 - Rules for Finding Limits. Rest of the section.		
	6Section 1.4- Extensions of the Limit Concept. Topics up to and including Example 6.			
		Module II		
	7	Section 1.5 - Continuity.		
		Section 2.1 - The Derivative of a Function (The		
	8	topic Graphing f' from estimated values is optional).		
	9	Section 2.2 - Differentiation Rules.		
Π	10	Section 2.3 - Rates of Change. Topics up to and including Example 5.	15	Min.15
	11	Section 2.5 - The Chain Rule. Topics up to and including Example 6.		
	12	Section 2.6- Implicit Differentiation and Rational Exponents. Topics up to and including Example 5.		
		Module III		
	13	Section 3.1 - Extreme Values of Functions. Topics up to Finding Extrema.		
III	14	Section 3.1 - Extreme Values of Functions- Topics from Finding Extrema onwards.		
	15	Section 3.2 - The Mean Value Theorem -Topics up to and including Example 4. (Proof of Theorem 3 is optional).	11	Min.15
	16	Section 3.2 - The Mean Value Theorem- Increasing Functions and Decreasing Functions		

	17	Section 3.3 - The First Derivative Test for Local Extreme Values.		
		Module IV		
	18	Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5.	-	
	19	Section 3.4 - Graphing with y' and y''- Topics from The Second Derivative Test for Local Extreme Values onwards.		
IV	20	Section 3.5 - Limits as $x \rightarrow \pm \infty$, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions.	10	Min.15
	21	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12.		
	22	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards.		
		Module V (Open Ended)		
V	Trigonometric Functions, Tangent Values and Formal		12	
Reference	5		1	
 Erv Rol Rol Soc Tor Lin Mi 	vin Krey pert T Sr o T Tan, n M. Ap ear Algo chael V	ton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley I szig, Advanced Engineering Mathematics, 10 th Ed, John nith and Roland B Minton, Calculus, 4 th Ed. McGraw-H Calculus, 9 th Ed.Brooks/Cole Pub Co. oostol, Calculus, Vol 1: One Variable Calculus with an I ebra, 2 nd Ed, John Wiley & Sons. an Biezen Calculus Lectures: h.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG	n Wiley & S fill Compar	nies

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	n PSOs and POs :
---------------------	------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	2	1	3	0	1
CO 2	2	3	2	1	3	0	2	1	3	0	1
CO 3	2	3	2	1	3	0	2	2	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	✓	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	\checkmark	√	~	~	\checkmark

Programme	BSc Mathemati	BSc Mathematics Honours						
Course Code	MAT2CJ101/	MAT2CJ101 / MAT2MN100						
Course Title	INTEGRAL C	CALCULUS						
Type of Course	Major							
Semester	II							
Academic	100-199							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites		ge of Functions, Limits, Cont	tinuity and Diffe	erentiation				
	(MAT1CJ101 -	Differential Calculus).						
Course	The course pro	vides a comprehensive expl	loration of inte	gral calculus, covering				
Summary	techniques suc	ch as indefinite integrals,	Riemann sur	ns, definite integrals,				
		integrals, the Fundamenta						
		integration formulas, and applications in finding areas between curves, volumes						
		of solids, lengths of plane curves, and areas of surfaces of revolution. Through						
		udents gain proficiency in s						
	problems invol	ving integration and its appl	ications in vari	ous fields.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
	Solve indefinite and definite integrals			Internal		
	of functions.	4.0		Exam/Assignment		
CO1		Ар	F	/Seminar/Viva/		
				End Sem Exam		
	Learn logarithmic, exponential, inverse			Internal		
	trigonometric functions and to evaluate			Exam/Assignment		
CO2	derivatives and integrals of the above	U	F	/Seminar/Viva/		
	transcendental functions and use it for			End Sem Exam		
	computations of other limits					
	Apply integration formulas to find the			Internal		
	area between two curves, the surface	4.5	F	Exam/Assignment		
CO3	area and volume of a solid of	Ар	Γ	/Seminar/Viva/		
	revolution.			End Sem Exam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

•

•

Detailed Syllabus:

Mad-1-	-	6168. Hrs Marl			
Module	Unit	Content	Hrs (48+12)	Marks Ext: 70	
		Module I	(10 · 12)	LAC 70	
	1	Section 4.1 - Indefinite Integrals.			
	2	Section 4.3 - Integration by Substitution - Running the Chain Rule Backward.			
I	3	Section 4.5 - Riemann Sums and Definite Integrals. (Example 9 is optional.)	14	Min.15	
	4	Section 4.6 - Properties, Area, and the Mean Value Theorem - Topics up to and including Example 6.			
	5	Section 4.6 - Properties, Area, and the Mean Value Theorem- Topics from The Average Value of an Arbitrary Continuous Function onwards.			
		Module II			
	6	Section 4.7 – The Fundamental Theorem (Example 6 is optional).		Min.15	
	7	Section 4.8 - Substitution in Definite Integrals.	_		
	8	Section 6.2 - Natural Logarithms- Topics up to and including The Graph and Range of ln x.			
II	9	Section 6.2 - Natural LogarithmsTopics from Logarithmic Differentiation onwards.	- 11		
	10	Section 6.3 - The Exponential Function- Topics up to and including Example 4.			
	11	Section 6.3 - The Exponential Function- Topics from The Derivative and Integral of e ^x onwards.			
		Module III			
	12	Section 6.6 - L' Hopital's Rule			
	13	Section 6.9 - Derivatives of Inverse Trigonometric Functions; Integrals.		M:- 15	
III	14	Section 7.1 - Basic Integration Formulas.	_ 12	Min.15	
	15	Section 7.2 - Integration by Parts	-		
	16	Section 7.3 Partial Fractions.	-		
		Module IV			
IV	17	Section 5.1 - Areas Between Curves Topics up to and including Example 2.	11	Min.15	

	18	Section 5.1 - Areas Between Curves- Topics from Boundaries with Changing Formulas		
	19	Section 5.2 - Finding Volumes by Slicing. (Example 2 may be done as open ended).	_	
	20	Section 5.3 - Volumes of Solids of Revolution- Disks and Washers - Topics up to and including Example 4.	_	
	21	Section 5.5 - Lengths of Plane Curves Topics up to and including Example 2.		
	22	Section 5.6 - Areas of Surfaces of Revolution-Topics up to and including Example 2.		
		Module V (Open Ended)		
VInverse Functions and their Derivatives, ax and logax, Inverse Trigonometric Functions and their derivatives, Hyperbolic Functions, Integrals and their derivatives, Integration using trigonometric substitutions, Moments and Center of Mass.12				
References		nton, Biven, & Stephen Davis, Calculus, 7th Ed., Wiley India	a	
2. Erv	vin Krey	yszig, Advanced Engineering Mathematics, 10th Ed, John W	'iley & Sons.	
		mith and Roland B Minton, Calculus, 4 th Ed. McGraw-Hill (Companies	
5. Toi	n M. Ar	Calculus, 9 th Ed. Brooks/Cole Pub Co. postol, Calculus, Vol 1: One Variable Calculus with an Intro	duction to Linear	
Alg	gebra, 2 ^r	^{hd} Ed, John Wiley & Sons.		

6. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	1
CO 2	2	3	2	1	3	0	3	1	3	0	1
CO 3	2	3	2	1	3	0	3	2	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	✓	~	<	~
CO 3	~	\checkmark	✓	~	✓

Programme	B.Sc. Mathematics Honours						
Course Code	MAT3CJ201						
Course Title	MULTIVARIABLE CALCULUS						
Type of Course	Major						
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/ Tutorial perweek	Practical per week	Total Hours			
	4	3	2	75			
Pre-requisites			ross product, tr	iple products, lines			
Course Summary	Basic knowledge of vectors, dot product, cross product, triple products, lines and planes in 3-dimensional space Multivariable Calculus takes the concepts learned in the single variable calculus course and extends them to multiple dimensions. Topics discussed include: Parameterizations of Plane Curves, Polar Coordinates, Lines and Planes in Space, Cylinders and Quadric Surfaces, Cylindrical and Spherical Coordinates, functions of many variables, limit, continuity, differentiation, and integration of vector-valued functions; application of vector-valued functions limits, and derivatives of multivariable functions, tangent planes and normal lines of surfaces, applying double and triple integrals to multivariable functions to find area, volume, surface area, vector fields, finding curl and divergence of vector fields; line integrals; Green's Theorem; parametric surfaces, including normal vectors, tangent planes, and areas; orientation of a surface; Divergence Theorem; and Stokes's Theorem.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe various coordinate systems— Cartesian, polar, cylindrical, and spherical—to represent, analyse, and interpret geometric figures and spatial relationships.	Ap	С	Internal Examination/ Assignment/ End Sem examination			
CO2	Compute and apply limits, partial derivatives, and multiple integrals for functions of several variables to solve complex mathematical and real-world problems.	Ap	С	Internal Examination/Sem inar/ Assignment/ Report/ End Sem examination			
CO3	Apply advanced integration techniques and vector calculus principles to evaluate integrals in various coordinate systems and analyse vector fields and their applications in physics and engineering.	An	С	Internal Examination/Sem inar/ Assignment/ Report/ End Sem examination			
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
	al Knowledge(F) Conceptual Knowledge (C	C) Procedural	Knowledge (P)	Metacognitive			
Knowle	dge (M)						

•

•

Detailed Syllabus:

Textbook	Addison Wesley- 9th Edition. Unit Content							
Module	Unit	Content						
		Module I	30)					
	1 Section 9.4: Parameterizations of Plane Curves							
		Topics up to and including Example 7						
	2	Section 9.6: Polar Coordinates	_					
		Definition of Polar Coordinates, Negative Values of r, Elementary Coordinate Equations and Inequalities, Cartesian Versus Polar Coordinates.						
	3	Section 10.5: Lines and Planes in Space						
I		Lines and Line Segments in Space, The Distance from a Point to a Line in Space, Equations for Planes in Space, Angles Between Planes; Lines of Intersection.	10					
	4	Section 10.6: Cylinders and Quadric Surfaces						
		Cylinders, Drawing Lesson, Quadric Surfaces, Drawing Lesson.						
	5	Section 10.7: Cylindrical and Spherical Coordinates	-					
		Cylindrical Coordinates, Spherical Coordinates						
		Module II						
	6	Section 12.1: Functions of Several Variables						
		Functions and Variables, Graphs and Level Curves of Functions of Two Variables, Contour Lines, Level Surfaces of Functions of Three Variables.						
	7	Section 12.2: Limits and Continuity	_					
		Limits, Continuity, Functions of More Than Two Variables.						
II	8	Section 12.3: Partial Derivatives	12					
		Definitions and Notation, Calculations, Functions of More Than Two Variables, The Relationship Between Continuity and the Existence of Partial Derivatives, Second Order Partial Derivatives, Euler's Theorem, Partial Derivatives of Still Higher Order.						
	9	Section 12.4: Differentiability, Linearization, and Differentials						

	18	Section 13.1: Double Integrals	12		
IV		Double Integrals over Rectangles, Properties of Double Integrals, Double Integrals as Volumes, Fubini's Theorem for Calculating Double Integrals.			
	17	Section 13.1: Double Integrals,			
		Module IV			
		Lagrange Multipliers with Two Constraints.			
	16	Section 12.9: Lagrange Multipliers	-		
		Constrained Maxima and Minima, The Method of Lagrange Multipliers (Theorem 9 and Corollary of Theorem 9 are optional).			
	15	Section 12.9: Lagrange Multipliers			
		Absolute Maxima and Minima on Closed Bounded Regions, Conclusion.			
	14	Section 12.8: Extreme Values and Saddle points	-		
	13	The Derivative Tests.	11		
III		Section 12.8: Extreme Values and Saddle points	-		
		Equations for Tangent Planes and Normal Lines, Planes Tangent to a Surface $z=f(x,y)$, Algebra Rules for Gradients.			
	12	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes			
		Directional Derivatives, Gradients and Tangent to Level Curves, Functions of Three Variables.			
		Directional Derivatives in the Plane, Geometric Interpretation of the Directional Derivative, Calculation, Properties of			
	11	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes			
		Module III			
		The Chain Rule for Functions of Two Variables (Proof of Theorem 5 is optional), The Chain Rule for Functions of Three Variables, The Chain Rule for Functions Defined on Surfaces, Implicit Differentiation, Remembering the Different Forms of the Chain Rule, The Chain Rule for Functions of Many Variables.			
	10	Section 12.5: The Chain Rule	-		
		Differentiability, How to Linearize a Function of Two Variables, How Accurate is the Standard Linear Approximation? Predicting Change with Differentials (Topics up to and including Example 7)			

	-	1		
		Double Integrals over Bounded Nonrectangular Regions, Finding the Limits of Integration.		
	19	Section 13.2: Areas, Moments and Centers of Mass		
		Areas of Bounded Regions in the Plane, Average Value.		
	20	Section 13.3: Double Integrals in Polar Form		
		Integrals in Polar Coordinates, Limits of Integration, Changing Cartesian Integrals into Polar Integrals.		
	21	Section 13.4: Triple Integrals in Rectangular Coordinates		
		Triple Integrals, Properties of Triple Integrals, Volume of a Region in Space, Evaluation.		
	22	Section 13.4: Triple Integrals in Rectangular Coordinates		
		Average Value of a Function in Space.		
		Practicum		
	Triple	Integrals in Cylindrical Coordinates, Spherical coordinates		
	Substitution in Multiple Integrals			
	Vector Valued Functions and Space Curves			
	Line I	integrals		
	Vecto	r Fields, Work, Circulation and Flux		
V	Path I	ndependence, Potential Functions and Conservative Fields.	30	
	Green	's Theorem in the Plane (Proof is Optional)		
	Surfac	ce area and surface integrals		
	Param	netrized surfaces		
	Stoke	's theorem (Proof is optional)		
	The D	vivergence theorem (Proof is Optional)		
References	S:			
		ns & Davis : Calculus Early Transcendentals (10/e) John Wiley & Sons, SBN: 9780470647691		
2. Arn	old Ostel	bee & Paul Zorn: Multivariable Calculus (2/e) W. H. Freeman Custom		
3. Jam	es Stewa	N.Y.(2008)ISBN: 9781429230339 rt : Calculus (8/e) Brooks/Cole Cengage Learning(2016)		
		85740621 arsden & Anthony Tromba :Vector Calculus (6/e) W. H. Freeman and		
Cor	npany ,N	lew York(2012) ISBN: 9781429215084 rristopher Heil & Maurice D. Weir : Thomas' Calculus (14/e) Pearson(20	12)	
ISB	N 01344	38981	,	
	•	ki: Multivariable Calculus Early Transcendentals (2/e) W. H. Freeman an 012) ISBN: 1429231874	d	

- 7. Robert A Adams & Christopher Essex : Calculus: A complete Course (8/e) Pearson Education Canada (2013) ISBN: 032187742X
- 8. William Wade: An Introduction to Analysis, (4/e) Pearson Education

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	-	3	-	1
CO 3	3	2	1	1	3	2	1	1	1	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO 1	\checkmark				\checkmark
CO 2	\checkmark		\checkmark	\checkmark	\checkmark
CO 3			\checkmark		

Programme	BSc Mathematics Hor	BSc Mathematics Honours					
Course Code	MAT3CJ202/MAT3	MAT3CJ202 / MAT3MN200					
Course Title	MATRIX ALGEBR	MATRIX ALGEBRA					
Type of Course	Major						
Semester	III						
Academic	200-299						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	1. System of linear eq	uations and their solution	sets.				
	2. Euclidean Spaces a	nd their algebraic and geo	metric propert	ties.			
Course	This course covers m	atrix theory and linear alg	ebra, emphasi	izing topics useful			
Summary	in many other disci	plines. It begins with th	he study of s	systems of linear			
	equations and the pro	equations and the properties of matrices. Emphasis is given to topics including					
	systems of equations	systems of equations, vector spaces, linear dependence and independence,					
	dimension, linear tran	nsformations, eigenvalues	and diagonal	ization.			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand row reductions and echelon forms of a matrix and their uses in solving a linear system.	U	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
CO2	Define and compute eigen values and eigen vectors of a square matrix.	An	Р	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
CO3	Interpret Linear Transformations using matrices and visualize geometrically.	An	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
	nber (R), Understand (U), Apply Il Knowledge(F) Conceptual Kno ge (M)			

Detailed Syllabus:

Text Book	Linear Algebra and its Applications, Third Edition, David .C. Lay, Pearson Publications 2006.							
Module	Unit	Content	Hrs (60)	External Marks (70)				
Ι		Module I						
	1	Section 1.1: Systems of Linear Equations						
			Min. 15					
	2	Section 1.1: Systems of Linear Equations						
		Elementary Row Operations, Existence and Uniqueness Questions.						
	3	Section 1.2: Row Reduction and Echelon Forms	-					
	4	Section 1.2: Row Reduction and Echelon Forms	-					
		Solutions of Linear Systems, Parametric Descriptions of Solution Sets, Back Substitution, Existence and Uniqueness Questions.	14					
	5	Section 1.3: Vector Equations	-					
		Vector Equations, Vectors in \mathbb{R}^2 , Geometric Descriptions of \mathbb{R}^2 , Vectors in \mathbb{R}^3 , Vectors in \mathbb{R}^n .						
	6	Section 1.3: Vector Equations	-					
		Linear Combinations, A Geometric Description of Span{] and Span {],], Linear Combinations in Applications.						
	7	Section 1.4: The Matrix Equation $Ax = b$						
		The Matrix Equation $Ax = b$, Existence of Solutions, Computation of Ax, Properties of the Matrix-Vector Product Ax.						
II		Module II						
	8	Section 1.5: Solution Sets of Linear Systems						
		Homogeneous Linear Systems, Parametric Vector Form, Solutions of Non-Homogenous Systems.						
	9	Section 1.7: Linear Independence	13					

		Linear Independence, Linear Independence of Matrix Columns, Sets of One or Two Vectors, Sets of Two or More Vectors.		Min. 15
	10			
	11	Section 1.8: Introduction to Linear Transformations Linear Transformations		
	12			
	13	Section 1.9: The Matrix of a Linear Transformation Existence and Uniqueness Questions. (Topics up to and including Theorem 11).		
III		Module III		
	14	Section 2.1: Matrix Operations		
		Matrix Operations, Sums and Scalar Multiples, Matrix Multiplication, Properties of Matrix Multiplication, Powers of a Matrix, The Transpose of a Matrix.		Min. 15
	15	Section 2.2: The Inverse of a Matrix The Inverse of a Matrix (Example 3 is optional), Elementary Matrices (Proof of Theorem 7 is optional).		
	16	Section 2.2: The Inverse of a Matrix An Algorithm for Finding A^{-1} , Another View of Matrix Inversion.	11	
	17	Section 2.8 : Subspaces of \mathbb{R}^n Subspaces of \mathbb{R}^n , Column Space and Null Space of a Matrix, Basis for a Subspace.	-	
	18	Section 2.9: Dimension and Rank Coordinate Systems, The Dimension of a Subspace (Topics up to and including Theorem 15).		
IV		Module IV		
	19	Section 5.1: Eigen Vectors and Eigen Values Eigen Vectors and Eigen Values (Topics up to and including Theorem 2).	10	

	20	Section 5.2: The Characteristic Equation		
			Min. 15	
	21	_		
		The Characteristic Equation, Similarity (Topics up to and including Theorem 4).		
	22	Section 5.3: Diagonalization	_	
		Diagonalization (Proof of Theorem 5 is optional), Diagonalizing Matrices, Matrices Whose Eigen Values Are Not Distinct.		
V		Module V (Open Ended)	12	
•				
		rminants, Properties of Determinants, Applications of Linear		
	-	ms, Characterizations of Invertible Matrices, Partitioned		
		ices, Application to Computer Graphics, Eigen Vectors and		
	Linea	ar Transformations.		
Refere	nces		1	
		ry Linear Algebra, Howard Anton, Chris Rorres, Wiley Publications		
		gebra Done Right, 3/e, Sheldon Axler, Springer Nature, 2015.		
		on to Linear Algebra, 6/e, Gilbert Strang, Wellesley•Cambridge Press.		
		ar Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.		
		gebra And its Applications, 4/e, Gilbert Strang, Cengage India Private I	imited	
	-	ebra – A Geometric Approach, S.Kumaresan, Prentice Hall of India.		1 1007
7.	Bretscher	, Otto. Linear algebra with applications. Vol. 52. Eaglewood Cliffs, NJ: P	rentice Hal	1.1997.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	✓	~	<	~
CO 3	✓	\checkmark	✓	~	√

Programme	BSc Mathematics Hor	BSc Mathematics Honours						
Course Code	MAT4CJ203							
Course Title	REAL ANALYSIS	REAL ANALYSIS I						
Type of	Major							
Course								
Semester	IV	IV						
Academic	200 - 299							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	U	c and necessary exposure	to set theory.					
	2. Basic Calculus							
Course	After introducing the	basic notions in set theor	y, the course de	evelops into the				
Summary	construction of the R	construction of the Real number system. Thereafter Real functions are						
	introduced and the no	ptions of limit and continu	uity are develop	ped.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used					
			Category#						
CO1	Demonstrate Proficiency in Set Theory Fundamentals and Real Number Properties	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam					
CO2	Apply the completeness property of \mathbb{R} , and solve problems involving intervals and applications of the supremum property.	U	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam					
CO3	Analyse sequences and their limits, apply limit theorems, and demonstrate an understanding of concepts such as monotone sequences, sub-sequences, and the Cauchy Criterion, as well as their applications in solving problems related to sequences and limits.	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam					
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Detailed Syllabus:

Textbook		luction to Real Analysis, 4/e, Robert G Bartle, Donal ns (2011)	d R Sherbert	John Wiley
Module	Unit	Hrs (45+30)	External Marks (70)	
Ι		Introduction to Set theory		
	1	Section 1.1 - Sets and functions (for review only) Section 1.2 - Mathematical Induction (Proofs of	8	Min.15
	2			
	3	Section 1.3 – Finite and Infinite sets.	-	
	4	Section 1.3 – Countable and Uncountable sets.		
II		The Real numbers	-	
	5	Section 2.1 – The algebraic properties of \mathbb{R} .	-	
	6	Section 2.1 – The order properties of \mathbb{R} .	-	
	7	Section 2.2 – Absolute value and the Real Line.		
	8	Section 2.3 – Completeness property of \mathbb{R} (Proofs included in Practicum).	13	Min.15
	9	Section 2.4 – Applications of the Supremum property - 2.4.3 to 2.4.6 and 2.4.8 to 2.4.9 (All		
		other discussions included in Practicum).		
	10	Section 2.5 – Intervals – 2.5.2 to 2.5.4 (All other		
	10	discussions included in Practicum).		
III		Sequences and Limits		
	11	Section 3.1 – Sequences and their limits.		
	12	Section 3.1 – Problems to find limits of		
		sequence.		
	13	Section 3.2 – Limit theorems.		
	14	Section 3.2 – Problems using Limit theorems.	12	Min.15
	15	Section 3.3 – Monotone sequences – Monotone	-	
		Convergence Theorem.		
	16	Section 3.3 – Applications of Monotone	-	
		Convergence Theorem – Euler's number		
		introduction only.		
IV		Sequences and Limits (continued)		
	17	Section 3.4 – Sub sequences and the Bolzano		
		Weierstrass theorem (Second proof of Theorem		
		3.4.8 is omitted for external exam and limits		
		superior and inferior are included in practicum).		
	18	Section 3.4 – Problems using Divergence		
		criteria.		
	19	Section 3.5 – The Cauchy Criterion (Examples	12	Min.10
		3.5.9, 3.5.11 and Corollary 3.5.10 are included		
		in Practicum).		
	20	Section 4.1- Limits of functions (Proofs included	1	
		in Practicum).		
	21	Section 4.2: Limit theorems of functions (Proofs	1	
		included in Practicum).		

	22	Section 4.3: Some extensions of limit concepts		
		(Proofs included in Practicum).		
V		Practicum:		-
		goal is for the students to learn the following topics		
		5 practicum sessions of two hours each via self-		
		y and group activities. The lecturer may assist by		
		ing group discussions, supervising class seminars		
	6	and referring library books for self-study and		
		note preparation.		
	1	Section 1.2 - for detailed discussions including		
		proofs		
	2	Section 2.3 – re do it with all the proofs		
	3	Section 2.4 – Worked out examples for applying		
		the ideas of supremum and infimum and the		
		existence of square root of 2		
	4	Section 2.5 – Characterization theorem for		
		intervals and representations of real numbers		
	5	Section 3.4 – discussions of limit inferior and	20	
		limit superior with examples	30	
	6	Section 3.5 – Estimation of errors in contractive		
		sequences with examples		
	7	Section 3.6 – Properly divergent Sequences		
	8	Section 3.7 – Introduction to Infinite Series –		
		conditions for convergence – Harmonic Series		
	9	Section 3.7 – Comparison Tests with examples		
	10	Section 4.1 – Formulate a precise definition of		
		limit and illustrate with examples		
	11	Section 4.1 – Sequential Criterion for Limits for		
		convergence and divergence with examples		
	12	Section 4.2 – Limit theorems for functions in		
		parallel to that of sequences.		
	13	Section 4.3 – One sided and infinite limits.		
	14	Section 11.1 – Open sets, their properties and		
		characterization.		
	15	Section 11.1 - Closed sets, their properties and		
		characterization.		
DC				

References

- 1. Tom.M. Apostol, Calculus I, Wiley & Sons.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics, 2/e, John WileySons

Optional Programming References for Practicum:

- (1) SageMath Calculus Tutorial <u>https://www.sagemath.org/calctut/limits.html</u>
- (2) SageMath 2D plotting https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html#

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	~	\checkmark	~
CO 2	✓	\checkmark	✓	<	\checkmark
CO 3	✓	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathematics Honours					
Course Code	MAT4CJ204					
Course Title	BASIC LINEAR ALGEBRA					
Type of Course	Major					
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4		60		
Pre-requisites 1. Familiarity with system of equations and their solutions						
	tions.					
Course Summary	This course is a quick review of linear algebra, intended for students who have					
	already taken a previous course in linear algebra or have some experience w					
	vectors and matrices. It begins with the concepts of vector spaces, subspaces,					
	bases and dimension. Linear transformations are introduced as 'natural maps'					
	between vector spaces. The course opens up the classical finite dimensional					
	inner product theory for the canonical reduction of a matrix as a special case of a self-adjoint operator.					

Course Outcomes:

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand and apply concepts related to	U	С	Internal
	vector spaces and subspaces, including			Exam/Assignm
	determining whether a set forms a			ent/Seminar/
	subspace and finding the span of a set			Viva/End Sem
				Exam
CO2	Demonstrate proficiency in analysing null	An	Р	Internal
	spaces, column spaces, and linear			Exam/Assignm
	transformations, including understanding			ent/Seminar/
	the kernel and range of a linear			Viva/End Sem
	transformation and contrasting the			Exam
	properties of null space and column space.			L'Adili
CO3	Evaluate and apply concepts related to	E	С	Internal
	bases, dimensionality, and rank of vector			Exam/Assignm
	spaces, including understanding bases for			ent/Seminar/
	null space and column space, determining			Viva/End Sem
	dimensions of subspaces, and applying the			Exam
	rank theorem to systems of equations.			Exam
* - Remem	ber (R), Understand (U), Apply (Ap), Anal	yse (An), Evalua	te (E), Create (C)
# - Factual	Knowledge(F) Conceptual Knowledge (C)	Procedural Know	wledge (P) Met	acognitive
Knowledge	e (M)			

•

Detailed Syllabus:

Module	Unit	it Content		External Marks
Ι		Module I	12)	(70)
-	1	Section 4.1: Vector Spaces and Subspaces Vector Spaces and Subspaces, Subspaces, A Subspace Spanned by a Set.		
	2	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. The Null Space of a Matrix, An Explicit Description of Nul A.		
	3	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. The Column Space of a Matrix, The Contrast Between Nul A and Col A.	14	Min 15
	4	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. Kernel and Range of a Linear Transformation.		
	5	Section 4.3: Linearly Independent Sets; Bases. Linearly Independent Sets; Bases, The Spanning Set Theorem.		
	6	Section 4.3: Linearly Independent Sets; Bases. Bases for Nul A and Col A, Two Views of a Basis.		
Π		Module II		
	7	Section 4.4: Coordinate Systems. Coordinate Systems, A Graphical Interpretation of Coordinates, Coordinates in \mathbb{R}^n .		
	8	Section 4.4: Coordinate Systems. The Coordinate Mapping.		
	9	Section 4.5: The Dimension of a Vector Space. The Dimension of a Vector Space.		May 15
	10	Section 4.5: The Dimension of a Vector Space. Subspaces of a Finite-Dimensional Space, The Dimensions of Nul A and Col A.	12	Min 15
	11	Section 4.6: Rank Rank, The Row Space.		
	12	Section 4.6: Rank The Rank Theorem, Applications to Systems of Equations (Topics up to and including Example 5).		
III		Module III		
	13	Section 6.1: Inner Product, Length and Orthogonality The Inner Product, The Length of a Vector, Distance in \mathbb{R}^n .		
	14	Section 6.1: Inner Product, Length and Orthogonality Orthogonal Vectors, Orthogonal Complements, Angles in \mathbb{R}^2 and \mathbb{R}^3 .	12	Min 15

	15	Section 6.2: Orthogonal Sets Orthogonal Sets, An Orthogonal Projection (Topics up to				
	16	and including Example 4). Section 6.2: Orthogonal Sets Orthonormal Sets.	_			
	17	Section 6.4: The Gram-Schmidt Process The Gram -Schmidt Process, Orthonormal Bases.				
	18	Section 6.4: The Gram -Schmidt Process QR Factorization of Matrices.				
IV		Module IV				
	19	Section 7.1: Diagonalization of Symmetric Matrices Diagonalization of Symmetric Matrices.				
	20	Section 7.1: Diagonalization of Symmetric Matrices The Spectral Theorem. Spectral Decomposition.				
	21	Section 7.2: Quadratic Forms Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.	10	Min 15		
	22	Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).				
V		OPEN ENDED	12			
 Book: Mike Cohen, Practical Linear Algebra for Data Science, O'Reilly, 2019, ISBN 978-1-098-12061-0. Jupyter: https://github.com/mikexcohen/LinAlg4DataScience Choose lab demos and exercises for 12 hours as per lecturer's discretion. For Module I & II, Ch 2, 3, 5, 6 of book for Lab. For Module III, Ch 2 and Ch 9 of book for Lab. For Module IV, Ch 14 of book for Lab. Python and Jupyter review in Ch 16 of book. 						
Reference	S					
 Alg Intr Bas Lin Bre 199 	gebra Don roduction sic Linear ear Algeb etscher, 0 97.	Linear Algebra: Application Version, 11/e, Howard Anton & Chris Ro ne Right, 3/e, Sheldon Axler, Springer Nature, 2015. to Linear Algebra, 6/e, Gilbert Strang, Wellesley•Cambridge Press. Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Dra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. Otto. <i>Linear algebra with applications</i> . Vol. 52. Eaglewood Cliffs, NJ was Scott, and Edmund F. Robertson. <i>Basic linear algebra</i> . Springer	I: Prentice	Hall,		
		edia, 2013.				

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	~	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	\checkmark	\checkmark

Programme	BSc Mathematics Honours								
Course Code	MAT4CJ205	MAT4CJ205							
Course Title	FUNDAMENT	FUNDAMENTALS OF PYTHON AND SAGEMATH							
Type of Course	Major								
Semester	IV								
Academic Level	200-299								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	3	2	75					
	 2) A basic course in calculus with an understanding of differential and integral calculus (higher secondary level and one or two semester courses from Bsc) 3) A basic course in linear algebra ((higher secondary level)) 								
Course Summary	python program and read them f tasks using com arrays is solved used to do vario A brief introduc analysis. Using advance mathe course. Various	courses from Bsc) 3) A basic course in linear algebra ((higher secondary level)) In the first part of the course, it intends to give a quick introduction to writing python programs using various popular interfaces. How to handle data and save and read them files is introduced next along with the concepts of repeating the tasks using conditionals and loops. The problems connected with matrices and arrays is solved using the python module numpy. The python module SymPy is used to do various mathematical problems related with symbolic computations. A brief introduction of python module pandas is given, which is used to do data analysis. Using the Python programming structure, an introduction to the advance mathematics software sagemath is given in the second part of the course. Various practical problems making use of concepts from the calculus and linear algebra are to be solved using the sagemath software so that the							

CO	CO Statement	Cogniti	Knowledg	Evaluation					
		ve	e	Tools used					
		Level*	Category #						
CO1	Develop proficiency in fundamental to advanced Python programming concepts, including variables, data types, control structures, functions, modules, file handling, and matrix operations.	С	С	Internal Exam/Quiz/E nd Sem					
CO2	Demonstrate competence in data visualization techniques using Matplotlib, encompassing plotting mathematical functions, 2D and 3D graphics, and animated plots.	Ар	С	Internal Exam /Assignment/ End Sem					
CO3									
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

	1.	Ajith Kumar B.P., Python for Education,					
	2	https://scischool.in/python/pythonForEducation.pdf					
	2.	Gregory V. Bard, Sage for Undergraduates (online version) http://www.people.vcu.edu/~clarson/bard-sage-for-undergraduates-					
Textbook		2014.pdf					
	3. Tuan A. Le and Hieu D. Nguyen, SageMath Advice For Cal						
		https://users.rowan.edu/~nguyen/sage/SageMathAdvicefor	<u>Calculu</u>				
	Unit	<u>s.pdf</u> Content	ТТ				
Module	Unit	Content	Hrs (45+ 30)				
		Introductory Python and Arrays					
		(Text 1: Chapter 2, Chapter 3)					
	1	Section 2.1: Getting started with Python					
		Section 2.2: Variables and Data Types, Keywords,					
		Section 2.3: Operators and their Precedence.					
	2	Section 2.4: Python Strings					
		Section 2.5: Python Lists					
		Section 2.6: Mutable and Immutable Types.					
		Section 2.7: Input from the Keyboard					
		Section 2.8: Python Syntax, Colon & Indentation					
	3	Section 2.9: Controlling the Programe Flow	-				
I		Section 2.10: Iteration: for loops					
		Section 2.11: Conditional Execution: if, elif and else	12				
		Section 2.12: Modify loops: break and continue					
	4	Section 2.15: Functions	-				
		Section 2.17: Python Modules and Packages.					
		Section 2.18: File Input/Output					
		Section 2.19: Formatted Printing.					
		Section 2.21: Matrices in pure Python.					
	5	All topics up to Section 3.1,					
		Section: 3.1: NumPy Arrays					
	6	Section: 3.2: Vectorizing Functions.					

		Data Visualization (Text 1: Chapter 4)						
	7	Section: 4.1: The Matplotlib Module						
	8	Section: 4.2: Plotting mathematical functions						
		Section: 4.3: Plotting Error Bars,						
II		Section: 4.4: Simple 2D animation.						
	9	9 Section: 4.5: Famous Curves						
		Section: 4.6: 2D plot using colors.						
	10	Section: 4.7: 3D Plots.						
		Introduction to SymPy and Pandas (Text 1: Chapter 5 and Chapter 6)						
	11	All topics up to Section 5.1,						
		Section 5.1: SymPy, Symbolic Computation in Python.						
ш	12	Section 5.2: SymPy, Derivative and Integral						
III	13	Section 5.3: SymPy, Operation on sets	10					
	14	Section 6.1: Series						
	15 Section 6.2: Data Frame							
	16	16 Section 6.3: Practical Examples						
		Sagemath – An Introduction						
		(Text 2: Chapter 1, For units 17,18,19)						
	17	Getting and installing sagemath in Windows, Ubuntu OS						
		Using sagemath using cocalc (online)						
		Section 1.1: Using Sage as a Calculator						
		Section 1.2: Using Sage with Common Functions						
IV	10	Section 1.3: Using Sage for Trigonometry						
	18	Section 1.5: Matrices and Sage, Part One	13					
		1.5.1: A First Taste of Matrices						
	10	1.5.3: Doing the RREF in Sage						
	19	Section 1.5: Using Sage to Manipulate Polynomials						
		(Text 3: Chapter 2, 3, 5, For units 20,21,22)						
	20	Section 2.1: Plotting Graphs						

	Section 3.1: The Derivative	
21	Section 3.2: Higher-Order Derivatives	
22	Section 5.1: Antiderivatives (Indefinite Integral),	-
	Section 5.2: Riemann Sums and the Definite Integral	
	All topics up to 5.2.1,	
	5.2.1: Riemann Sum Using Left Endpoints	
	Practical (Open-ended)	
	Online References for Practical	30
1	Python official website and documentation,	
2	https://www.python.org/ Spyder official website and documentation,	
2	https://www.spyder-ide.org/	
3	Getting Started: Python and IDLE, MIT Courseware, https://web.mit.edu/6.s189/www/handouts/GettingStarted	
4	.html Jupyter Notebook, <u>https://jupyter.org/</u>	
5	Google Colaboratory (colab), <u>https://colab.google/</u>	
6	Pydroid 3 IDE for Android	
	(<u>https://play.google.com/store/apps/details?id=ru.iiec.pyd</u> <u>roid3&hl=en_US&pli=1</u>) with Pydroid 3 repository	
	plugin	
	(https://play.google.com/store/apps/details?id=ru.iiec.pyd roid3.quickinstallrepo≷=US).	
		-
Practi	ical problems in basic Python	-
1)	Write a programme to work as a basic Income Tax Calculator	
2)	Write a program that takes the length of an edge (an integer) as input and prints the cube's surface area as output.	
3)	Write a loop that counts the number of space characters in a string. Recall that the space character is represented as ''.	
4)	Write a while loop that computes the factorial of a given integer N.	

5)	Write a program that computes square roots.
6)	Write a programme for data Encryption based on Caeser shift.
7)	Develop a program that computes the Flesch Index for a text file.
8)	Using a List to Find the Median of a Set of Numbers
9)	Finding the Mode of a List of Values.
Nume 7.10, 7	rical methods using python (Text1: Chapter 7)(7.1 - 7.12)
1)	Evaluate a Taylor series numerically.
2)	Interpolate a function using
	a) Newton's forward interpolation
	b) Newton's backward interpolation
	c) Lagrange's Interpolation
	d) Newton's General Interpolation
3)	Find integral of function using
	a) Trapezoidal rule
	b) Simpson's 1/3-rule
4)	Find derivative of function numerically.
5)	Solve first order differential equations numerically.
	a) Euler method
	b) Fourth order Runge-Kutta method
6)	Solve algebraic equations numerically.
	a) The Bisection method
	b) Regula Falsi Method
Practi sympy	cal problems using numpy, matplotlib, pandas and
1)	Various vector operations. such as dot product, cross product and divergent using numpy module.
2)	Various matrix operations such as determinant, inverse and transpose using numpy module.
3)	Solve system of linear equations using numpy module.
4)	Plot various 2-D, 3-D curves using matplotlib module.

	5) Plot various 3-D surfaces using matplotlib module.
	6) Find maxima and minima of a function using SymPy module.
	7) Necessary data analysis of a given data using pandas module.
	Prac	tical problems in Sage
	1) Solve a system of linear equations (Text 2)
	2) Constrained Optimization by Lagrange Multipliers (Text 2, 4.18.2)
	3) Traffic Flow (Text 3)
	4) Minimum Cost (Text 3)
	5) Packaging (Minimum Surface Area) (Text 3)
	6) Maximize Revenue (Text 3)
	7) Area Between Curves (Text 3)
	8) Average Value and mean value theorem (Text 3, 6.2)
	9) Newton's Method to find approximate roots (Text 3)
Refer	ences:	
1 2 3 4 5 6 7 8	Amit Saha, I Vernon L. C Python tutori 2D plotting, 3D Graphics Linear Algel John Harris, Sage-colored Paul Zimme SageMath, <u>h</u>	Doing Math with Python, No Starch Press, 2015. eder, The Quick Python Book, Second Edition, Manning. ial online, https://www.geeksforgeeks.org/python-programming-language/ https://doc.sagemath.org/html/en/reference/plot13d/index.html ora, https://doc.sagemath.org/html/en/reference/plot3d/index.html ora, https://doc.sagemath.org/html/en/tutorial/tour_linalg.html Karen Kohl, and John Perry, Peering into Advanced Mathematics through d Glasses rmann, Alexandre Casamayou, Computational Mathematics with https://www.sagemath.org/sagebook/english.html Lambert, Fundamentals of Python First Programs, Edn 2, Cengage

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	1	3	2	3	3	1	1	2
CO 2	2	2	3	1	3	2	3	3	1	1	2
CO 3	2	2	3	1	3	2	3	3	1	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Quiz
- Practical Based Assessment
- Final Exam (70%)

	Internal Exam	Assignment	Semi nar	Quiz	Viva	Practical based assessment	End Semester Examinations
CO 1	\checkmark			\checkmark		\checkmark	
CO 2	\checkmark					\checkmark	
CO 3			\checkmark		\checkmark		N

Programme	B. Sc. Mathematics Honours						
Course Code	MAT5CJ301	MAT5CJ301					
Course Title	REAL ANALYSIS	Ι					
Type of Course	Major						
Semester	V						
Academic	300-399						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	E E	c and necessary exposure	to set theory.				
	2. Basic Calculus						
	3. Real Analysis I						
Course	Continuous real func	tions are introduced rigo	rously using t	he epsilon-delta			
Summary	argument. The equ	uivalent sequential cri	terion is est	tablished later.			
	Differentiable and (H	Riemann) Integrable func	tions are intro	duced followed			
	by the fundamental	by the fundamental theorem of calculus connecting the two notions. The					
	course concludes wit	h a discourse on series of	f functions and	d various results			
		atibility of the above th	ree notions w	rith the limiting			
	operations on series of	of functions.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse and explain the concept of continuous functions and their properties on intervals, and apply the principles of uniform continuity.	An	С	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam
CO2	Analyse the vitality of continuous functions when they are defined on intervals.	An	С	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam
CO3	Apply the derivative and the Mean Value Theorem to solve problems and prove related theorems.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva/Report/ End Sem Exam
* - Reme	mber (R), Understand (U), Apply (Apply (App)	p), Analyse (A	An), Evaluate (l	E), Create (C)
# - Factu	al Knowledge(F) Conceptual Knowle	edge (C) Proc	edural Knowle	dge (P)
Metacog	nitive Knowledge (M)			-

Textbook		uction to Real Analysis, 4/e, Robert G Bartle, Donald R & Sons(2011)	Sherbert Jol	nn
Module	Unit	Content	Hrs (45+30)	Marks Ext:70
Ι		Continuous Functions		
	1	Section 5.1 – Continuous functions		
	2	Section 5.3 – Continuous functions on intervals —	-	
		5.3.1 to 5.3.5		
	3	Section 5.3 – from 5.3.7 - 5.3.10	14	Min.15
	4	Section 5.4 – Uniform Continuity-up to 5.4.3		
	5	Section 5.4 – Uniform Continuity-5.4.4 to	-	
		5.4.14(proof of Weierstrass Approximation Theorem		
		is optional)		
	6	Selected problems from the above sections.		
II		Differentiation		
	7	Section 6.1 – The Derivative – 6.1.1 to 6.1.7	_	
	8	Section 6.2- The Mean Value Theorem - 6.2.1 to		
		6.2.6	10	Min.15
	9	Section 6.2 - from 6.2.7 to 6.2.9	_	
	10	Section 6.2-The Mean Value Theorem- 6.2.10 to	_	
	11	6.2.13		
TTT	11	Selected problems in the above sections.		
III	12	The Riemann Integral	-	
	12	Section 7.1 – Riemann Integral – up to 7.1.4 (a) Section 7.1 – from 7.1.5 to 7.1.7	_	
	15	(proof of 7.1.7 is optional)		
	14	Section 7.2 – Riemann Integrable functions – 7.2.1	-	
	11	to 7.2.5 (Examples 7.2.2 are optional)		
	15	Section 7.2 – from 7.2.7 to 7.2.13	14	Min.20
	16	Section 7.3 – The Fundamental Theorem – 7.3.1 to	-	
	_	7.3.7		
	17	Section 7.3 – from 7.3.8 to 7.3.18 (proof of theorem	-	
		7.3.18 is optional)		
	18	Selected problems in the above sections.	-	
IV		Sequences and Series of functions		
	19	Section 8.1 – Pointwise and Uniform Convergence –		
		8.1.1 to 8.1.3		
	20	Section 8.1 – from 8.1.4 to 8.1.10	7	Min.10
	21	Section 8.2 – Interchange of limits – 8.2.1		
	22	Section 8.2 – Interchange of limits- 8.2.3		
V		Practicum:		
		goal is for the students to learn the following selected		
	-	s in 15 practicum sessions of two hours each via self-		
		dy and group activities. The lecturer may assist by		
		ing group discussions, overseeing class seminars and		
		ring library books for self-study and note preparation. Section 5.2 – Combinations of continuous functions	30	
	1	Section 3.2 – Combinations of continuous functions	30	

2	Section 5.6 – from 5.6.5 to 5.6.7	
3	Section 6.1 – Inverse Functions – 6.1.8 to 6.1.10	
4	Section 6.3 – from 6.3.5 to 6.3.7	
5	Section 6.4 – Taylor's theorem – 6.4.1 to 6.4.4	
6	Section 6.4 – from 6.4.5 to 6.4.8	
7	Section 9.1 – Absolute Convergence – 9.1.1 to 9.1.3	
8	Section 9.1 – 9.1.4 to 9.1.5	
9	Section 9.2 – Limit Comparison Test with examples	
10	Section 9.2 – Root Test with examples	
11	Section 9.2 – Ratio Test with examples	
12	Section 9.2 – Integral Test with examples	
13	Section 9.2 – Raabe's Test with examples	
14	Section 9.3 – Alternating Series Test	
15	Section 9.4 – Infinite Series – Series of Functions –	
	9.4.1 to 9.4.7	

Reference

- 1. Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley, 2002.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley, 2020
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics,2/e, John Wiley & Sons
- 5. Malik, Subhash Chandra, and Savita Arora. Mathematical analysis. New Age International, 1992.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	2	0	2	0	3	0	0
CO 2	2	2	2	1	2	0	2	0	3	0	0
CO 3	3	2	3	1	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT5CJ302						
Course Title	ABSTRACT ALGE	ABSTRACT ALGEBRA I					
Type of Course	Major						
Semester	V						
Academic Level	300-399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic set theory, alge techniques etc.	bra of Integers, operation	s on functions,	, basic proof			
Course Summary	This course explores the algebraic concepts of Binary Operations, Binary Structures, Groups, Rings, Integral Domains and Fields. We further study the Theory of Groups. Elementary properties, Subgroups, Finite Groups, Cyclic Groups, Groups of Permutations, Orbits, Cycles, Alternating Groups, Cosets and the Theorem of Lagrange are studied. Then we study mappings between groups or Homomorphisms. Finally, the Open-ended section points to Generating sets, Factor Groups and Field of Quotients of an Integral Domain.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Discuss about binary operations, isomorphic binary structures and groups	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam			
CO2	Analyse and classify subgroups and cyclic groups, and determine their properties using group theory.	An	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam			
CO3	Evaluate and apply theorems related to cosets, Lagrange's theorem, homomorphisms, rings, and fields to solve complex algebraic problems.	E	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam			
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

•

Text book	A first o India, 2	course in abstract algebra, Fraleigh, John B Seventh Edition, P 003	earson Educ	ation
le	Unit	Content	Hrs	Marks
Module			(48+12)	Ext(70)
Ι		Module I		
	1	Section 2- Binary Operations (2.1 to 2.10)	_	
	2	Section 2- Binary Operations (2.11 to 2.25)	_	
	3	Section 3- Isomorphic Binary Structures (3.1 to 3.11).	_	
	4	Section 3- Isomorphic Binary Structures (3.12 to 3.17)	12	Min.15
	5	Section 4- Groups (4.1 to 4.14)		
	6	Section 4- Groups – Elementary Properties of Groups, Finite Groups and Group tables (4.15 onwards)		
II		Module II		
	7	Section 5- Subgroups (5.1 to 5.16)	-	Min.15
	8	Section 5 -Subgroup - Cyclic Subgroups (5.17 to 5.23)		
	9	Section 6 -Cyclic Groups (6.1 to 6.9) (Proof of Theorem 6.3 is optional)	14	
	10	Section 6- Cyclic Groups (6.10 to 6.17) (Proof of Theorem 6.14 is optional).1		
	11	Section 8-Groups of Permutations (up to 8.6)		
	12	Section 8- Groups of Permutations (8.7 to 8.18)		
III		Module III		
	13	Section 9 - Orbits, Cycles, and the Alternating Groups (Up to 9.10)		
	14	Section 9 - Orbits, Cycles, and the Alternating Groups (9.11 to 9.21) (Proof 2 of theorem 9.15 is optional).	10	NA: 17
	15	Section 10- Cosets and the theorem of Lagrange (Up to 10.9)	- 10	Min.15
	16	Section 10- Cosets and the theorem of Lagrange (10.10 to 10.14)		

IV		Module IV		
	17	Section 13- Homomorphisms (13.1 to 13.10)		
-	18	Section 13-Homomorphism (13.11 to 13.20)		
-	19	Section 18-Rings and Fields (18.1 to 18.13)	12	Min.15
-	20	Section 18-Rings and Fields (18.14 to 18.18)		
-	21	Section 19-Integral Domains (19.1 to 19.8)		
-	22	Section 19-Integral Domains (19.9 to 19.15)		
V		Module V (Open Ended)		-
-		Generating Sets in Groups		
-		Factor Groups	12	
		The Field of Quotients of an Integral Domain		

References

1. Herstein, Israel Nathan. Topics in algebra. John Wiley & Sons, 1991.

2. Gallian, Joseph. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

3. Wallace, David AR. Groups, rings and fields. Springer Science & Business Media, 2001

4. Reis, Clive. *Abstract algebra: an introduction to groups, rings and fields*. World Scientific Publishing Company, 2011.

5. Allan Clark, Elements of Abstract Algebra, Dover Publications, 1984

6. C Musili, Introduction to Rings and Modules, Narosa Publications, 2009

Suggested Programming Exercises for Open-Ended

- 1. Form congruence groups, their Cayley tables (Section 9.2, Ref (3)).
- Form symmetric groups of various orders, list the elements, find the power of some elements, find out the product of some of the elements. Find the order of the elements. Form a group table using conditionals and loops. (Section 9.3, Ref (3) or Ref (1)).
- 3. List S_3 . Find a subgroup from this group. How many distinct subgroups can be found from this group? List all of them.
- 4. Form the Dihedral group D₄, check if it is abelian using is_abelian(). Conduct the same experiments as listing the elements ,finding the orders etc as above. (Section 9.4, Ref (3) or Ref (1)).
- 5. Test the command is normal () on a few subgroups of S_3 . (Ref(1)).
- 6. Create cyclic groups. (Section 9.5, Ref (3)).

- 7. Form finitely generated abelian groups. (Section 9.6, Ref (3)).
- 8. Form a subgroup of a group (say, S_3) (Section 9.8, Ref (3)).

References

- 1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf
- 2. Group Theory and Sage SageMath tutorial https://doc.sagemath.org/html/ en/thematic_tutorials/group_theory.html
- 3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.
- 4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	2	0	0	0	2	0	0
CO 2	1	2	3	0	2	0	2	0	3	0	0
CO 3	0	1	2	3	2	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	✓	\checkmark	~	<	\checkmark
CO 3	✓	\checkmark	✓	\checkmark	\checkmark

Programme	B. Sc. Mathematics H	lonours						
Course Code	MAT5CJ303	MAT5CJ303						
Course Title	COMPLEX ANALY	YSIS I						
Type of Course	Major							
Semester	V							
Academic	300-399							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
D								
Pre-requisites	Basics of Real Numb	er System and Calculus.						
		·.1 .1	1 1	1 1 1				
Course		ith the concepts of comp						
Summary		umbers, powers and roo						
	functions including	power functions and nth	n root function	s. Then we discuss				
	limits, continuity, dif	limits, continuity, differentiability and analyticity of complex functions. Cauchy						
	Riemann equations a	Riemann equations and Harmonic conjugates are also studied. Finally the course						
	1 1	undard complex function		•				
		is, Trigonometric and Hy						
		is, mgemennethe and my	reneering runterio					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used					
		Level*	Category#						
CO1	Understand and explain the properties and representations of complex numbers, including their polar form and operations.	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam					
CO2	Apply the principles of limits, continuity, and differentiability to complex functions and utilize the Cauchy-Riemann equations.	Ар	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam					
CO3	Evaluate and create complex exponential, logarithmic, trigonometric, and hyperbolic functions, understanding their properties and applications.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam					
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Textbook	1 1	x Analysis (Third Edition): Dennis G. Zill & Patric D. Shanahan Learning, 2018.	, Jones	&				
Module	Unit	Hrs 60	External Marks (70)					
		Module I						
	1	Section 1.1-Complex Numbers and Their Properties		Min.15				
т	2	Section 1.2-Complex Plane	12					
Ι	3	Section 1.3- Polar Form of Complex Numbers	13					
	4	Section 1.4- Powers and Roots						
	5	Section 1.5 -Sets of Points in Complex Plane						
		Module II						
	6	Section 2.1 -Complex Functions						
	7	Section 2.2- Complex Functions as Mappings- up to and including Example 4. Section 2.4- Special Power Functions- The Power Function		Min.15				
Π	8	12						
	9	9 Section 2.4- Special Power Functions-The power function $\stackrel{1}{\Box}$ (Topics in 2.4.2, up to and including Example 5.)						
	10							
		Functions and Example 9. Module III						
	11	Section 3.1- Limits and Continuity-Limits (All the topics in 3.1.1)						
	12	Section 3.1- Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.)						
	13	Section 3.1-Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property.		Min.20				
III	14	Section 3.2- Differentiability and Analyticity- up to and including Example 2.	15					
	15	Section 3.2- Differentiability and Analyticity- All the topics after Example 2.						
	16	Section 3.3- Cauchy-Riemann Equations-up to and including Theorem 3.3.2						
	17	Section 3.3 - Cauchy Riemann Equations: -All the topics after Theorem 3.3.2.						
	18	Section 3.4 - Harmonic Functions						
		Module IV						
IV	19	Section 4.1 Exponential and Logarithmic Functions- Complex Exponential Function (Topics in 4.1.1 up to and	8					
		including Periodicity)		Min.15				

	20	Section 4.1 Exponential and Logarithmic Functions- Complex Logarithmic Function (Topics in 4.1.2 up to and including Example 4)		
	21	Section 4.3 Trigonometric and Hyperbolic Functions- Complex Trigonometric Functions (Topics in 4.3.1, up to and excluding trigonometric mapping.)		
	22	Section 4.3 Trigonometric and Hyperbolic Functions- Complex Hyperbolic Functions (All the topics in 4.3.2)		
		Module V (Open Ended)		
V		Linear Mappings, Reciprocal Functions	12	
		Branches, Branch Cuts and Points, Complex Powers		
		Inverse Trigonometric and Hyperbolic Functions.	1	

References

- 1. Brown, James Ward, and Ruel V. Churchill. Complex variables and applications. McGraw-Hill, 2009.
- 2. Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.
- 3. Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012
- 4. Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.
- 5. Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.
- 6. Silverman, Richard A. Introductory complex analysis. Courier Corporation, 2013
- 7. Bak, Joseph, Donald J. Newman, and Donald J. Newman. *Complex analysis*. Vol. 8. New York: Springer, 2010.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	0	0	3	0	0	0	2	0	0
CO 2	0	3	1	0	2	0	3	0	3	0	0
CO 3	1	0	3	0	2	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	~	~	<	✓
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours							
Course Code	MAT6CJ304/MAT8	MAT6CJ304/MAT8MN304							
Course Title	COMPLEX ANALY	YSIS-II							
Type of Course	Major								
Semester	VI								
Academic	300-399								
Level									
	Credit	Lecture/Tutorial	Practicum	Total Hours					
Course Details		per week	per week						
Course Details	4	4	-	60					
	Idea of complex num	bers, Polar representations	, Differentiabi	lity and					
Pre-requisites	Analyticity.								
		Complex Analysis-I and	••••	U					
Course		by Cauchy-Goursat Th							
Summary		Cauchy's Integral formula, sequence and series of complex numbers are next							
		owed by Taylor series, La							
	Residue Theorem. A	pplications of Residue the	orem are also	discussed.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand and apply the principles of real and complex integrals, including the Cauchy-Goursat theorem	Ap	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO2	Analyse the independence of path and evaluate the Cauchy's integral formulas, along with understanding their consequences and applications.	An	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO3	Create and utilize Taylor and Laurent series, and apply the residue theorem to evaluate complex functions and integrals.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Textbook	-	lex Analysis (Third Edition): Dennis G. Zill & Patric D. Sha tt Learning, 2018.	nahan, J	
Module	Unit	Content	Hrs (60)	External Marks (70)
		Module I		
I	1	Section 5.1-Real Integrals.		
	2	Section 5.2-Complex Integrals-up to and including Example 2		
	3	Section 5.2- Complex Integrals- All the topics after Example 2	- 12	Min.15
	4	Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4.	12	
	5	Section 5.3 -Cauchy- Goursat Theorem-All the topics after		
		Example 4.		
		Module II	4	
	6	Section 5.4- Independence of Path	-	
	7	Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1)		
II	8	Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral Formulas (All the topics in 5.5.2)	12	Min.15
	9	Section 6.1 -Sequences and Series- up to and including Example 4.	-	
	10	Section 6.1- Sequences and Series- All the topics after Example 4.		
		Module III		
	11	Section 6.2 - Taylor Series-up to and Excluding Theorem 6.2.4.		Min.15
	12	Section 6.2- Taylor Series-From Theorem 6.2.4 to Example 3.		
III	13	Section 6.3 -Laurent Series-up to and including Example 1.	14	
	14	Section 6.3- Laurent Series- All the topics after Example 1(proof of Laurent's Theorem is optional)		
	15	Section 6.4 -Zeros and Poles- up to and including Example 2.		
	16	Section 6.4- Zeros and Poles- All the topics after Example 2.		
		Module IV	4	
	17	Section 6.5 -Residues and Residue Theorem-up to and including Example 3.	_	
IV	18	Section 6.5 - Residues and Residue Theorem-All the topics after Example 3.	10	
	19	Section 6.6- Some Consequences of the Residue Theorem- Evaluation of Real Trigonometric Functions (up to and including example1 of 6.6.1)		

	20	Section 6.6 -Some Consequences of the Residue Theorem- Evaluation of Real Improper Integrals (up to and including Example 2)	-	Min.15
	21	Section 6.6 - Some Consequences of the Residue Theorem- Theorem 6.6.1 and Example 3.		
	22	Section 6.6 - Some Consequences of the Residue Theorem- Theorem 6.6.2 and Example 4.		
		Module V (Open Ended)		
V		Definite Integrals, Line Integrals in the Plane, Indented		
v		Contours	12	
		Integration along a Branch Cut, The Argument Principle		
		Rouche's Theorem and its applications		
Referen	ces			
	1	Brown, James Ward, and Ruel V. Churchill. Complex varia	bles and	1
		applications. McGraw-Hill, 2009.		
	2	Stein, Elias M., and Rami Shakarchi. Complex analysis. Vo University Press, 2010.	l. 2. Pri	nceton
	3	Burckel, Robert B. An Introduction to Classical Complex A Vol. 64. Burkhouse, 2012.	nalysis	: Vol. 1.
	4	Hormander, Lars. An introduction to complex analysis in se Elsevier, 1973.	everal va	ariables.
	5	Priestley, Hilary A. Introduction to complex analysis. OUP	Oxford	, 2003.
	6	Silverman, Richard A. Introductory complex analysis. Cour 2013.	ier Corj	poration,
	7	Bak, Joseph, Donald J. Newman, and Donald J. Newman. <i>Comple</i> 8. New York: Springer, 2010.	ex analys	sis. Vol.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	1	0	3	0	3	0	3	0	0
CO 2	1	2	1	0	2	0	3	0	3	0	0
CO 3	1	2	1	0	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	✓	~	<	~
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathema	atics Honours			
Course Code	MAT6CJ305/M	IAT8MN305			
Course Title	ELEMENTAI	RY NUMBER THEOR	Υ		
Type of Course	Major				
Semester	VI				
Academic Level	300-399				
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Arithmetic of in	ntegers, basic set theory	and proof tec	hniques.	
Course Summary	Euclidean algori equations like an Arithmetic, disc Following that, theorem, and Fe	We start number theory with the division algorithm, g.c.d., and the Euclidean algorithm for computing it, essential for solving Diophantine equations like ax + by = c. We then prove the Fundamental Theorem of Arithmetic, discuss the infinitude of primes and the sieve of Eratosthenes. Following that, we cover Linear Congruences, the Chinese Remainder theorem, and Fermat's Little Theorem. Finally, we explore Wilson's Theorem, Euler's Phi Function, and Euler's Theorem.			

Course Outcomes:

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Apply the division algorithm an Euclidean algorithm to compute greatest common divisors (gcd) and solve related divisibility problems.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO2	Solve Diophantine equations for integer solutions, deduce prime factorization through the fundamental theorem of arithmetic, and identify prime numbers using the sieve of Eratosthenes.	Ар	С	Internal Exam/ Assignment/ Seminar/Viv a/ End Sem Exam				
CO3	Apply the properties of congruence and the Chinese Remainder Theorem to solve systems of linear congruences.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Unit	Content	Hrs (60)	External Marks (70)
-	Module I		
1	Section 2.2 The division algorithm (proof of theorem 2.1 omitted).		
2	Section 2.3 The greatest common divisor – up to and including theorem 2.3 and its corollary.	12	Min.15
3	Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards.		
4	Section 2.4 The Euclidean algorithm - up to Theorem 2.7.		
5	Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards.		
l	Module II		
6	Section 2.5 The Diophantine equation $ax+by = c - up$ to and including Theorem 2.9.		
7	Section 2.5 - All topics from Example 2.4 onwards.	11	Min.15
8	Section 3.1 The fundamental theorem of arithmetic – up to Theorem 3.2.		
9	Section 3.1 The fundamental theorem of arithmetic – All topics from Theorem 3.2 onwards.		
10	Section 3.2 The sieve of Eratosthenes (up to and including theorem 3.4 only)		
	2 3 4 5 6 7 8 8 9	1 Section 2.2 The division algorithm (proof of theorem 2.1 omitted). 2 Section 2.3 The greatest common divisor - up to and including theorem 2.3 and its corollary. 3 Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards. 4 Section 2.4 The greatest common divisor - All topics from definition 2.3 onwards. 5 Section 2.4 The Euclidean algorithm - up to Theorem 2.7. 5 Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards. Module II 6 Section 2.5 The Diophantine equation ax+by = c - up to and including Theorem 2.9. 7 Section 3.1 The fundamental theorem of arithmetic - up to Theorem 3.2. 9 Section 3.1 The fundamental theorem of arithmetic - All topics from Theorem 3.2 onwards. 10 Section 3.2 The sieve of Eratosthenes (up to and	Module I 1 Section 2.2 The division algorithm (proof of theorem 2.1 omitted). 2 Section 2.3 The greatest common divisor - up to and including theorem 2.3 and its corollary. 3 Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards. 4 Section 2.4 The Euclidean algorithm - up to Theorem 2.7. 5 Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards. 6 Section 2.5 The Diophantine equation ax+by = c - up to and including Theorem 2.9. 7 Section 3.1 The fundamental theorem of arithmetic - up to Theorem 3.2. 9 Section 3.1 The fundamental theorem of arithmetic - All topics from Theorem 3.2 onwards. 10 Section 3.1 The fundamental theorem of arithmetic - All topics from Theorem 3.2 onwards.

III	Module III		
	11 Section 4.2 Basic properties of congruence - up to Theorem 4.2.		
	Section 4.2 Basic properties of congruence - All topics from Theorem 4.2 onwards.		
	13 Section 4.4 Linear congruences and the Chinese remainder theorem - up to Theorem 4.8.		
	 Section 4.4 Linear congruences and the Chinese remainder theorem - All Topics from Theorem 4.8 (proof of Theorem 4.8 omitted). 	13	Min.15
	 15 Section 5.2 Fermat's little theorem and pseudo primes - up to Lemma. (omit a different proof for Fermat's theorem) 		
	16 Section 5.2 Fermat's little theorem and pseudo primesAll topics from Lemma onwards.		
IV	Module IV		
	¹⁷ Section 5.3 Wilson's theorem - Up to Theorem 5.5.		
	18 Section 5.3 Wilson's theorem - All topics from Theorem 5.5 onwards.	12	Min.15
	¹⁹ Section 7.2 Euler's phi-function – up to Lemma.		
	20 Section 7.2 Euler's phi-function – All Topics from Lemma onwards. (proof of Theorem 7.2 omitted).		
	21 Section 7.3 Euler's theorem. (Second proof of Euler's theorem omitted).		
	22 Section 7.4 Some properties of the phi-function (Proof of Theorem 7.8 omitted).		

V	Module V (Open Ended)						
	Proof of Theorem 4.8. Chinese Remainder Theorem and remaining portions of Section 4.4Section 6.1 The sum and the number of divisors Linear congruences and the Chinese remainder theorem.Section 6.3 The Greatest Integer Function - up to Theorem 6.11.	12					
References							
	n, Kenneth H. Elementary number theory. London: Pearson Educ		11.				
2. Eynd	2. Eynden, Charles Vanden. <i>Elementary number theory</i> . Waveland Press, 2006.						
3. Gehr	3. Gehring, F. W., and P. R. Halmos. Graduate Texts in Mathematics, 1976.						
4. Hsiu	ng, C. Y. Elementary theory of numbers. World Scientific, 1992.						

5. Hoffman P., *The man who loved only numbers: The story of Paul Erdös and the search for mathematical truth*, Little Brown & Company, 1999.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	0	0	3	0	3	0	3	0	0
CO 2	1	1	0	0	3	0	3	0	3	0	0
CO 3	0	0	1	0	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours					
Course Code	MAT6CJ306/	MAT6CJ306/MAT8MN306					
Course Title	METHODS O	F DIFFERENTIAL EQUA	ATIONS				
Type of Course	Major						
Semester	VI	VI					
Academic Level	300-399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Foundations of	Foundations of basic calculus (0-99 level)					
Course Summary	The course enhances the skill to solve ordinary differential equation using specific methods analytically and computationally for first and higher order differential equations.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Classify and solve first order differential equation by applying appropriate methods	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO2	Apply different methods to solve higher order homogeneous and non- homogeneous linear differential equations with constant coefficients	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO3	Use Laplace transform and inverse Laplace transform to solve linear differential equations	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Textbook	App	lications 10 th Edn, Cengage Learning (2012) ISBN-13 978-1	1118270)52
Module	Un	Content	Hrs	Marks
	it	First order differential equations	(60)	Ext: 70
		First order differential equations	-	
		Quick review of Introduction to differential equations (Definitions only)	_	
	1	2.1.1-Direction Fields		
	2	2.1.2 - Autonomous First-Order DEs	_	
Ι	3	2.2 - Separable Equations	14	Min.15
	4	2.3 - Linear Equations	_	WIII.15
	5	2.4-Exact Equations	_	
	6	2.5- Solutions by Substitutions	-	
	7	Problems from the above sections	_	
	/	Higher-Order Differential Equations		
	8	4.1.1 Initial-Value and Boundary-Value Problems	_	
	0	4.1.1 Initial- value and Boundary- value Floblens		
	9	4.1.2 Homogeneous Equations (proof of Theorems 4.1.2		
Π		and 4.1.5 are optional) 10 4.1.3 Nonhomogeneous Equations		
	10			Min.15
	11	4.2 Reduction of Order	-	
	12	4.3 Homogeneous Linear Equations with Constant	-	
		Coefficients		
		Higher-Order Differential Equations (Cont)		
	13	4.4 -Undetermined Coefficients—Superposition		Min.20
		Approach (up to and including Example 9)		
	14	4.5 - Undetermined Coefficients—Annihilator Approach		
III		(up to and including Example 3)		
111	15	4.5 - Undetermined Coefficients—Annihilator Approach		
		(all the topics after Example 3)	14	
	16	4.6- Variation of Parameters		
	17	4.7 - Cauchy-Euler Equation (up to and including		
		Example 4)		
	18	4.7 - Cauchy-Euler Equation (all the topics after		
		Example 4)	_	
	19	4.9 - Solving Systems of Linear DEs by Elimination		
		Laplace Transforms		
	20	7.1 Definition of the Laplace Transforms (proof of		
IV		Theorems 7.1.2 and 7.1.3 are optional)	8	Min.10
T A				171111.1
	21	7.2.1 Inverse Transforms	_	
	22	7.2.2 Transforms of Derivatives		
		Open Ended: Mastering differential equation using software		
V	IVP	and BVP Problem-solving using mathematical software	12	
		Sage/Python/ Mathematica/Matlab/ Maple/Scilab etc		
		structor may choose any software appropriately)		

	Suggestions:
	 Plotting solution curves -2 hrs
	• Solve first order initial value problems -2 hrs
	 Solve second order initial value problems -2 hrs
	 Plot Laplace transform of given function -2 hrs
	 find Laplace transform and inverse Laplace transform - 2 hrs
	 Solve the initial value problem using Laplace transform -2 hrs
	erences
1.	G. F. Simmons and S. G. Krantz, Differential Equations: Theory, Technique, and Practice, McGraw Hill (2006), ISBN-13. 978-0072863154
2.	E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India
	(2009). ISBN: 9788120303614
3.	E. Boyce, Richard C. Diprima, Douglas B Meade, Elementary Differential Equations and
	Boundary Value Problems, 11 Edn. William John Wiely & Sons (2017) ISBN: 1119169879
4.	William F. Trench, Elementary Differential Equations with Boundary Value Problems,
	S.Chand (G/L) & Company Ltd (2013) ISBN 13: 9780534368418.
5.	S. L. Ross, Differential Equations, 3rd edition, Wiley India, (2007) ISBN-13. 978-
	8126515370
6.	Martha L. Abell, James P. Braselton, Differential Equations with Mathematica, 5th edn.
	Elsevier Science Publishing Co Inc (2022), ISBN: 9780128241608
	Amit Saha, Doing Math with Python", No Starch Press, US . (2015), ISBN 13 978-
7.	

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	0	3	0	0
CO 2	2	3	1	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	~
CO 3	✓	✓	✓	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT7CJ401							
Course Title	MATHEMATICAL	MATHEMATICAL ANALYSIS						
Type of Course	Major							
Semester	VII							
Academic Level	400-499	400-499						
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours				
	4	3	2	75				
Pre-requisites	2. Basic Calculus	ic and necessary exposur eal Analysis II	re to set theory.					
Course Summary	3. Real Analysis I, Real Analysis II The topology of the real line is explored in detail, as is necessary later for an in-depth understanding of the theory of real functions. Limits, Continuity & Differentiation are rigorously covered. Riemann-Stieltjes Integration is introduced as a generalisation of the Riemann integration covered in earlier semesters, enabling the student to view summation of series and integration as extensions of the same concept. After a discourse on series of functions and various results discussing the compatibility of the above three notions with the limiting operations on series of functions, the course concludes with a presentation of the famous Stone-Weierstrass' Theorem.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Analyse and differentiate between finite, countable, and uncountable sets, and apply these concepts to problems in R	An	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam			
CO2	Evaluate the properties of compact, perfect, and connected sets in the context of metric spaces.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam			
CO3	Synthesize the principles of continuity, differentiability, integrability and convergence of sequences and series including the application of the Mean Value Theorem and L'Hospital's Rule, to solve complex problems involving real-valued and vector-valued functions.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs	External				
Wioduic			(45+30)	Marks (70)				
Ι		Basic Topology of the Real Line						
	1	Chapter 2 – Finite, Countable & Uncountable Sets – 2.1 to 2.14						
	2	Chapter 2 – Metric Spaces – 2.15 to 2.24						
	3	Chapter 2 – Metric Spaces – 2.25 to 2.30	13	Min.15				
	4	Chapter 2 – Compact Sets – 2.31 to 2.42						
	5	Chapter 2 – Perfect Sets – 2.43 to 2.44	_					
	6	Chapter 2 – Connected Sets – 2.45 to 2.47	_					
II		Continuity and Differentiation						
	7	Chapter 4 – Limits of Functions and Continuous Functions – 4.1 to 4.12						
	8	Chapter 4 – Continuity and Compactness – 4.13 to 4.21						
	9	Chapter 4 - Continuity and Connectedness – 4.22 to 4.24						
	10	Chapter 4 – Discontinuities and Monotonic Functions – 4.25 to 4.30						
	11	Chapter 5 – The Derivative – 5.1 to 5.6						
	12	Chapter 5 – Mean Value Theorems – 5.7 to 5.12						
	13	Chapter 5 – L'Hospital's rule, Higher Derivatives						
		& Taylor's Theorem, Differentiation of Vector						
		Valued Functions -5.13 to 5.19 (proof of theorem 5.12 and theorem 5.15 are antional)						
TTT		5.13 and theorem 5.15 are optional)						
III	1.4	The Riemann-Stieltjes IntegralChapter 6 – Definition and Existence – 6.1 to 6.6	_					
	14 15	Chapter 6 – Definition and Existence – 6.1 to 6.0 Chapter 6 – Definition and Existence – 6.6 to 6.11	_					
	15	Chapter 6 – Definition and Existence – $6.0000.11$ Chapter 6 – Properties – 6.12 to 6.13	-					
	10	Chapter 6 – Properties – 6.12 to 6.13 Chapter 6 – Properties – 6.14 to 6.19 (proof of	9	Min.15				
	1/	theorem 6.19 is optional)						
	18	Chapter 6 – Integration & Differentiation – 6.20 to 6.22	1					
IV		Sequences & Series of functions						
	19	Chapter 7 – Discussion of Main Problem - 7.1 to 7.3	1					
	20	Chapter 7 – Discussion of Main Problem - 7.4 to 7.6	7	Min.10				
	21	Chapter 7 – Uniform Convergence – 7.7-7.10						
	22	Chapter 7 –Uniform Convergence & Continuity – 7.11 to 7.13						
V		Practicum :	30	-				
	-	al is for the students to learn the following selected via self-study and group activities. The lecturer may						

 assist h	y running and overseeing group discussions and class				
	rs and referring library books for self-study and note				
prepara					
1	-				
2	2 Chapter 3 – Cauchy Sequences, Upper and Lower Limits				
3	Chapter 3 – Some Special Sequences, Series	-			
4	Chapter 3 – Series of Non-Negative Terms, The Root and Ratio Tests				
5	Chapter 3 – Power Series, Absolute Convergence				
6	Chapter 3 – Addition and Multiplication of Series, Rearrangements.				
7	Chapter 4 – Infinite Limits & Limits at Infinity – 4.32 to 4.34				
8	Chapter 6 – Integration of Vector-valued Functions and Rectifiable curves - 6.23 to 6.27				
9	Chapter 7 – Uniform Convergence, Integration and Differentiation – 7.16 to 7.18				
10	Chapter 7 – Equicontinuity and Stone-Weierstrass Theorem – 7.19 to 7.27				

References

- 1. Mathematical Analysis, T. M. Apostol, (2nd Edn.); Narosa; 2002.
- 2. Introduction to Real Analysis, R. G. Bartle and D.R. Sherbert:; John Wiley Bros; 1982.
- 3. Real Analysis- a first course, R. A. Gordon:(2nd Edn.); Pearson; 2009.
- 4. Analysis-I, H. Amann and J. Escher, Birkhuser, 2006
- 5. The way of Analysis, Robert Strichartz, (R/e), Jones and Bartlett Mathematics (2000)
- 6. A first course in Real Analysis, M. H. Protter and C. B. Moray, Springer Verlag UTM (1977)

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	3	0	3	0	3	0	0
CO 2	2	3	2	0	3	0	3	0	3	0	0
CO 3	3	3	3	1	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	<	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours									
Course Code	MAT7CJ402	MAT7CJ402								
Course Title	GENERAL TOPOI	GENERAL TOPOLOGY								
Type of Course	Major									
Semester	VII	VII								
Academic	400-499									
Level										
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours						
		per week	per week							
	4	3	2	75						
Pre-requisites	Ę	ic and necessary exposur	e to set theory.							
	2. Basic Calculus									
	3. Real Analysis I, R	2								
Course	<i>.</i>	al topology is introduced								
Summary		of metric spaces. Basic								
		boundaries, neighbourh								
		discussion of continuity		1 ·						
		g and weak topologie								
		various countability axion								
		he hierarchy of separation		1 0						
		n as compactness, the com		-						
	of the famous Uryso	hn & Tietze characterisa	tions of normali	ty.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and classify topological spaces, bases, and subspaces, and apply these concepts to identify examples of different topological structures.	Ap	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and understand the concepts of continuity and related topological properties.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply al Knowledge(F) Conceptual Kno dge (M)			

Textbook	Introdu 1983.	action to General Topology, K. D. Joshi,, New Age Inte	ernational Pu	ublishers,
Module	Unit	Content	Hrs (45+30)	External Marks (70)
Ι		Topological Spaces		
	1	Chapter 4 – Section 1: Definition of Topological Space		
	2	Chapter 4 – Section 2: Examples of Topological Spaces		
	3	Chapter 4 – Section 3: Bases and Sub-bases – 3.1 to 3.7	12	Min.15
	4	Chapter 4 – Section 3: Bases and Sub-bases – 3.8 to 3.10		
	5	Chapter 4 – Section 4: Subspaces – 4.1 to 4.6		
II		Basic concepts		
	6	Chapter 5 – Section 1: Closed Sets and Closure (Proof of Theorem 1.5 is optional)		
	7	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points – 2.1 to 2.8		
	8	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points –2.9 to 2.10 and 2.13	10	Min.15
	9	Chapter 5 – Section 3: Continuity and Related Concepts – 3.1 to 3.6		
	10	Chapter 5 – Section 3: Continuity and Related Concepts – 3.7 to 3.11		
III		Spaces with special properties		
	11	Chapter 5 – Section 4: Making Functions Continuous, Quotient Spaces – 4.1 to 4.7		
	12	Chapter 5 – Making Functions Continuous, Quotient Spaces – 4.8 to 4.12		
	13	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.1 to 1.9	12	Min.15
	14	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.10 to 1.18		
	15	Chapter 6 – Section 2: Connectedness – 2.1 to 2.6 (Proof of Theorem 2.5 is optional)		
	16	Chapter 6 – Connectedness – 2.7 to 2.15		
IV		Separation axioms		
	17	Chapter 6 – Section 3: Local Connectedness and Paths – 3.1 to 3.8		
	18	Chapter 7 – Hierarchy of Separation Axioms - 1.1 to 1.6.		
	19	Chapter 7 – Hierarchy of Separation Axioms - 1.7 to 1.12	11	Min.15
	20	Chapter 7 – Hierarchy of Separation Axioms - 1.13 to 1.17		

	Separation Axioms - 2.1 to 2.6		
	22 Chapter 7 – Section 2: Compactness and Separation		
* *	Axioms- 2.7 to 2.10		
V	Practicum:		•
racticum	The goal is for the students to learn the following selected		
	topics in 10 practicum sessions of hours each via self-study		
	and group activities. The lecturer may assist by running group		
	discussions, supervising class seminars and referring library		
	books for self-study and note preparation.		
1	Chapter 1 - Logical Warm-up		
2	Chapter 2 – Preliminaries		
3	Chapter 3 – Motivation for Topology		
4	Chapter 6 - Connectedness: Theorem 2.5 and its proof		
5	Chapter 6 - Local connectedness and Paths - 3.9 to 3.11	20	
6	Chapter 7 - Compactness and Separation Axioms - 2.11 to 2.16	30	
7	Chapter 7 – Section 3: Urysohn Characterisation of Normality -3.1 to 3.4		
8	Chapter 7 – Section 3: Urysohn Characterisation of Normality - 3.5 to 3.6		
9	Chapter 7 – Section 4: Tietze Characterisation of Normality - 4.1 to 4.5		
10	Chapter 7 – Section 4: Tietze Characterisation of Normality - 4.6 to 4.8		
eference			
	pology, J. R. Munkres, Prentice Hall of India, 2000. meral Topology, S. Willard, Addison Wesley Pub. Company, 19'	76	
	meral robology S willard Addison wesley PhD Company 19	/0	

- 4. Introduction to Topology and Modern Analysis, G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	0	3	0	3	0	3	0	0
CO 2	3	2	2	1	3	0	3	0	3	0	0
CO 3	3	3	3	2	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours					
Course Code	MAT7CJ403					
Course Title	ABSTRACT ALGEBRA II					
Type of Course	Major					
Semester	VII					
Academic	400-499					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	3	2	75		
Pre-requisites			e to set theory.			
Course Summary	 Mathematical Logic and necessary exposure to set theory. First Course on Group Theory The subject of group theory is taken upon from where it was left off in previous introductory courses. The basic constructions in group theory – those of direct products and quotient groups are introduced. The Fundamental Theorem of Finitely Generated Abelian Groups is introduced (without proof) and the consequences explored in order to compare the challenges in the theory of Abelian vs non-Abelian groups. After an introductory delving into normal and subnormal series of groups, group actions are introduced and Sylow Theory discussed in the context of classifying non-Abelian groups. The course concludes with a basic discussion on polynomial rings and their factorisation, paving the way for the theory of extension fields in later, more advanced courses. 					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the concept of direct products of groups and factor groups to construct new groups from existing ones.	Ap	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate the isomorphism theorems, series of groups, and Sylow theorems to understand the structural properties and classifications of groups.	E	С	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of rings of polynomials, factorization of polynomials, and ideal structures within rings and fields, with a focus on homomorphisms and factor rings.	E	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
# - Fact	ember (R), Understand (U), Appl ual Knowledge(F) Conceptual Kn gnitive Knowledge (M)			

Textbook		t Course in Abstract Algebra, J. B. Fraleigh, 7 th Editioned, 2014.	n, Pearson E	ducation		
Module	Unit	Content	Hrs (45+30)	External Marks (70)		
Ι	E	Basic Constructions – New Groups From Old				
	1	Section 11 – Direct Products of Groups (11.1 to 11.11)				
	2	Section 11 – Finitely Generated Abelian Groups (11.12 to 11.17)		N. 1.		
	4	Section 14 – Factor Groups	11	Min.15		
	5	Section 15 – Factor Group Computations (15.1 to 15.13)				
	6	Section 15 – Simple Groups, The Centre and Commutator Subgroups (15.14 to 15.21).				
II		Advanced Group Theory				
		Pre-requisites: Sections 16 and 17 of Practicum)				
	7	Section 34 – Isomorphism Theorems	-			
	8	Section 35 – Series of Groups - 35.1 to 35.19 (Proofs of Zassenhaus Lemma and Schreier Theorem are optional)				
	9	Section 36 – Sylow Theorems (36.1 to 36.4)	14	Min.20		
	10	Section 36 – Sylow Theorems (36.5 to 36.13).	-			
	11	Section 37 – Applications of the Sylow Theory	-			
		(37.1 to 37.6)				
	12	Section 37 – Further Applications (37.7 to 37.15)	-			
III		Rings and Fields				
	13	Section 22 – Rings of Polynomials – (22.1 to 22.3) (proof of Theorem 22.2 is optional)	11	Min.15		
	14	Section 22 – The Evaluation Homomorphisms (22.4 to 22.11)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
	15	Section 23 – Factorisation of Polynomials over a Field (23.1 to 23.6)				

	16	Section 23 – Irreducible Polynomials (23.7 to 23.21)		
	17	Section 24 – Non-commutative Examples. (24.1 to 24.3)		
	18	Section 24 – Non-commutative Examples		
		(24.4 to 24.10)		
IV		More Ring Theory		
	19	Section 26 – Homomorphism and Factor Rings		
		(26.1 to 26.6).		
	20	Section 26 – Factor Rings (26.7 to 26.19)	8	Min.1
	21	Section 27 – Prime and Maximal Ideals		
		(27.1 to 27.20).		
	22	Section 27 – Ideal Structure in F[x] (27.21 to 27.27)		
V		Practicum:		-
	topics study runnin	oal is for the students to learn the following selected in 5 practicum sessions of six hours each via self- and group activities. The lecturer may assist by ng group discussions, supervising class seminars and ing library books for self-study and note preparation.		
1		12 – Plane isometries		
2	Section	116 – Group Action on a Set	30	
3	Section	n 17 – Application of G-sets to Counting		
	Section	n 21 – The Field of Quotients of an Integral Domain		
4				1
4	Section	1 35 - Series of Groups - Ascending central series - to 35.21		

- Contemporary Abstract Algebra, Joseph A. Gallian, CRC Press, 1986.
- 3. Topics in Algebra, I. N. Herstein, John Wiley and Sons, 2006.
- 4. Algebra, T. W. Hungerford, Springer-Verlag, 1987.
- 5. Algebra, Micheal Artin, Birkhauser, 2011
- 6. Algebra, Serge Lang, Springer, 2002.
- 7. Advanced Higher Algebra, J G Chakravorthy and P R Gosh, Kolkata U N Dhur, 2014 (ISBN: 9789380673059)

Suggested Programming Exercises for Practicum:

1. Form congruence groups Z_3 , Z_2 . Verify that $Z_3 \times Z_2 \cong Z_6$. Form its

cosets (Section 9.11, Ref (3)).

- 2. Find the centre of the dihedral group. (Section 9.12, Ref (3))
- 3. For an element from the dihedral group, find its stabilizer. (Section 9.12, Ref (3))
- Find the conjugacy classes of an element from the dihedral group. (Section 9.12, Ref (3))
- 5. Take a subgroup (say H) of S_3 . List the conjugacy classes using the command conjugacy classes subgroups (). Can you find out all the subgroups using these conjugacy classes? (Ref (1) or Section 9.12, Ref (3))
- 6. Find Sylow-2-subgroups and Sylow-3-subgroups or D_{18} (Section 9.13, Ref (3))

References

1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf

2. Group Theory and Sage - SageMath tutorial https://doc.sagemath.org/html/ en/thematic tutorials/group theory.html

3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.

4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	0	2	0	1
CO 2	2	3	1	2	3	0	3	0	3	0	2
CO 3	2	1	3	3	3	0	3	0	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT7CJ404						
Course Title	LINEAR ALGEBRA						
Type of Course	Major						
Semester	VII						
Academic Level	400-499						
Course Details	Credit						
		per week	per week				
	4	3	2	75			
Pre-requisites		ic and necessary exposure	to set theory.				
	2. Matrices and Deter						
	3. Systems of Linear	Equations and their solution	ons				
Course		e abstract are introduce					
Summary	introduced as struct	ure preserving maps bet	ween them. I	Representation of			
		s as matrices is discussed					
	dual space of a vect	or space are studied in s	ome detail. T	he concept of the			
	transpose of a linear	transformation is introdu	ced and discu	ssed as well. The			
		on to spectral theory					
		ristic values and vectors.					
		racterisation of diagonalis					
		nposition of a linear oper					
	ends with a short disc	cussion of inner products	and inner proc	luct spaces.			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and apply the concepts of vector spaces, subspaces, and bases to solve problems involving linear independence and dimensionality.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of linear transformations and their algebraic representations using matrices.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of linear functionals, the double dual space, and the transpose of linear transformations to understand advanced topics in linear algebra and apply them to canonical forms	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply al Knowledge(F) Conceptual Kno dge (M)			

Module	Unit	Content	Hrs (45+30)	Externa Marks (70)
Ι		Vector Spaces		
	1	Section 2.1 – Vector Spaces		
	2	Section 2.2 – Subspaces		
	3	Section 2.3 – Bases and Dimension – up to Theorem 5		Min.15
	4	Section 2.3 – Bases and Dimension – rest of the	12	
		section starting from Theorem 5		
	5	Section 2.4 – Coordinates – up to and including Theorem 7		
	6	Section 2.4 – Coordinates – rest of the section		
II		Linear Transformations		
	7	Section 3.1 – Linear Transformations – upto and including Example 7		
	8	Section 3.1 – Linear Transformations – rest of the section.		Min.15
	9	Section 3.2 – The Algebra of Linear Transformations – up to and including Theorem 5	11	
	10	Section 3.2 – The Algebra of Linear Transformations – rest of the section		
	11	Section 3.3 – Isomorphism		
	12	Section 3.4 – Representation of Transformations by Matrices – up to and including Example 15		
III		Linear Transformations		
	13	Section 3.4 – Representation of Transformations		
		by Matrices – rest of the section		
	14	Section 3.5 – Linear Functionals – upto and including Example 22.		Min.15
	15	Section 3.5 – Linear Functionals – rest of the section.		
	16	Section 3.6 – The Double Dual – upto and including Theorem 18.	11	
	17	Section 3.6 – The Double Dual – the rest of the section		
	18	Section 3.7 – The Transpose of a Linear Transformation – up to and including Theorem 22		
	19	Section 3.7 – The Transpose of a Linear Transformation – rest of the section.		
IV		Elementary Canonical Forms		
	20	Section 6.1 and 6.2 – Introduction and Characteristic Values		Min.15
	21	Section 6.3 – Annihilating Polynomials (Proof of Theorem 4 omitted)	11	
	22	Section 6.4 – Invariant Subspaces.	-	

V		Practicum			
	The go	al is for the students to learn the following selected			
	U U	s in 10 practicum sessions of three hours each via			
	self-s	tudy and group activities. The lecturer may assist by			
	runni				
	referr				
	note p				
	1	Section 1.3 – Matrices and Elementary Row	30		
		Operations			
	2	Section 1.4 – Row Reduced Echelon Matrices			
	3	Section 1.5 – Matrix Multiplication			
	4 Section 1.6 – Invertible Matrices				
	5 Section 6.4 – Triangulation and Diagonalisation				
	6	Section 6.6 – Direct-sum Decompositions			
	7 Section 6.7 – Invariant Direct Sums				
	8	Section 8.1 – Inner Products			
	9	Section 8.2 – Inner Product Spaces			
	10	Section 6.8 – The Primary Decomposition			
		Theorem			

References

- 1. Finite Dimensional Vector Spaces, P. R. Halmos, Narosa Pub House, 1980..
- 2. Linear Algebra, S. Lang, Addison Wesley Pub Company, 1972.
- 3. Topics in Algebra, I. N. Herstein, John Wiley & Sons, 2006.
- 4. Linear Algebra, R. R. Stoll & E. T. Wong, Academic Press International Edition, 1968.

Suggested Programming Exercises for Practicuum :

- 1. Form a four-dimensional vector space over Q. Take two vectors from this, find its span. (Chapter VS, Ref (1))
- Find basis of the vector subspace found in the above question. (Chapter VS, Ref (1))
- 3. Take some elements from this vector space, test for linear independence. (Chapter V Section LI, Ref (1))
- Form two vector spaces over Q. Define symbolic linear transformations between them, find the image of selected elements under it. (Chapter LT, Ref (1))
- 5. Define linear transformations (LT) from matrices. (Chapter LT, Ref (1))
- 6. Check if linear transformation is injective (Section ILT, Ref (1))
- Define two LT, add them. Find the individual matrices of these with respect to certain bases. Verify that the matrix of the sum of LT is the sum of matrices of individual LT .(Section OLT, , Ref (1)))
- 8. Find the kernel of an LT, find its nullitty. (Section ILT, Ref (1))
- 9. Find inverse of LT (Section IVLT, Ref(1))
- 10. Take a matrix, find Eigenvalues, Eigen vectors, check if it is

diagonalizable, diagonalize if it is. (Chapter E ILT, Ref(1))

References

- 1. Robert A. Beezer, Sage for Linear Algebra A Supplement to A First Course in Linear Algebra http://linear.ups.edu/sage•fcla.html
- 2. Sang-Gu Lee *et al.*, Linear Algebra with Sage https://www.researchgate.net/ publication/280093747_Linear_Algebra_with_Sage_BigBook_Free_e• book_English_ Version_All

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	2
CO 2	3	3	2	1	3	0	3	2	3	0	2
CO 3	3	3	2	2	3	0	3	2	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	✓	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	~	\checkmark

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours							
Course Code	MAT7CJ405								
Course Title	DISCRETE MATH	DISCRETE MATHEMATICS							
Type of Course	Major								
Semester	VII								
Academic	400-499								
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	3	2	75					
Pre-requisites	Basic Logical thinkin	g and Set theory.							
Course	The "Discrete Mather	matics" course (MAT7CJ4	405) covers es	sential concepts in					
Summary		nd their applications. Stu	1	1 0 1					
	theory, automorphisms, connectivity, and order relations through carefully								
	structured modules. The course includes practical exercises and references to								
		in the field, provid	0						
		oblem-solving skills nece		ner studies or real-					
	world applications in	mathematics and related	areas.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
	Describe and explain fundamental concepts in			Internal Exam/			
	graph theory, including subgraphs, vertex			Assignment/			
CO1	degrees, paths, connectedness, and operations on graphs.	U	С	Seminar/Viva /Report/ End			
				Sem Exam			
CO2	Apply and analyse concepts related to automorphisms of graphs, vertex and edge cuts, and graph connectivity, utilizing definitions, theorems, and exercises.	An	Р	Internal Exam/ Assignment/ Seminar/ Viva/ Report/End Sem Exam			
Evaluate and compare order relations in mathematical contexts and their implications for understanding and applying order theory. Internal Exam/ Assignment/ Seminar/ Viva/ Report/End Sem Exam							
* - Re	member (R), Understand (U), Apply (Ap), Ana	alyse (An), Ev	valuate (E), Cre	eate (C)			
	ctual Knowledge(F) Conceptual Knowledge (C	C) Procedural	Knowledge (P)	Metacognitive			
Know	ledge (M)						

Textbook	Spr 2. Fo Lin 3. An	Textbook of Graph Theory. (2/e) Balakrishnan, R, & Ranganat inger-Verlag, New York Inc., 2020 undations of Discrete Mathematics, K. D Joshi, New Age Inter nited, New Delhi, 1989. Introduction to Formal Languages and Automata (2/e), Peter I plishing House, New Delhi, 1997	mational				
Module	Unit	Content	Hrs (75)	External Marks (70)			
		Fundamentals of Graph Theory					
	1	Section 1.0 Introduction (Text 1)					
I	2	Section 1.1 Basic Concepts (Text 1)					
I	3	12	Min.15				
	4	Section 1.3 Degrees of Vertices (Text 1)					
	5	Section 1.4 Paths and Connectedness (Text 1)					
		Graph Operations and Connectivity					
	6	Section 1.5 Automorphisms of a simple graph (Definition 1.5.1 to Theorem 1.5.3) (Text 1)					
	7	Section 1.5 Automorphisms of a simple (Exercise 5.1 to Exercise 5.5) (Text 1)	-				
	8	Section 1.7 Operations on Graphs (Definition 1.7.1 to Example 1.7.10) (Text 1)					
II	9	11	Min.15				
	10	Section 3.1 Vertex Cuts and edge Cuts (Definition 3.1.1 to Theorem 3.1.10) (Text 1)					
	11	Section 3.1 Vertex Cuts and edge Cuts (Proposition 3.1.2 to Exercise 1.4) (Text 1)					
	12	Section 3.2 Connectivity and Edge - Connectivity (Definition 3.2.1 to Exercise 2.10) (Text 1)					
	13	Section 3.2 Connectivity and Edge - Connectivity (Theorem 3.2.10 to Theorem 3.2.11) (Text 1)					
		Order Relations					
	14	Section 3 Order Relations (Sections 3, 3.1, 3.2 of Text 2)					
	15	Section 3 Order Relations (Sections 3.3, 3.4 of Text book 2)		Min.15			
III	16	Section 3 Order Relations (Sections 3.5, 3.6 of Text book 2)	11				
F	17	Section 3 Order Relations (Sections 3.7 of Text book 2) Section 3 Order Relations (Sections 3.8, 3.9, 3.10 of Text					
	18						
	19	Section 3 Order Relations (Sections 3.11 of Text book 2)					
		Finite Automata and Acceptors					
F	20	Section 2.1 Deterministic Finite Accepters (Text 3)					
IV	21	Section 2.2 Non-Deterministic Finite Accepters (Text 3)	11 Min.1				
	22	Section 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters (Text 3)					

Practicum 30 V Line Graphs and Directed Graphs Eulerian Graphs and Hamiltonian Graphs Planar and Non planar Graphs	
V Eulerian Graphs and Hamiltonian Graphs Planar and Non planar Graphs	
Planar and Non planar Graphs	
1 1	
Applications of Lattices in Switching Circuits	
Applications of Automata in Theory of Computing	
References	
1. J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.).
2. J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.	
3. S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatoric	cs;
Hindustan Book Agency; 2009	
4. R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introduction	n(5th
edn.); Pearson; 2007.	

- 5. J. L. Gross: Graph theory and its applications(2nd edn.); Chapman & Hall/CRC; 2005
- 6. Graph Theory and Decomposition, Jomon Kottarathil, Sudev Naduvath and Joseph Varghese Kureethara, CRC Press, London, New York, 2024.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	2	0	3	0	2	1	3	0	2
CO 2	1	3	2	1	3	0	3	2	3	0	3
CO 3	0	2	2	1	3	0	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	✓	~	~	<	\checkmark
CO 3	~	✓	~	~	\checkmark

Programme	B. Sc. Mathema	tics Honours							
Course Code	MAT8CJ406/1	MAT8CJ406 / MAT8MN406							
Course Title	BASIC MEAS	BASIC MEASURE THEORY							
Type of Course	Major	Major							
Semester	VIII	VIII							
Academic	400-499								
Level									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	perweek						
	4	3	2	75					
Pre-requisites		Mathematics Concepts: Se	t, Functions, Log	gic					
	2. Real Analysis	S							
Course	This course fam	niliarises students with the I	Lebesgue Measu	are on the real line					
Summary		oles the construction of a the		on that does away					
	with many of th	ne drawbacks of Riemann in	ntegration.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand and explain the concepts of Lebesgue measure, including outer measure, measurable sets, and properties such as countable additivity and the Borel-Cantelli Lemma.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam Internal Exam/							
CO2	Apply theorems related to Lebesgue measurable functions, including Littlewood's Three Principles, Egoroff's, and Lusin's Theorems, to analyse function behaviour and approximations.	Ар	Р	Assignment/ Seminar/ Viva /Report/ End Sem Exam							
CO3	Evaluate and integrate functions using the Lebesgue integral, understanding its differences from the Riemann integral and applying it to bounded and non-negative measurable functions.	E	F	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam							
		* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)									

Modul e	Unit	Content	Hrs (45+ 30)	Ext. Marks (70)
Ι		Chapters 0, 1, 2: The Lebesgue Measure	_	
	1	Preliminaries On Sets, Mappings & Relations (Review only)	_	
	2	Chapter 1: The Real Numbers: Sets, Sequences & Functions (Proofs of results included in Practicum)		
	3	2.1 Introduction – Measure as a set function		Min.15
	4	2.2 Lebesgue Outer Measure	15	
	5	2.3 The σ -Algebra of Lebesgue Measurable Sets	-	
	6	2.4 Outer & Inner Approximation of Lebesgue Measurable Sets	_	
	7	2.5 Countable Additivity, Continuity & the Borel-Cantelli Lemma	_	
	8	2.6 Non-Measurable Sets		
II		Chapter 3: Lebesgue Measurable Functions	_	
	10	3.1 Sums, Products & Compositions	8	Min.15
	11	3.2 Sequential Pointwise Limits & Simple Approximation	_	
	12	3.3 Littlewood's Three Principles, Egoroff's & Lusin's Theorems		
III		Chapter 4: The Lebesgue Integral	-	
	13	4.1 The Riemann Integral	_	
	14	4.2 Lebesgue Integral of Bounded Measurable Function Over a Set of Finite Measure.		
	15	4.3 Lebesgue Integral of a Non-negative Measurable Function.		
	16	4.4 The General Lebesgue Integral	12	Min.20
	17	4.5 Countable Additivity & Continuity of Integration (proofs		
	18	included in practicum)	-	
	18	4.6 Uniform Integrability: The Vitali Convergence Theorem		
IV		(proofs included in Practicum) Chapter 5: Differentiation & Lebesgue Integration		
1 V	19	6.1 Continuity of Monotone Functions.	-	
	20	6.2 Differentiability of Monotone Functions: Lebesgue's Theorem	10	Min.10
	21	6.3 Functions of Bounded Variation: Jordan's Theorem	-	
	22	6.4 Absolutely Continuous Functions (Proof of Theorem 9 is optional)	-	
	23	6.5 Integrating Derivatives: Differentiating Indefinite Integrals	-	
V		Practicum:	30	
·	U U	bal is for the students to learn the following selected topics in 10 cum sessions of three hours each via self-study and group activities.		
	-	cturer may assist by running group discussions and supervising		
	class s	eminars and referring library books for self-study and reparations.		
	1	Proofs in Chapter 1: The Real Numbers	1	
	2	Section 2.7 - The Cantor Set & the Cantor-Lebesgue Function	1	
	3	Proofs in Section 4.5	1	

	4	Proofs in Section 4.6	
	5	5.1: Uniform Integrability & Tightness	
	6	5.2: Convergence in Measure	
	7	5.3: Characterizations of Riemann & Lebesgue Integrability	
	8	7.1: Normed Linear Spaces	
	9	7.2: Inequalities	
	10	7.3: Riesz-Fischer Theorem	
D			

References

- 1. R. G. Bartle, Wiley, The Elements of Integration & Lebesgue Measure, 1995..
- 2. G. de Barra, Measure Theory & Integration, New Age International Publications, 1981.
- 3. David M. Bressoud, A Radical Approach to Lebesgue's Theory of Integration (ARALTI), Cambridge University Press, 2008.
- 4. P. R. Halmos, Measure Theory, GTM, Springer-Verlag
- 5. Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, Tata McGraw Hill Inc., 1976.
- 6. Walter Rudin, Real & Complex Analysis, 3rd Edition, McGraw Hill Inc., 1987.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	0	0	3	0	2	1	3	0	2
CO 2	2	2	0	0	3	0	3	2	3	0	3
CO 3	1	0	3	0	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	✓	~	\checkmark
CO 2	✓	\checkmark	✓	~	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathema	tics Honours						
Course Code	MAT8CJ407 / MAT8MN407							
Course Title	NUMBER THEORY							
Type of Course	Major							
Semester	VIII							
Academic Level	400•499							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	•	60				
Pre •requisites	Basic algebra of	integers, basic set theory, b	asic proof techr	niques.				
Course	This is a more	advanced course than MA	AT6CJ305 / MA	T8MN305 Elementary				
Summary	Number Theo	ry. Here we focus on ari	thmetical func	tions, their averages,				
		prime numbers, quadratic r	• •	•				
		graphy. Arithmetical functi	-					
	•	s and their distribution. W						
		em such as Mobius fund		,				
		through techniques such						
		ext we study their asympto						
		imates, partial summation a	•	•				
		n of prime numbers. The pr		-				
	· ·	valent versions and a build.	•					
	· · ·	ratic reciprocity and how	•					
	applications, ar	e studied. The open•ended	part is Cryptog	rapny.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and analyse the properties of arithmetical functions, including the Möbius function, Euler totient function, and their relationships and products.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Apply Dirichlet multiplication and inversion formulas to solve problems involving arithmetical functions, including the Mangoldt function and Liouville's function.	Ap	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO3	Evaluate and create asymptotic formulas and theorems related to the distribution of prime numbers and quadratic residues, utilizing tools such as Chebyshev's functions and the quadratic reciprocity law.	С	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
	nber (R), Understand (U), Apply (Ap), Anal I Knowledge(F) Conceptual Knowledge (C) ge (M)	• • •		S 7

•

•

Textbook		Introduction to Analytic Number Theory, Tom M. Aposto International Student Edition ,Narosa Publishing House, New A course in Number Theory and Cryptography, second Ed	v Delhi, 19	990	
		Springer, 1991			
Module	Unit	Content		Marks	
			(48+ 12)	Ext: 70	
		Arithmetical Functions and their properties			
		Arithmetical Functions and Dirichlet Multiplication			
	1	Section 2.1-Introduction			
	2	Section 2.2- The Mobius function $\mu(n)$			
	3	Section 2.3- The Euler totient function $\phi(n)$			
Ι	4	Section 2.4- A relation connecting μ and ϕ			
1	5	Section 2.5- A product formula for $\phi(n)$			
	6	Section 2.6- The Dirichlet product of arithmetical functions		Min.15	
	7	Section 2.7- Dirichlet inverses and Mobius inversion formula	18		
	8				
	9	Section 2.9- Multiplicative functions			
	10	Section 2.10- Multiplicative functions and Dirichlet Multiplication			
	11	Section 2.11- Inverse of a completely multiplicative function			
	12	Section 2.12- Liouville's function $\lambda(n)$			
	13	Section 2.13- The divisor functions $\sigma_{\alpha}(n)$	1		
	14	Section 2.14- Generalized Convolutions	1		
		Averages of Arithmetical Functions			
	15	Section 3.1- Introduction	1		
Π	16	Section 3.2The big oh notation. Asymptotic equality of functions		10.10	
	17	Section 3.3- Euler's Summation formula	10		
	18	Section 3.4- Some elementary asymptotic formulas	10	Min.15	
	19	Section 3.10- The Partial sums of a Dirichlet product			
	20	Section 3.11- Applications of $\mu(n)$ and $\Lambda(n)$]		
	21	Section 3.12- Another identity for the partial sums of a Dirichlet product	_		
	Some	Elementary Theorems on the Distribution of Prime Numbers			
	22	Section 4.1- Introduction	1		
	23	Section 4.2- Chebyshev's functions $\psi(x)$ and $ft(x)$	1		
III	24	Section 4.3- Relations connecting $ft(x)$ and $\pi(x)$	10	Min.15	
	25	Section 4.4- Some equivalent forms of the prime	1		
		number theorem			
	26	Section 4.5- Inequalities for $\pi(n)$ and p_n	1		
		dratic Residues and the Quadratic Reciprocity Law			
IV	27	Section 9.1- Quadratic residues	- 10	Min.15	

	28	Section 9.2- Legendre's symbol and its properties		
	29	Section 9.3- Evaluation of (-1 p) and (2 p)		
	30	Section 9.4- Gauss' lemma		
	31	Section 9.5- The quadratic reciprocity law		
	32	Section 9.6- Applications of the reciprocity law		
		Open Ended: Cryptography		
		Chapter III		
		1: Some simple cryptosystems -3 hrs		
V	• 2: Enciphering Matrices-4hrs Chapter IV		12	
	•	1: The idea of public key cryptography -3 hrs		
	•	2: RSA-2 hrs		
References	5		1	

- 1. A. Beautel spacher: Cryptology; Mathematical Association of America (Incorporated); 1994
- 2. H. Davenport: The higher arithmetic(6th Edn.); Cambridge Univ.Press;
- 3. G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; Oxford International Edn: 1985
- 4. A. Hurwitz & N. Kritiko: Lectures on Number Theory; Springer Verlag, Universi text; 1986
- 5. T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press;2002
- 6. D. Redmond: Number Theory; Monographs & Texts in Mathematics No: 220; Mar cel Dekker Inc.; 1994
- 7. P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
- 8. K.H. Rosen: Elementary Number Theory and its applications(3rd Edn.); Addison WesleyPub Co.; 1993
- 9. W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
- 10. D.R. Stinson: Cryptography-Theory and Practice(2nd Edn.); Chapman & Hall / CRC (214. Simon Sing: The Code Book The Fourth Estate London); 1999
- 11. J. Stopple: A Primer of Analytic Number Theory-From Pythagoras to Riemann; Cambridge Univ Press; 2003
- 12. S.Y. Yan: Number Theory for Computing(2nd Edn.); Springer-Verlag; 2002

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	1	1	3	0	3	1	3	0	2
CO 2	2	3	2	1	3	0	3	2	3	0	3
CO 3	3	2	3	2	3	0	3	1	3	0	3

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	√	~	~	<	\checkmark
CO 3	√	✓	✓	~	✓

Programme	B. Sc. Mathema	tics Honours					
Course Code	MAT8CJ408 / 1	MAT8CJ408 / MAT8MN408					
Course Title	DIFFERENTL	DIFFERENTIAL EQUATIONS					
Type of Course	Major						
Semester	VIII						
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic knowledg	ge of calculus of one variable	and an introdu	ctory course in Real			
	Analysis						
Course	The course enha	ances the skill to solve ordin	ary differential	equation using specific			
Summary	methods analyt	ically and computationally	for first and hi	igher order differential			
	equations. Mos	equations. Most of the fundamental phenomena occurring in the nature are					
		expressed as a differential equation. Students must know how to model any					
	physical phenor	mena using differential equa	ations.				

СО	CO Statement	Cognitive Level*	Knowledg	Evaluation Tools used
		Lever	Category#	uscu
CO1	Understand and apply the existence and uniqueness theorems for second-order differential equations, including methods such as the method of successive approximations and Picard's theorem.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and solve second-order differential equations using power series methods, including ordinary points, regular singular points, and specific functions such as Gauss's Hypergeometric Equation and Legendre Polynomials.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate and determine the stability of autonomous systems and critical points for linear and nonlinear systems using the phase plane analysis and Lyapunov's direct method.	E	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
* - Remen	nber (R), Understand (U), Apply (Ap), Anal	yse (An), Eva	luate (E), Cre	ate (C)
	l Knowledge(F) Conceptual Knowledge (C)	Procedural K	nowledge (P)	Metacognitive
Knowledg	ge (M)			

.

•

Text Book		ential Equations With Applications And Historical Note on,George F. Simmons.	s, Third			
Module	Unit	Content	Hrs	Marks		
				Ext: 70		
		Existence and Uniqueness of Solutions and Power Series method of solving differential equations				
	1	69 Method of Successive Approximations				
Ι	2	70 Picard's theorem, theorems A& B (proofs are optional).	12	Min.15		
	3	71 Systems. The Second Order Equations				
	4	26 Introduction. A review of Power Series				
	5	27 Series solutions of first order equations				
	6	28 Second order Equations. Ordinary points				
	7	29 Regular singular points				
П		Power Series Solutions and Special Functions				
	8	30 Regular Singular Points continued	_	Min.15		
	9	31 Gauss's Hypergeometric Equation	_			
	10	31 Gauss's Hypergeometric Equation Reduction to Hypergeometric equation	11			
	12 44 Legendre Polynomials formula is optional)	1 /				
		Special Functions (Contd.)		Min.15		
		45 Properties of Legendre Polynomials				
III		46 Bessel functions. The Gamma function	12			
		47 Properties of Bessel functions				
	17	47 Properties of Bessel functions				
		Zeros and Bessel series. Bessel expansions				
	Auto	nomous Systems. Stability of Linear and Nonlinear Systems				
	18	58 Autonomous systems. The phase plane and its phenomena				
IV	19	59 Types of critical points	- 13	Min.15		
	20	59 Types of critical points. Stability				
	21					
	22	61 Stability by lyapunov direct method				
IIHypergeometric equat1132 The Point at Infinit1244 Legendre Polynom formula is optional)1244 Legendre Polynom formula is optional)1345 Properties of Leger1446 Bessel functions.1546 Bessel functions. T1647 Properties of Besse Zeros and Bessel serie1747 Properties of Besse Zeros and Bessel serie1858 Autonomous Systems. Stab System1959 Types of critical points and 202059 Types of critical points and 222160 Critical points and 222261 Stability by IyapunOperV• Proof of Picard's theo • Proof of theorem B of						
	•	12				
	Proof of Rodrigues' formula for Legendre					

	Analyse solutions of Differential Equations using softwares like Python
Refere	ences
1.	G. Birkhoff and G.C. Rota: Ordinary Differential Equations (3rd Edn.); Edn. Wiley &
	Sons; 1978
2.	W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value
	problems (2nd Edn.); John Wiley & Sons, NY; 1969
3.	A. Chakrabarti: Elements of ordinary Differential Equations and special functions;
	Wiley Eastern Ltd., New Delhi; 1990
4.	E.A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall of
	India, New Delhi; 1974
5.	A. K. Nandakumaran, P. S. Datti, Raju K. George: Ordinary Differential Equations:
	Principles and Applications, Cambridge University Press

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	3	0	3	1	3	0	2
CO 2	2	2	1	0	3	0	3	2	3	0	3
CO 3	1	2	2	2	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	<	\checkmark
CO 3	✓	\checkmark	✓	~	✓

ELECTIVE COURSES

Programme	B. Sc. Mather	matics Honours		
Course Code	MAT5EJ301	(1)		
Course Title	MATHEMA	TICAL FOUNDATION	NS OF COMPUTI	ING
Type of Course	Elective (Spe	ecialisation- Mathematic	cal Computing)	
Semester	V			
Academic Level	300 - 399			
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours
	4	4	-	60
Pre-requisites	Fundamental	Mathematics Concepts:	Set, Functions, Log	gic
Course Summary		amiliarises students with which find regular applic	1	

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply mathematical induction to solve a variety of combinatorial problems.	Ap	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam			
CO2	Analyse and classify different types of relations and equivalences in combinatorial settings.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam			
CO3	Evaluate and demonstrate proficiency in using combinatorial techniques such as permutations, factorials, and binomial coefficients to solve complex problems.	E	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam			
* - Remen	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual	Knowledge(F) Conceptual Knowledge (C)	Procedural K	nowledge (P) N	Metacognitive			
Knowledg	ge (M)						

TextBook	Unive	rí Matoušek and Jaroslav Nešetřil, Invitation to Discrete Mathema rsity Press	ttics, $(2/e)$ O	xford
	(II) Ro	obin J Wilson, Introduction to Graph Theory (4/e), Prentice Hall		
Module	Unit	Content	Hrs	Ext.
			(48+12)	Mark: (70)
I		Combinatorial Counting (Text 1)	12	
	1	1.1 An Assortment of problems		-
	2	1.3 Mathematical Induction (Proof of Theorem 1.3.1 is optional)		
	3	1.5 Relations, 1.6 Equivalences and other special type of relation		
	4	3.1 Functions and subsets, 3.2 Permutations and factorials	_	
	5	3.3 Binomial Coefficients-	_	
	6	3.7 Inclusion-Exclusion Principle. (Third proof of Theorem 3.7.2 is		
		optional)		
Π		12		
	7	4.1 The notion of a graph; Isomorphism		
	8	4.2 Subgraphs, Components, Adjacency Matrix	_	
	9	4.3 Graph Score (Proof of Theorem 4.3.3 is optional)	_	
	10	4.4 Eulerian Graphs (Second proof of Theorem 4.4.1 and lemma 4.4.2 are optional)		
	11	4.5 Eulerian Directed Graph	_	
	12	5.1 Definition and characterizations of trees	_	
III		Matching and Colouring (Text 2)	12	
	13	12. Planar Graphs (Proof of Theorem 12.2 and Theorem 12.3 are		•
		optional)		
	14	13. Euler's formula (up to Corollary 13.4)		
	15	13. Euler's formula (from Corollary 13.4)	-	
	16	17. Coloring Graphs	-	

		are	
		optional)	
	18	25 Hall's Marriage theorem	
IV		Probabilistic Method (Text 1)	12
	19	10.1 Proofs by Counting (2-Coloting revisited and related topics are optional)	
	20	10.2 Finite Probability Spaces (up to Random graphs)	-
	22	10.2 Finite Probability Spaces (From Random graphs)	-
	22	10.3 Random Variables and their Expectations	
V		Open Ended	12
	Metho	Itonian Graphs, 2-Connectivity, Examples of applications of Prob od, Ramsey Theory, Generating Functions, simulating random exp hon and calculating expectations. Brook's Theorem.	
eferences		athematics by Norman L. Biggs (2nd Edition, 2002), Oxford Unive	ersity Press
(ISI	BN- 13:	978-0198507178)	-
		athematics and Applications by Kenneth Rosen (7th Edition, 2012) (ISBN-13: 978-0073383095)), McGraw
3 Die	crete Ma	athematics: Elementary and Beyond by László Lovász, József Peli	kán, Katali

Note: 1) Optional topics are exempted for end semester examination 2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	1	3	1	3	1	3	0	2
CO 2	2	2	1	1	3	1	3	2	3	0	2
CO 3	2	3	2	2	3	1	3	2	3	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation				
-	Nil				
1	Slightly / Low				
2	Moderate / Medium				
3	Substantial / High				

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	\checkmark	✓	~	\checkmark
CO 2	✓	✓	~	<	\checkmark
CO 3	√	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours						
Course Code	MAT5EJ302(1)	MAT5EJ302(1)						
Course Title	DATA STRUC	DATA STRUCTURES AND ALGORITHMS						
Type of Course	Elective (Speci	Elective (Specialisation- Mathematical Computing)						
Semester	V	V						
Academic Level	300 - 399	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	1. Fundamental Mathematics Concepts: Sets, Functions 2. Discrete Mathematics							
Course Summary	This course familiarises students with computational problems and computational thinking using some of the basic algorithmic strategies.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Analyse and compare the efficiency of algorithms for computing Fibonacci numbers, distinguishing between exponential and polynomial approaches.	E	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Demonstrate proficiency in asymptotic analysis to assess the efficiency of algorithms.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Apply classical algorithms for number operations, including addition, multiplication, and modular arithmetic, to solve computational problems efficiently.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text Book		<i>Algorithms</i> by Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh McGraw-Hill Education, 2006. ISBN: 978-0073523408.	n Vazirani.	
Module	Unit	Hrs (48+12)	Ext. Marks (70)	
Ι		Introduction	12	
	1	Computing Fibonacci Numbers:		
		Exponential and Polynomial Algorithms		
	2	Efficiency of Algorithms: Asymptotic Analysis, Big-O Notation		
	3	Algorithms with Numbers: Efficiency of classical Addition and Multiplication algorithms	_	
	4	Algorithms for Modular Arithmetic	-	
	5	Euclid's Algorithm for GCD	-	
	6	Primality Testing		
	Sectio	ons from Text: 0.2, 0.3, 1.1, 1.2, 1.3		
II		Divide and Conquer Algorithms and Graph Search	12	
	7	Fast Integer Multiplication		
	8	Recursive Relations	_	
	9	Binary Search	-	
	10	Merge Sort	-	
	11	Graph Representations: Adjacency Matrix, Adjacency List	_	
	12	Depth First Search Undirected Graphs		
	13	Depth First Search in Directed Graphs		
	Sectio	ons from Text: 2.1, 2.2. 2.3, 3.1-3.3.		
III	<u> </u>	Graph Algorithms	12	
	14	Checking connectivity		
	15	Directed Acyclic Graphs, Strongly Connected Components		
	16	Breadth First Search and Computation of distances.		
	17	Weighted Graphs and Dijkstra's Algorithm		
	18	Priority queue implementations	-	

Rivest, Clifford Stein. PHI Learning, 2009. ISBN:978-81-203-4007-7. *Algorithm Design* by Jon Kleinberg and Eva Tardos. Pearson, 2015. ISBN:978-93-325-1864.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2			3	1	3	3	3	0	3
CO 2	2	3	2	2			3	1	3	3	3	0	2
CO 3	2	3	3	2			3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	√
CO 2	~	✓	~	<	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mather	B. Sc. Mathematics Honours						
Course Code	MAT6EJ301(MAT6EJ301(1)						
Course Title	NUMERICA	NUMERICAL ANALYSIS						
Type of Course	Elective (Spe	Elective (Specialisation- Mathematical Computing)						
Semester	VI							
Academic Level	300-399							
Course Details	CreditLecture/TutorialPracticalTotal Hoursper weekper week							
Details	per weekper week44-60							
Pre-requisites	 Real analysis Linear algebra Basics of Python Programming 							
Course Summary	This course familiarises students with the fundamental numerical analysis. Moreover, the course facilitates students to apply results from real analysis and linear algebra to perform quantitative analysis of numerical solutions.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply the Bisection Method, Iteration Method, Newton- Raphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ар	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO2	Implement interpolation methods such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ар	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ар	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
	nber (R), Understand (U), Apply (Ap), Anal l Knowledge(F) Conceptual Knowledge (C) ge (M)			

ModuleUnitContentINumerical Solutions of Algebraic and Transcendental equations (Text 1)12.1 Introduction22.2 Bisection Method32.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional)42.5 Newton- Raphson Method (Generalized Newton's Method is optional)52.7 Secant MethodIIInterpolation (Text 1)63.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences73.6 Newton's formulae for interpolation (up to and including Example	
1 2.1 Introduction 2 2.2 Bisection Method 3 2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional) 4 2.5 Newton- Raphson Method (Generalized Newton's Method is optional) 5 2.7 Secant Method II Interpolation (Text 1) 6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	Hrs (48+12)
1 2.1 Introduction 2 2.2 Bisection Method 3 2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional) 4 2.5 Newton- Raphson Method (Generalized Newton's Method is optional) 5 2.7 Secant Method II Interpolation (Text 1) 6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	12
3 2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional) 4 2.5 Newton- Raphson Method (Generalized Newton's Method is optional) 5 2.7 Secant Method Interpolation (Text 1) 6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
Acceleration of Convergence are optional) 4 2.5 Newton- Raphson Method (Generalized Newton's Method is optional) 5 2.7 Secant Method II Interpolation (Text 1) 6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
optional) 5 2.7 Secant Method II Interpolation (Text 1) 6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
IIInterpolation (Text 1)63.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
6 3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
	12
7 3.6 Newton's formulae for interpolation (up to and including Example	
3.5)	
8 3.6 Newton's formulae for interpolation (From Example 3.6)	
9 3.9.1 Langrange's interpolation formula	
10 3.10 Divided differences and their properties	
11 3.10.1 Newton's General interpolation formula	10
III Numerical Differentiation and Integration (Text 1) 12 (11)	12
12 6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2 and 6.2.3	
are optional) 13 6.4.1 Trapezoidal Rule	
14 6.4.2 Simpson's 1/3-Rule	
15 6.4.3 Simpson's 3/8 Rule	
16 6.10 Numerical Double Integration	
IV Numerical Solutions of Ordinary Differential Equation (Text 1)	12
17 8.1 Introduction	
18 8.2 Solution by Taylor's series,	
19 8.4 Euler's method (8.4.1 is optional)	
20 8.4.2 Modified Euler's Method	4 I
21 8.5 Runge-Kutta method	
22 8.6.1 Adams-Moulton Method	
V Numerical Algorithms and Lab Practicals	
1 Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and [7].	12
Quick review of Python Programming. Ch 1 Notebook from [3].	12

	2	Continue Quick Review of Python. Notebook [9]. Numpy and Scipy	
		review from [7]. Ch 2 Notebook from [3].	
	3	Bisection Method. Algorithm and Program.	
		Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2].	
		Optional: Program to compute speed of convergence.	
		Optional: False Position variant from [12].	
	4	Fixed Point Method (Iteration Method). Algorithm and Program.	
		Notebook: Ch 5 of [3]. Reference: 5.2 of [2].	
-	5	Newton-Raphson Method. Algorithm and Program.	
		Notebook: Ch 5 of [3]. Reference: 5.3 of [2].	
	6	Secant Method. Algorithm and Program.	
		Notebook: Ch 5 of [3]. Reference: 5.4 of [2].	
	7	Fast computation using SciPy.Optimize.	
		Notebook: Ch 5 of [3]. Reference: 5.6 of [2].	
	8.	Lagrange Interpolation.	
		Notebook: Ch 6 of [3]. Reference: 6.1 of [2].	
	9	Newton's method for Interpolation using Divided Differences.	
		Notebook: Ch 6 of [3]. Reference: 6.2 of [2].	
-	10	Using SciPy.Interpolate Module. Lagrange Interpolation Only.	
		Notebook: Ch 6 of [3]. Reference: 6.6 of [2].	
-	11	Numerical Differentiation. Forward and Backward Differences. First	
		Order and Second Order Derivative Approximations.	
		Notebook: Ch 8 of [3]. Reference: 8.1 of [2].	
-	12	Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule.	
		Composite Simpson's Rule.	
		Notebook: Ch 7 of [3]. Reference: 7.1. of [2].	
	13	The Module scipy.integrate.	
		Trapezoidal, Simpson.	
		Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	
	14	Euler's Method. Improved Euler's Method. Reference: 8.2 of [2].	
		Notebook: Ch 8 of [3].	

1. F.B. Hildebrand: Introduction to Numerical Analysis, TMH.

2. J.B. Scarborough: Numerical Mathematical Analysis, Oxford and IBH

3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN

978-3-030-50355-0. Open Access at: https://link.springer.com/book/10.1007/978-3-030-50356-7

4. Sven Linge and Hans Petter Langtagen, Programming for Computations -- Python. A Gentle Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: https://link.springer.com/book/10.1007/978-3-319-32428-9

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions. The second text [2] stresses computation from the beginning and is a lab reference. The Jupyter Notebooks [3] intended for live lab lessons.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	0	2
CO 2	2	3	3	2	3	1	3	3	3	0	2
CO 3	3	3	3	2	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	✓	✓	~	√

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ302(1)						
Course Title	MATHEMATICS FOR DIGITAL IMAGES						
Type of Course	Elective (Speci	alisation- Mathematical Co	omputing)				
Semester	VI						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	-	and Algebraic Structures					
Course		is paper is mathematics und					
Summary	-	luce patterns automatically	• •	e e			
		user. We begin with isomet					
		distance and hence shape.					
		ons or translation, and the in		ē			
		for combining isometries, a	•	1			
		llar. We also apply this to c					
		even types. Our next foc		metries; that is, those			
		ch send a pattern onto itself,	-				
	0 0	er with the same size and sl		U			
		translation symmetries in two non-parallel directions. These are made up of parallelogram shaped cells, falling into five types. Finally, we deduce the					
		pattern types, each with i	is own set of	interacting symmetry			
	operations.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the concept of isometries in geometry, including translation, rotation, and reflection, and understand their properties and how they preserve distances.	U	С	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO2	Demonstrate the ability to compose isometries, understand their combined effects, and analyse the outcomes of sequential transformations.	Ap	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO3	Investigate the classification of plane patterns, including different net types such as parallelogram nets, rectangular nets, centred rectangular nets, square nets, and hexagonal nets, and analyse examples of the 17 plane pattern types.	An	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
# - Factual	ber (R), Understand (U), Apply (Ap), Anal Knowledge(F) Conceptual Knowledge (C)			
Knowledg	ge (MI)			

Text Book		HEMATICS FOR DIGITAL IMAGES : Creation, Compression, F gnition. S G Hoggar- Cambridge University Press.	lestoration,	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Introduction	12	
	1	Isometries and their sense		
	2	The plane and vectors		
	3	Isometries – Translation, Rotation, Reflection	-	
	4	The sense of an isometry		
	5	The Classification of isometries		
	6	Composing isometries		
	Sectio	ns from Text (i): Chapter 1 – 1.1, 1.2, 1.3		
II		How Isometries Combine	12	
	7	Reflections are the key		
	8	Some useful compositions		
	9	The Image of a line of symmetry		
	10	The dihedral group		
	11	Appendix on groups		
	Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5			
III		The Seven Braid Patterns, Plane Patterns & Symmetries	12	
	12	Classification of braids		
	13	Constructing braid patterns		
	14	Translations and nets		
	15	Cells		
	16	The five net types		
	17	Nets allowing a reflection		
	Sectio	<i>ins from Text (i): Chapter 3, Chapter $4 - 4.1$, 4.2, 4.3</i>		
IV		The 17 Plane Patterns	12	
	18	Preliminaries		
	19	The general parallelogram net		
	20	The rectangular net		
	21	The centred rectangular net		
	22	The square net		
	23	The hexagonal net		
	24	Examples of the 17 plane pattern types		
	25	Scheme for identifying pattern types		
	Sectio	ons from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8		
V (Open		Advanced Topics (Practical)	12	
Ended)	26	Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB		
	27	Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		
Reference	s:			

- 1. Baldock R and Graham J (2000) Image Processing and analysis, a practical approach, Oxford University Press
- 2. Gonzalez R C and Woods R E (1993) Digital Image Processing, Addison-Wesley

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	2	2	3	0	2
CO 2	2	3	2	1	2	1	2	2	2	0	2
CO 3	3	3	2	1	3	1	3	3	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	✓	\checkmark	~	~	\checkmark
CO 3	✓	✓	✓	~	\checkmark

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours				
Course Code	MAT5EJ305					
Course Title	HIGHER AL	GEBRA				
Type of Course	Elective					
Semester	V					
Academic Level	300 - 399					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Fundamental N	Aathematics Concepts: Set, Fu	unctions, Logic			
Course Summary	This course explores topics that follow as a direct continuation of high school					
	algebra, like th	ne general theory of equations	, and classificat	ion of second-		
	degree curves	and surfaces.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand and apply the algebraic	Ap	Р	Internal
	methods used in solving polynomial			Exam/Assign
	equations of low degrees and place them			ment/Seminar/
	in a general context			Viva / End
				Sem Exam
CO2	Understanding of the fundamental	U	С	Internal
	concepts of algebraic equations, including			Exam/Assign
	the Identity Theorem and the Fundamental			ment/Seminar/
	Theorem of Algebra.			Viva / End
				Sem Exam
CO3	Analyse and evaluate various solutions of	An	С	Internal
	equations, including Cardan's Formulas			Exam/Assign
	and trigonometric solutions, and identify			ment/Seminar/
	the irreducible cases.			Viva / End
				Sem Exam
* - Rem	nember (R), Understand (U), Apply (Ap), Ana	lyse (An), Ev	aluate (E), Crea	ate (C)
# - Fact	ual Knowledge(F) Conceptual Knowledge (C) Procedural k	Knowledge (P)	Metacognitive
Knowle	edge (M)			

Text	Univer	metry(2/e), David A Brannan, Mathew F. Esplen, Jeremy rsity Press (2012) ISBN: 978-1-107-64783-1 ory of Equations, J. V. Uspensky, McGraw Hill (1948), IS	•	C
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70
Ι		Theory of Equations	16	
	1	Chapter II - Section 3: Division of Polynomials		
	2	Chapter II -Section 4: The Reminder Theorem		
	3	Chapter II- Section 5: Synthetic Division		
	4	Chapter II- Section 7: Taylor's Formula		
	5	Chapter III - Section 1: Algebraic Equations		
	6	Chapter III - Section 2: Identity Theorem		
	7	Chapter III - Section 3: The Fundamental Theorem of Algebra		
II		Cubic And Biquadratic Equations	16	
	8	Chapter III - Section 4: Imaginary Roots of Equations with Real Coefficients		
	9	Chapter III - Section 5: Relations Between Roots and Coefficients		
	10	Chapter IV - Section 1: Limits of Roots Section 2: A Method to Find an Upper Limit of Positive Roots		
	11	Chapter IV - Section 3: Limit for Moduli of Roots		
	12	Chapter V - Section 1: What is the "Solution" of an Equation?, Section 2: Cardan's Formulas, Section 3: Discussion of Solution		
	13	Chapter V - Section 4: Irreducible Case Section 5: Trigonometric Solution		
	14	Chapter V- Section 6: Solution of Biquadratic Equations		

III		Conic Sections	12	
	15	Section 1.1.1: Conic Sections, Section 1.1.2: Circles		
	16	Section 1.1.3: Focus-Directrix Definition of the Non- Degenerate Conics		
	17	Section 1.1.4: Focal Distance Properties of Ellipse and Hyperbola		
	18	Section 1.1.5: Dandelin Spheres		
IV		Quadric Surfaces	4	
	19	Section 1.2.2: Reflections		
	20	Section 1.3: Recognizing Conics		
	21	Section 1.4.1: Quadric Surfaces in \mathbb{R}^3		
	22	Section 1.4.2: Recognizing Quadric Surfaces		
V		Open Ended Module: Affine Maps	12	
	1	Geometry and Transformations - What is Euclidean Geometry? Isometry, Euclidean properties, Euclidean transformation, Euclidean-Congruence		
	2	Affine Transformations, Basic Properties of Affine Transformations		
	3	Fundamental Theorem of Affine Geometry]	

References:

1. Higher Algebra, Barnard & Child, St. Martin's Press, NY, USA (Public Domain, Copyright exhausted)

2. Thomas & Finney, Calculus & Analytic Geometry, Addison Wesley

3. George A Jennings: Modern Geometry with Applications Universitext, Springer (1994) ISBN: 0-387-94222-X

4. Walter Meyer: Geometry and its Application(2/e) Elsever, Academic Press(2006) ISBN: 0-12-369427-0

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	1	2	1	3	0	1
CO 2	3	3	2	2	3	1	2	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	✓	✓	~	<	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours						
Course Code	MAT5EJ306	MAT5EJ306						
Course Title	LINEAR PROGRAMMING							
Type of Course	Elective							
Semester	V	V						
Academic Level	300 - 399	300 - 399						
Course Details	Credit Lecture/Tutorial Practical Total Hour							
	per week per week							
	4 4 - 60							
Pre-requisites	Basic Calculu	s and Linear Algebra	-					
Course	Linear Progra	amming is a mathematical 1	nodelling techt	nique in which a				
Summary	linear function	n is maximized or minimized	zed when subj	ected to various				
	constraints. Th	is technique has been useful	for guiding qua	ntitative decisions				
	in business pla	in business planning, in industrial engineering, and—to a lesser extent—in						
	the social and physical sciences. This course begins with convex sets and							
	extrema of fun	extrema of functions for a sound basis of the subject. It then develops into						
	LP problems in	ncluding Transportation and A	Assignment prob	lems.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Able to identify and analyse the properties of convex sets, including open and closed sets, convex hulls, and vertices.	An	С	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam				
CO2	To demonstrate proficiency in applying optimization techniques such as gradient descent, constrained extrema, and the method of Lagrange multipliers to solve real-valued functions.	Ap	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam				
CO3	To formulate and solve linear programming problems, including transportation and assignment problems, using techniques such as simplex method and duality.	U	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam				
Factu	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Text	-	zation Methods in Operation Research and System Analysis (4th edition), K.V						
book		C Mohan, New Age International (P)Limited (2016)						
Module								
Ι	Module I 1 Chapter 1 Section 11: Open and Closed sets in En							
	1							
	2	Section 12: Convex Linear Combination, Convex Sets						
	3	Section 13: Intersection of Convex Sets, Convex Hull of a Set						
		Section 14: Vertices or Extreme Points of a Convex Set						
	4	Section 15: Convex Polyhedron						
		Section 16: Hyperplanes, Half-spaces and Polytopes						
	5	Section 17: Separating and Supporting Hyperplanes (Proof of Theorem 18 is						
		optional)						
		Section 18: Vertices of a Closed Bounded Convex Set (Proof of Theorem						
		21,22,23 are optional)						
		Section 19: Summary						
		Section 20: Quadratic Forms						
II		Module II						
	6	Chapter 2 Section 11: Convex Functions						
	7	Section 12: General Problem of Mathematical Programming						
	8	Chapter 3 Section 1: Introduction						
		Section 2: LP in Two-Dimensional Space						
	9	Section 3: General L P Problem						
		Section 4: Feasible Solutions (Proof of Theorem 1 is optional)						
		Section 5: Basic Solutions						
		Section 6: Basic Feasible Solutions (Proof of Theorem 2,3 are optional)						
		Section 7: Optimal Solution (Proof of Theorem 4,5 are optional)						
		Section 8: Summary						
	10	Section 9: Simplex Method						
		Section 10: Canonical Form of Equations						
		Section 11: Simplex Method (Numerical Example)						
		Section 12: Simplex Tableau						
	11	Section 13: Finding the First b.f.s; Artificial Variables						
		Section 14: Degeneracy						
	12	Section 15: Simplex Multipliers						
III		Module III						
	13	Chapter 3 Section 17: Duality in LP Problems						
	14	Section 18: Duality Theorems (Proof of Theorem 7,8,9, 10,11 are optional)						
		Section 19: Applications of Duality						
	15	Section 20: Dual Simplex Method						
		Section 21: Summary of Simplex Methods (III Revised Simplex Method is						
		optional)						
	16	Section 22: Applications of LP						
IV		Module IV						

17Chapter 4 Section 1: Introduction Section 2: Transportation Problem Section 3: Transportation Array Section 4: Transportation Matrix Section 5: Triangular Basis (Proof of Theorem 1 is optional) Section 6: Finding a Basic Feasible Solution18Section 7: Testing For Optimality19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis20Section 10: Degeneracy							
Section 3: Transportation Array Section 4: Transportation Matrix Section 5: Triangular Basis (Proof of Theorem 1 is optional) Section 6: Finding a Basic Feasible Solution18Section 7: Testing For Optimality19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis							
Section 4: Transportation Matrix Section 5: Triangular Basis (Proof of Theorem 1 is optional) Section 6: Finding a Basic Feasible Solution18Section 7: Testing For Optimality19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis							
Section 5: Triangular Basis (Proof of Theorem 1 is optional) Section 6: Finding a Basic Feasible Solution18Section 7: Testing For Optimality19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis							
Section 6: Finding a Basic Feasible Solution 18 Section 7: Testing For Optimality 19 Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis							
18Section 7: Testing For Optimality19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional)Section 9: Changing the Basis							
19Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional)Section 9: Changing the Basis							
Section 9: Changing the Basis							
20 Section 10: Degeneracy							
Section 11: Unbalanced Problem							
21 Section 14: Assignment Problem (Proof of Theorem 3 is optional)							
22 Section 15: Generalized Transportation Problem							
Exercise Questions in Assignment Problem							
V Open Ended							
Linear Programming Using Scipy, Prog Reference 1.							
Dual Simplex Solved Programming Exercises in Python from Vanderbei							
(Reference 1), Prog Reference 2.							
Linear Programming in Python using IBM CPlex Community Edition. Prog							
Reference 3.							
Transportation Problem in Python. Prog Reference 4.							
Linear Programming in Julia. Prog Reference 5. Ch 3 Basics of Julia Programm	ning						
Language, Ch 5 The Simplex Method.							
. References:							
1. G. Hadley : Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)	1. G. Hadley : Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)						
2. S.S. Rao : Optimization - Theory and Applications (2nd Edn.) Wiley Eastern (P) Lt New Delhi.	2. S.S. Rao : Optimization - Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. New Delhi.						
3. Russel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni W Eastern Ltd. New Delhi. (1991)							
4. Charles S. Beightler, : Foundations of Optimization D.T. Philips & D.J. Wilde (2nd Edn.) Prentice Hall of India, Delhi (1979)							
Programming References for Open-Ended section: 1. Linear Programming using Scipy, https://python.quantecon.org/lp_intro.html							
2. Vanderbei's book homepage: https://vanderbei.princeton.edu/LPbook/							
3. CPlex Jupyter Notebook:							
https://github.com/IBMDecisionOptimization/tutorials/blob/master/jupyter/Linear Program							
ming.ipynb							
Installation: http://ibmdecisionoptimization.github.io/docplex-doc/README.md.html							

1	· · · · ·	4. Solving Transportation Problem using Linear Programming in Python:
		https://machinelearninggeek.com/solving-transportation-problem-using-linear-
		programming-in-python/
		5. Changhyun Kwon, Julia Programming for Operations Research 2/e,
		https://www.softcover.io/read/7b8eb7d0/juliabook2/simplex

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	3	2	2	1	3	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	>	\checkmark
CO 2	✓	\checkmark	✓	~	✓
CO 3	✓	\checkmark	~	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours						
Course Code	MAT6EJ305							
Course Title	TOPOLOGY	TOPOLOGY OF METRIC SPACES						
Type of Course	Elective							
Semester	VI							
Academic Level	300 - 399							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
		per week	per week					
	4	4	-	60				
Pre-requisites	1. Fundamenta	al Mathematics Concepts: Set,	Functions, Log	jic				
	2. Real Analysis							
Course	This course familiarises students with the basic tools and phenomenology of							
Summary	topology by introducing metric spaces as a generalisation of the familiar							
	Euclidean space	ces.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate understanding of	U	С	Internal
	fundamental concepts in metric			Exam/Assignment/
	spaces and basic examples of			Seminar/ Viva /
	metric spaces.			End Sem Exam
CO2	To analyse and evaluate the	An	Е	Internal
	basic topology of metric spaces,			Exam/Assignment/
	including open sets, closed sets,			Seminar/ Viva /
	interior, closure, and boundary			End Sem Exam
	points			
CO3	Demonstrate proficiency in	Ар	Р	Internal
	applying concepts of			Exam/Assignment/
	convergence, completeness, and			Seminar/ Viva /
	continuity in metric spaces,			End Sem Exam
	including understanding Cauchy			
	sequences, completeness, and			
	continuity of functions.			
* - Rer	nember (R), Understand (U), Apply	/(Ap), Analyse	(An), Evaluate (E), Create (C)
# - Fac	ctual Knowledge(F) Conceptual Kr	nowledge (C) Pr	ocedural Knowle	dge (P)
Metac	ognitive Knowledge (M)			

Textbook		uction to Topology and Modern Analysis, George F. Simmons, Krieger Publisl any (1982) ISBN-0-89874-551-9	ning
Module	Unit	Content	Hrs (48+ 12)
Ι		Introduction to Metric Spaces	
	1	Chapter 1 Section 5: Partitions and Equivalence Relations	
	2	Chapter 1 Section 6: Countable Sets	
	3	Chapter 1 Section 7: Uncountable Sets	
	4	Chapter 2 Section 9: The Definition and Some Examples (Topics up to and including Example 2)	12
	5	Chapter 2 Section 9: The Definition and Some Examples (Topics from Example 3 onwards)	
II		Basic Topology of Metric Spaces	
	6	Chapter 2 Section 10: Open Sets (Topics up to and including Theorem A)	
	7	Chapter 2 Section 10: Open Sets (Theorem B and Theorem C)	
	8	Chapter 2 Section 10: Open Sets (Topics from Theorem D onwards)	10
	9	Chapter 2 Section 11: Closed Sets (Topics up to and including Theorem C)	
	10	Chapter 2 Section 11: Closed Sets (Topics from Theorem D onwards)	
III		Convergence, Completeness & Continuity	
	11	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics up to Theorem A)	
	12	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Theorem A and Theorem B)	
	13	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics from Theorem C onwards)	12
	14	Chapter 2 Section 13: Continuous Mappings (Topics up to and including Theorem A)	
	15	Chapter 2 Section 13: Continuous Mappings (Theorem B and Theorem C)	
	16	Chapter 2 Section 13: Continuous Mappings (Topics from Theorem D onwards)	
IV		Special Classes of Metric Spaces	
	17	Chapter 2 Section 14: Spaces of Continuous Functions (Topics up to First Lemma)	
	18	Chapter 2 Section 14: Spaces of Continuous Functions (First Lemma, Second Lemma)	
	19	Chapter 2 Section 14: Spaces of Continuous Functions (Topics from Theorem A onwards)	
	20	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics up to First Lemma)	- 14
	21	Chapter 2 Section 15: Euclidean and Unitary Spaces (First Lemma, Second Lemma)	
	22	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics from Theorem A onwards)	
		Compactness In Metric Spaces	

V (Open Ended)	The Heine-Borel PropertyBolzano-Weierstrass PropertyLebesgue's Covering LemmaSequential CompactnessCompactness – Open Cover FormulationTotal BoundednessCompactness, Completeness & Total BoundednessEquicontinuity & the Arzela-Ascoli Theorem	12
References:	·	

- 1. Introduction to General Topology, K. D. Joshi, New Age International.
- 2. A First Course In Topology, James R. Munkres, Prentice Hall of India
- 3. Topology of Metric Spaces, S. Kumaresan, Narosa Publishing House.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	1	2	1	3	0	1
CO 2	3	3	1	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	~	\checkmark

Programme	B. Sc. Mathem	atics Honours					
Course Code	MAT6EJ306						
Course Title	INTRODUCT	TION TO FOURIER ANAL	YSIS				
Type of Course	Elective						
Semester	VI						
Academic Level	300-399						
Course Details	Credit Lecture/Tutorial Practical Total						
		per week	per week				
	4	4	-	60			
Pre-requisites	An introductor	y course in Real Analysis incl	luding series of	functions			
Course	Fourier analys	is is a fundamental componer	nt in the tool-kit	of every pure and			
Summary	applied mathe	ematician with numerous ap	plications to s	ignal processing,			
	image process	ing, tomography and several of	other areas of er	ngineering. In this			
	course we shall look at the most basic theoretical foundations of this subject.						
	Along the way	we shall have to recapitulate	some of the requ	isite results from			
	functional anal	ysis.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate proficiency in defining and applying concepts related to inner product spaces, including orthogonality and linear operators.	Ap/An	Р	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO2	Describe orthogonality, including definitions and examples. Demonstrate the use of orthogonal projections, including the Gram- Schmidt orthogonalization process.	Ар	С	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
	Compute Fourier series on various intervals including cosine and sine expansions, and understand the complex form of Fourier series. nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowled			
Metaco	ognitive Knowledge (M)			

Text Book		Course in Wavelets with Fourier Analysis, 2e, Albert Bogg wich, Wiley.	gess and	Francis		
Module	Unit	Unit Content				
Ι		Inner Product Spaces	12) 12			
		Quick review through the preface of the text book for the discussions Fourier Analysis and Wavelets				
	1	0.1 and 0.2 – Motivation, definition and examples of inner product.				
	2	0.3 – The spaces LZ and ℓ Z – 0.3.1 - Construction of inner products in LZ and ℓ Z.				
	3	0.3.2 – Convergence in LZ versus uniform convergence.				
	4	0.4 – Schwarz Inequality				
	5	0.4 - Triangle Inequality				
	6	0.5 – Orthogonality				
		0.5.1 – Definitions and examples.				
	7	0.5.2 – Orthogonal Projections – up to and including example 0.23				
II		Inner Product Spaces – contd.	12			
	8	0.5.2 – Orthogonal Projections – rest of the section				
	9	0.5.3 – Gram – Schmidt Orthogonalization.				
	10	0.6 – Linear Operators and their Adjoints				
		0.6.1-Linear Operators				
	11	0.6.2 - Adjoints - (up to and including Example 0.31)				
	12	0.6.2 – Adjoints – rest of the section.				

III		Fourier Series	12					
	13	1.1 – Introduction (1.1.1 to 1.1.3)						
	14							
	15	1.2.2 – Other intervals – with examples						
	16	1.2.3 – Cosine and Sine expansions with examples						
	17	1.2.5 – The complex form of Fourier Series						
	Mo	dules III and IV are presented only for motivations a	nd					
		mples for the theory. All the proofs of theorems in the						
		dules are optional to study and exempted from externation.	al					
IV		Fourier Transforms	12					
	18	2.1 – Informal development of the Fourier transform						
		2.1.1 – Fourier Inversion Theorem						
	19	2.2.2 – Fourier Transform of a convolution						
	20	2.2.3 – Adjoint of the Fourier Transform						
	21	2.2.4 – Plancherel Theorem						
	22	More problems from the above sections						
V (Open		Fourier Analysis	12					
Ended)	Ended) After having the above basics of Fourier Analysis, one can look at the discrete versions of Fourier Analysis and can enter into Wavelets theory (for instance refer sections 4.1 and 4.2 of text book). The Haar wavelet analysis with its decomposition and reconstruction theorems open the window to signal theory which is an active area of research for both pure and applied Mathematicians							

References

- 1. Ten lectures on Wavelets, Daubechies, Philadelphia, SIAM, 1992.
- 2. Fourier Analysis and its Applications, Gerald B Folland, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, California.
- 3. Introduction to Fourier Analysis on Euclidean Spaces, Elias M Stein and Guido -Weiss, Princeton University Press.
- 4. How to make Wavelets, Robert S. Strichartz, The American Mathematical Monthly.

Note: 1) Optional topics are exempted for end semester examination. 2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	<	\checkmark
CO 2	✓	✓	✓	~	√
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours								
Course Code	MAT8EJ401									
Course Title	ADVANCED TO	ADVANCED TOPOLOGY								
Type of Course	Elective									
Semester	VIII									
Academic Level	400-499									
Course Details	Credit Lecture/Tutorial Practicum Total Ho									
		per week	per week							
	4	4	0	60						
Pre-requisites	1. Topology I									
Course	The advanced top	ology course extends Topo	ology I by intr	oducing further						
Summary	concepts and tool	s. It starts with the produ	uct topology a	nd explores its						
	properties. Embed	dings, including the Tycho	onoff embeddir	ng theorem, are						
	discussed. Urysoh	n's Lemma from the previo	ous course is us	ed to prove the						
	Urysohn Metrisati	on Theorem. Nets and file	ters are introdu	iced to address						
	sequence limitatio	ns. Various forms of comp	actness and co	mpactifications						
	are examined, with	a focus on their relation to	completeness in	n metric spaces.						
	The course conclu	ides with important results	s such as the H	Baire category						
	theorems.									

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Learn basic structures and	U	F	Internal
	constructions in Topology			Exam/Assignment/
				Seminar/Viva/EndSem
				Exam
CO2	Analyse and apply the concepts	An	Р	Internal
	of Nets, Filters, and			Exam/Assignment/
	Convergence in the context of			Seminar/Viva/EndSem
	Topological Spaces			Exam
CO3	To develop the student's ability	Ap	С	Internal
	to handle abstract ideas of			Exam/Assignment/
	mathematics and			Seminar/Viva/EndSem
	mathematical proofs			Exam
* - Rei	member (R), Understand (U), Appl	y (Ap), Analy	se (An), Evalua	ate (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual Ki	nowledge (C)	Procedural Kn	owledge (P)
Metac	ognitive Knowledge (M)			

Text Book		tion to General Topology, 2 nd Edition, K. D. Joshi, N rs, 1983.	New Age Int	ernational
Module	Unit	Content	Hrs (48+12)	External Marks (70)
Ι		Chapter 8: Products & Coproducts	10	
	1	Cartesian Products of Families of Sets – 8.1		
	2	The Product Topology – 8.2		
	3	Productive Properties – Separation Axioms 8.3		
	4	Productive Properties – Connectedness – 8.3		
	5	Countably Productive Properties –Metrisability– 8.4		
	6	Countably Productive Properties –Countability– 8.4		
	7	The Case of Separability – 8.4		
II		Chapter 9: Embedding & Metrisation	10	
	8	Evaluation Functions into Products – 9.1		
	9	Embedding Lemma – 9.2		
	10	Tychonoff Embedding – 9.2		
	11	The Urysohn Metrisation Theorem – 9.3		
Ш		Chapter 10: Nets & Filters	12	
	12	Definition & Convergence of Nets – 10.1		
	13	Topology & Convergence of Nets – 10.2		
	14	Nets & Compactness – 10.2		
	15	Filters & Their Convergence – 10.3		
	16	Topology & Filters – 10.3		
	17	Ultrafilters and Compactness – 10.4		
IV	Chap 1	1,12: Compactness & Complete Metric Spaces	16	

	18	Variations of Compactness – 11.1		
	19	The Alexander Sub-base Theorem – 11.2		
	20	Local Compactness – 11.3		
	21	Compactifications – 11.4 (Wallman Compactification 11.15 to 11.20 may be relegated to Practicum)		
	22	Complete Metrics – 12.1		
	23			
	24	Completions of a Metric – 12.4		
V	Practic	um:	12	
	1	Wallman Compactification: 11.15 to 11.20		
	2			
	3 Chapter 13: Category Theory			
	4	Chapter 14: Uniform Spaces		
	5	Chapter 15 Section 2: Paracompactness		
	6	Chapter 15 Section 3: Use of Ordinal Numbers		
	7	Nagata-Smirnov Metrisation Theorem		
Reference	ـــــــــــــــــــــــــــــــــــــ			
		R. Munkres, Prentice Hall of India, 2000.		
2. Ge	eneral Topo	ology, S. Willard, Addison Wesley Pub. Company,	1976.	
3. Ge	eneral Topo	ology, J. L. Kelley, D. van Nostrand, 1955.		

- 4. Introduction to Topology and Modern Analysis; G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	3	3	2	1	2	1	2	0	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assignment Seminar Viva End Semester Examinations Internal Exam CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT8EJ402								
Course Title	PARTIAL DI	PARTIAL DIFFERENTIAL EQUATIONS							
Type of Course	Elective	Elective							
Semester	VIII	VIII							
Academic Level	400-499	400-499							
Course Details	Credit	Credit Lecture/Tutorial		Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	1. Real Analys Equations	is 2. Basic Concepts of Vecto	or functions 2. O	rdinary Differential					
Course Summary	with the mathe solve real-wor analytical meth	This introductory Partial Differential Equations (PDEs) course equips students with the mathematical tools and problem-solving skills necessary to analyse and solve real-world phenomena governed by PDEs. The syllabus focuses on analytical methods for solving first and second-order PDEs, laying the foundation for further exploration of advanced PDEs and their applications.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understanding of basic concepts, definitions, and mathematical problems related to first-order quasilinear equations.	U	С	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam							
CO2	Analyse and evaluate the classification of second-order linear equations, including the Cauchy problem and wave equations.	An	Е	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam							
CO3	Evaluate solutions for boundary value problems and apply them in solving PDEs.	E	Р	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam							
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 										

Text: Linear Partial Differential Equations for Scientists and Engineers, Fourth Edition, Tyn Myint-U, Lokenath Debnath, Birkhauser(2007), ISBN : 978-81-8489-079-2.

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70
I]	First Order Quasilinear Equations and Method of Characteristics	9	
	1	Basic Concepts, definitions and mathematical problems		
	2	Classification of first order equations		
	3	Construction of a first order equation		
	4 Geometrical Interpretation of a First- Order Equation			
	5	Method of characteristics and General solutions		
	Section	ons from Text: 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 2.5.		
Π	Cla	assification of Second Order Linear Equations, The Cauchy Problem and Wave Equations	21	
	6	Second order equations in two independent variables		
	7	Canonical Forms		
	8	Equations with constant coefficients		
	9	General Solutions		
	10	The Cauchy Problem		
	11	Homogeneous Wave Equations		
	12	Initial Boundary-Value Problems		
	13	Equations with Nonhomogeneous Boundary Conditions		
	14	Vibration of Finite String with Fixed Ends		
	15	Nonhomogeneous Wave Equations		
	16	The Riemann Method		

	Secti	ons from Text: 4.1 - 4.4, 5.1, 5.3-5.8				
III		13				
	17	Introduction				
	18	18 Separation of Variables19 The Vibrating String Problem				
	19					
	20	Existence and Uniqueness of Solution of the Vibrating String Problem				
	21	The Heat Conduction Problem				
	22	Existence and Uniqueness of Solution of the Heat Conduction Problem				
	23	The Laplace and Beam Equations				
	24	Nonhomogeneous Problems				
	Sections from Text: 7.1-7.8					
IV		7				
	25	Boundary Value Problems				
	26	Maximum and Minimum Principles				
	27	Uniqueness and Continuity Theorems				
	28	Dirichlet Problem for a circle				
	29	Neumann Problem for a circle				
	30	Dirichlet Problem for a rectangle				
	31	The Neumann Problem for a Rectangle				
	Secti	ons from Text: 9.1-9.4, 9.6, 9.7, 9.8,9.9				
V (Open Ended)		Green's Functions, Boundary Value Problems and Nonlinear Equations	12			
		Green's Functions for Ordinary Differential Equations, Construction of Green's Functions, The Dirac Delta Function, Properties of Green's Functions, Method of Green's Functions (only for Laplace operator) Nonlinear PDEs -brief overview from any text				

References:

1. Partial Differential Equations -An Introduction, Second Edition, Walter A. Strauss, John Wiley and Sons Limited.

2. Partial Differential Equations-Classical Theory with a Modern Touch, A.K. Nandakumaran, P.S. Datti, Cambridge-IISc Series.

3. Elements of Partial Differential Equations, I.N. Sneddon, McGraw-Hill, New York (1972).

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	2	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	<	\checkmark
CO 2	~	~	~	<	~
CO 3	✓	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT8EJ403							
Course Title	RINGS AND N	AODULES						
Type of Course	Elective							
Semester	VIII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Elementary number theory, algebra combinatorics, basic linear algebra							
Course	This course is a self-contained elementary introduction to Rings and Modules.							
Summary	The course will	The course will cover basic topics of Ring Theory and Module Theory which is						
	a core course in	Algebra						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and differentiate between various types of rings, including rings of continuous functions, matrix rings and polynomial rings	U	C	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam
CO2	Analyse and apply the concepts of ideals within rings, including definitions, maximal ideals, generators for subrings and ideals.	An	Ар	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam
CO3	Evaluate and synthesize the concepts of homomorphisms of rings, including quotient rings, ideals in quotient rings, endomorphism rings and field of fractions.	E	М	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam
	nber (R), Understand (U), A ll Knowledge(F) Conceptua ge (M)			

Text book	Introduction to Rings and Modules, C. Musili, Narosa Publishing House, 2001.			
Module	Unit	Content	Hrs	Ext.
			(48	Marks
.		D!	+12)	(70
Ι	1	Rings	-	
	$\frac{1}{2}$	Chapter 1 – Section 1.1: Terminology Chapter 1 – Section 1.2: Rings of Continuous functions	-	
	3	Chapter 1 – Section 1.2: Kings of Continuous functions Chapter 1 – Section 1.3 to 1.5: Matrix Rings, Polynomial Rings	-	
	5	and Power series rings	12	
	4	Chapter 1 – Section 1.8 to 1.9: Some Special Rings and Direct	12	
	- T	Products		
	5	Chapter 1 – Section 1.10 to 1.12: Several Variables, Opposite		
		rings, Characteristic of a ring		
II		Ideals		
	6	Chapter 2 – Section 2.1 to 2.2 : Definitions, Maximal Ideals		
	7	Chapter 2 – Section 2.3: Generators for subrings and Ideals	12	
	8	Chapter 2 – Section 2.4: Basic Properties of Ideals	-	
	9	Chapter 2 – Section 2.5: Algebra of Ideals		
III	10	Homomorphisms of Rings	-	
	10	Chapter 2 – Section 2.6 & 2.7 : Quotient rings and Ideals in		
	11	Quotient rings	-	
	11	Chapter 3 – Section 3.1: Definition and Basic Properties	12	
	12	Chapter 3 – Section 3.2 : Fundamental Theorems of Homomorphisms	12	
	13	Chapter 3 – Section 3.3: Endomorphism Rings	-	
	13	Chapter 3 – Section 3.4: Field of Fractions	-	
	15	Chapter 3 – Section 3.5: Prime Fields	-	
IV	10	Modules		
	16	Chapter 5: Modules: Section 5.1: Definition and Examples		
	17	Chapter 5: Section 5.2 to 5.4: Direct sums, Free Modules and		
		Vector spaces	12	
	18	Chapter 5: Section 5.4 to 5.3: Direct sums and Free Modules		
	19	Chapter 5: Section 5.6: Quotient Modules		
	20	Chapter 5: Section 5.7: Homomorphisms		
	21	Chapter 5: Section 5.8: Simple Modules		
V		Open Ended		
			12	
		ian Modules and Rings, Noetherian Modules and Rings, Nil		
References	Kaul	cal, Jacobson Radical		
Kelefences	1	. John B. Fraleigh, A First Course in Abstract Algebra, 7th Editio 2002	n,	
	2	. M. Artin: Algebra, Prentice Hall, 1991		
	3	. Thomas W. Hungerford, Algebra, Springer, 2003		
	4	. Joseph Gallian, Contemporary Abstract Algebra, 7th Edition, Co Learning, 2009.	engage	
	5	. D.M. Burton, A First Course in rings and ideals, Addison-Wesl 1970.	ey,	

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	2	3	2	1	3	1	3	1	3	0	1
CO 3	2	2	2	1	3	1	3	1	3	0	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
СО	1 🗸	√	✓	~	\checkmark
СО	2	✓	~	~	\checkmark
СО	3 🗸	√	✓	~	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours					
Course Code	MAT8EJ404						
Course Title	CODING THEO	CODING THEORY					
Type of Course	Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Linear Algebra, Alge	ebra	•				
Course Summary	-	The course helps the student to understand various algebraic codes, - their encoding and decoding methods and the mathematical tools used in their					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Construct the parity check/generator	Ар	С	Internal
	atrix of a linear code.			xam/Assignment/
				eminar/Viva/End
				em Exam
CO2	Calculate bounds on rate and	An	Р	Internal
	istance of a given linear code using			xam/Assignment/
	arious bounds.			eminar/Viva/End
				em Exam
CO3	Design cyclic codes of a given rate	Ар	Р	Internal
	nd distance parameters and decode			xam/Assignment/
	t using various standard decoding			eminar/Viva/End
	rocedures.			em Exam
- Rer	nember (R), Understand (U), Apply (A	p), Analyse (An), Evaluate (I	E), Create (C) #
Factu	al Knowledge(F) Conceptual Knowled	lge (C) Procee	dural Knowledg	e (P) Metacognitive
nowle	edge (M)			

Text		an, W. Cary, and Vera Pless. Fundamentals of er	ror-correcting	codes.
	Cambr	idge university press, 2010.		
Module	Unit	Content	Hrs (48+12)	External Marks (70)
Ι	Linear	Codes	12	
	Text Se 1.11.2	ections: 1.1, 1.2, 1.4, 1.5.1 to 1.5.3, 1.8, 1.10,		
	1	Binary and Prime Fields		
	2	Linear Codes - Generator and Parity Check Matrix		
	3	Weights and Distances		
	4	Punchuring, Shortening and Extension		
	5	Hamming Codes		
	6	Reed Muller Codes		
	7	Encoding Linear Codes		
II	Bound	s on Linear Codes	5	
	Text S	ections: 2.2, 2.4, 2.8		
	8	Plotkin Bound		
	9	Singleton Bound and MDS codes		
	10	Gilbert - Varshamov Lower Bound		
	11	Asymptotic Singleton and Plotkin Bounds		
Ш	Finite	Fields and Cyclic Codes	15	
	Text S	ections: 3.1 to 3.7 and 4.1, 4.2, 4.5.		
	12	Finite fields and elementary properties		
	13	Polynomials and Euclid's Algorithm		
	14	Primitive Elements		
	15	Construction of Finite fields]	

	16	Cyclotomic Polynomials					
	17	Basic Theory of Cyclic Codes					
	18	BCH Bound.					
IV	BCH a	nd Reed Solomon Codes	16				
	Text S	ections: 5.1, 5.2, 5.3, 5.4.1 to 5.4.3					
	18	BCH Codes					
	19	Reed Solomon Codes and their generalization.					
	20	Peterson–Gorenstein–Zierler Decoding Algorithm					
	21	Berlekamp Massey Decoding Algorithm					
	22	Sugiyama Decoding Algorithm (Euclid's Algorithm)					
V		OPEN ENDED	12	-			
	1	List decoding and Guruswami Sudan Algorithm					
	2	Weight Distributions of Codes and McWilliams Identities					
	3	Self-dual codes.					
	4	Codes on Projective Planes					
	5	Codes over Z4					
	6	Convolutional Codes					
References		Assmus, Jr. and J. D. Key, Designs and Their Co idge University Press, 1993.	odes. London	:			
		2. R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.					

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	0	3	1	2	1	3	0	1
CO 2	3	2	2	0	3	1	3	1	3	0	1
CO 3	3	3	2	0	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assignment Seminar Viva End Semester Examinations Internal Exam CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematic	es Honours				
Course Code	MAT8EJ405	MAT8EJ405				
Course Title	FOUNDATIONS	S OF MATHEMATICS				
Type of Course	Elective					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit Lecture/Tutorial Pra		Practical	Total		
		per week	per week	Hours		
	4	4	-	60		
Pre-requisites	Nil					
Course	The course goes into the philosophy of mathematics, modern axiom					
Summary	methods, controversies in set theory around axiom of choice, its					
	implications and	various philosophical alter	native approad	ches to the		
	foundations of mat	hematics.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Axiomatic	An	С	Internal
	Systems and Logical			Exam/Assignment
	Deductions			/ Seminar/ Viva /
				End Sem Exam
CO2	Explore Axioms and their	Ар	С	Internal
	Interpretation of			Exam/Assignment
	Mathematical Structures			/ Seminar/ Viva /
				End Sem Exam
CO3	Investigate Properties of	Е	Р	Internal
	standard sets in			Exam/Assignment
	Mathematics and obtain			/ Seminar/ Viva /
	their axiomatic			End Sem Exam
	constructions			
* - Re	member (R), Understand (U), Apply (Ap), A	Analyse (An), Eva	luate (E), Create (C)
	Factual Knowledge(F) Con			
Metaco	ognitive Knowledge (M)			

Module	Unit	Content	Hrs	Ext. Marks
			(60)	(70)
Ι	Axiom	atic Method (Up to Chapter 3 Section 5 of Text Book)	12	
	1	Description - undefined terms, axioms, logical deductions and proofs. Case study with axioms of points and lines.		
	2	Axioms and Interpretation (models): consistency (satisfiability), completeness, categorically and independence.		
	3	Case Study with axioms of order and equivalence.		
	4	Sets and Russal's Paradox.		
	5	Finite and Infinite Sets,		
	6	Review of Mathematical Induction.		
II		eory: Cardinals (Chapter 3, Section 6 to Chapter 4 of Text	12	
	Book)			
	7	Infinite Sets - Ordinary and Dedekind Infinity and their equivalence		
	8	Axiom of Choice		
	9	Countable Sets and their properties		
	10	Diagonalization and Uncountable Sets, Irrational Numbers		
	11	Cardinal Numbers and Bernstein's Equivalence Theorem		
	12	Well Ordered Sets and Transfinite Induction		
			10	
III		eory: Ordering (Chapter 5)	12	
	13	Well Ordering Theorem		
	14	Ordinals and Burali-Forti Paradox		
	15	Properties of Ordinals and Continuum Hypothesis		
	16	Equivalence of Axiom of Choice, Well Ordering Theorem.		
	17	Zorn's Lemma and Equivalence with Axiom of Choice		

IV	Real N	umbers (Chapter 6 of Text Book)12			
	18	Ordering and Separability of Reals, and Dedekind Cuts.			
	19	Axiomatization of Real Numbers: Constituency, Independence and			
	20	Categoricalness of Real Number Axioms.			
	21	Definition of Real numbers from Peano's Axioms			
	22	Complex Numbers.			
V	Discus	ions in Mathematical Philosophy			
	1	Abstractions: Groups/Rings/Fields/Vector Spaces			
	2	Zermelo Fraenkel Axiomatization of Set Theory			
	3	Frege-Russell Thesis Set Theory using Predicate Calculus			
	4	Brower's Intuitionist Theory			
	5	Formal Deductions and Godel's Theorems.			

References:

- 1. I. M. Copi, Symbolic Logic (5/e), Pearson, 2015.
- 2. U. C. Merzbach and C. B. Boyer, A History of Mathematics, (3/e), 2011.
- 3. I. Stewart and D. Tall, The foundations of Mathematics, (2/e), Oxford University Press 2015.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	3	3	3	0	0	3
CO 2	3	3	2	1	3	3	3	3	0	0	3
CO 3	3	3	2	1	3	3	3	3	0	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assignment Seminar Viva End Semester Examinations Internal Exam CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours				
Course Code	MAT8EJ406	MAT8EJ406				
Course Title	OPERATION	IS RESEARCH				
Type of Course	Major					
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic Mathem	natical and Statistical knowled	ge.			
Course	This paper or	n Operation Research introdu	ices the concep	ots like minimum		
Summary	path problem in network analysis, integer linear programming problem and					
	dynamic prog	dynamic programming problem. Kuhn Tucker condition to solve nonlinear				
	programming	problem is also discussed.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Solve Minimum Path Problem, Maximum flow problem	Ap	С	Internal Exam/ Assignment / Seminar/Viva/End Sem Exam			
CO2	Understand and solve ILP and MILP	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Apply Kuhn-Tucker Conditions to solve nonlinear programming problem	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text: Optimization Methods in Operation Research and System Analysis (4 th edition), KV Mittal,
C Mohan, New Age International (P) Limited (2016)

Module Unit Content Hrs Ext. Marke (48 (70) I Flow and Potential in Networks 14 1 5.1,5.2 - Graphs Definitions and Notation 14 2 5.3- Minimum Path Problem 14 3 5.4- Spanning tree of minimum length 14 4 5.5- Problem of Potential Difference 5 5 5.6- Scheduling of sequential activities 6 6 5.71 Maximum flow problem 10 7 Generalized Problem of Maximum flow 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5, 8.6- 8.7- Cutting planes, Example, Remarks on Cutting plane method 11 11 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3-Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 16 8.4- Kuhn-Tucker Condit					
I Flow and Potential in Networks 14 1 5.1,5.2 - Graphs Definitions and Notation 14 2 5.3-Minimum Path Problem 14 3 5.4-Spanning tree of minimum length 4 4 5.5-Problem of Potential Difference 5 5 5.6-Scheduling of sequential activities 6 6 5.7 Maximum flow problem 10 7 Generalized Problem of Maximum flow 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) <td< th=""><th>Module</th><th>Unit</th><th>Content</th><th>Hrs</th><th>Ext. Marks</th></td<>	Module	Unit	Content	Hrs	Ext. Marks
I Flow and Potential in Networks 14 1 5.1,5.2 - Graphs Definitions and Notation 14 2 5.3- Minimum Path Problem 3 3 5.4- Spanning tree of minimum length 4 4 5.5- Problem of Potential Difference 5 5 5.6- Scheduling of sequential activities 6 6 5.7 Maximum flow problem 10 7 Generalized Problem of Maximum flow 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4- Examples of ILP in two dimensional space 11 12 6.5, 6, 6, 7- Cutting planes, Example, Remarks on Cutting plane method 11 11 Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 16 8.4- Kuhn-Tucker Conditions 17 17 8.5- Primal and Dual Problems 13 18 8.6-Quadratic Programming 13				(48	
I Flow and Potential in Networks 14 1 5.1,5.2 - Graphs Definitions and Notation 1 2 5.3-Minimum Path Problem 3 3 5.4-Spanning tree of minimum length 4 4 5.5-Problem of Potential Difference 5 5 5.6-Scheduling of sequential activities 6 6 5.7 Maximum flow problem 10 7 Generalized Problem of Maximum flow 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4-Examples of ILP in two dimensional space 11 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 11 Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3-Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4-Kuhn-Tucker Conditions 17 17 8.5-Primal and Dual Problems 13 18 8.6-Quadratic Programming 13				±12)	(70)
1 5.1,5.2 - Graphs Definitions and Notation 2 5.3- Minimum Path Problem 3 5.4- Spanning tree of minimum length 4 5.5- Problem of Potential Difference 5 5.6- Scheduling of sequential activities 6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 11 6.4. Examples of ILP in two dimensional space 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming 13	I		Flow and Potential in Networks	<i>,</i>	
2 5.3- Minimum Path Problem 3 5.4- Spanning tree of minimum length 4 5.5- Problem of Potential Difference 5 5.6- Scheduling of sequential activities 6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4- Examples of ILP in two dimensional space 12 10 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 III Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 16 8.4- Kuhn-Tucker Conditions 17 17 8.5- Primal and Dual Problems 13 18 8.6-Quadratic Programming 13	-	1			
3 5.4- Spanning tree of minimum length 4 5.5- Problem of Potential Difference 5 5.6- Scheduling of sequential activities 6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5, 6. 6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming 13					
4 5.5- Problem of Potential Difference 5 5.6- Scheduling of sequential activities 6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming 11 8.6-Quadratic Programming		2	5.3- Minimum Path Problem		
5 5.6- Scheduling of sequential activities 6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 10 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 10 6.3-General ILP and MILP problems 11 11 6.4- Examples of ILP in two dimensional space 12 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method 11 III Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 16 8.4- Kuhn-Tucker Conditions 17 17 8.5- Primal and Dual Problems 13 18 8.6-Quadratic Programming 13		3	5.4- Spanning tree of minimum length		
6 5.7 Maximum flow problem 7 Generalized Problem of Maximum flow II Integer Programming 8 6.1, 6.2-Introduction, ILP in two dimensional space 10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		4	4 5.5- Problem of Potential Difference		
Image: Constraint of the symmetry of the symmet		5	5 5.6- Scheduling of sequential activities		
IIInteger Programming1086.1, 6.2-Introduction, ILP in two dimensional space10106.3-General ILP and MILP problems116.4- Examples of ILP in two dimensional space126.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane methodIIIKuhn-Tucker Theory and Nonlinear Programming148.1, 8.2-Introduction , Lagrangian Function: Saddle Point,158.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X)168.4- Kuhn-Tucker Conditions178.5- Primal and Dual Problems188.6-Quadratic ProgrammingIVDynamic Programming		6	-		
8 6.1, 6.2-Introduction, ILP in two dimensional space 10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5, 6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3-Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		7			
10 6.3-General ILP and MILP problems 11 6.4- Examples of ILP in two dimensional space 12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming	II		Integer Programming	10	
11 6.4- Examples of ILP in two dimensional space 12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		8	6.1, 6.2-Introduction, ILP in two dimensional space		
12 6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method III Kuhn-Tucker Theory and Nonlinear Programming 11 14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 16 8.4- Kuhn-Tucker Conditions 17 17 8.5- Primal and Dual Problems 18 18 8.6-Quadratic Programming 13		10	6.3-General ILP and MILP problems		
IIIKuhn-Tucker Theory and Nonlinear Programming11148.1, 8.2-Introduction , Lagrangian Function: Saddle Point,11158.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X)16168.4- Kuhn-Tucker Conditions17178.5- Primal and Dual Problems18188.6-Quadratic Programming13		11	6.4- Examples of ILP in two dimensional space		
14 8.1, 8.2-Introduction , Lagrangian Function: Saddle Point, 15 8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		12			
158.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X)168.4- Kuhn-Tucker Conditions178.5- Primal and Dual Problems188.6-Quadratic ProgrammingIVDynamic Programming13	III		Kuhn-Tucker Theory and Nonlinear Programming	11	
point of f(X) 16 8.4- Kuhn-Tucker Conditions 17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		14	8.1, 8.2-Introduction, Lagrangian Function: Saddle Point,		
17 8.5- Primal and Dual Problems 18 8.6-Quadratic Programming IV Dynamic Programming		15			
18 8.6-Quadratic Programming IV Dynamic Programming		16	8.4- Kuhn-Tucker Conditions		
IV Dynamic Programming 13		17	8.5- Primal and Dual Problems		
		18	8.6-Quadratic Programming		
19 10.1,10.2- Introduction, Problem 1: A Minimum Path	IV		Dynamic Programming	13	
Problem		19			

	20	10.3-Problem II: Single Additive Constraint, Additively Separable Return						
	21	10.4, 10.5-Problem III: Single Multiplicative Constraint, Additively Separable Return, Problem IV: Single Additive Constraint, Multiplicatively Separable Return						
	22 10.6,10.7-Computational Economy in DP, Serial Multistage Model							
	23	10.8, 10.9-Examples of Failure, Decomposition						
	24	10.10-Backward and Forward Recursion						
V		Open Ended	12					
	Sensitivity Analysis, Changes in b _i , c _j , and a _{ij} , Introduction of new variable, Introduction of new constraint, Deletion of variables, Deletion of constraints, Parametric linear programming, goal programming							
	variat Delet	ole, Introduction of new constraint, Deletion of variables, ion of constraints, Parametric linear programming, goal						
Reference	variat Delet progra	ole, Introduction of new constraint, Deletion of variables, ion of constraints, Parametric linear programming, goal						

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	1	1	2	0	1
CO 2	3	3	1	1	2	1	1	1	2	0	1
CO 3	2	3	2	1	2	1	1	1	2	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	✓	✓	~	<	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT8EJ407						
Course Title	CRYPTOGRA	CRYPTOGRAPHY					
Type of Course	Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Elementary nur	nber theory, algebra, combin	atorics, basic li	inear algebra			
Course Summary	Cryptography is a fundamental aspect of information security that involves creating secure communication by encoding messages to make them unintelligible to unauthorised users and Cryptography relies heavily on mathematical concepts. This course covers a wide range of topics, starting with Classical Cryptography, which includes simple cryptosystems. It also delves into cryptanalysis of these systems. Moreover, the course includes a section on Cryptographic Hash Functions, focusing on their role in ensuring data integrity. Students gain a comprehensive understanding of these concepts and techniques, equipping them with the knowledge and skills needed to analyze and implement secure cryptographic systems.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Construct the parity check/generator matrix of a linear code. Design cyclic codes of a given rate and distance parameters.	Ap	С	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam		
CO2	Calculate bounds on rate and distance of a given linear code using various bounds.	An	Р	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam		
CO3	Decode a cyclic code using various standard decoding procedures.	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Textbook	Cry	ptography Theory and Practice 3rdEdition, Douglas R. Stinson, , Chap	oman &	Hall,
Module	Unit	Content	Hrs	Ext.
			(48	Marks
			+12)	(70)
Ι		Classical Cryptography		
	1	Chapter 1: Section 1.1-1.1.1: Some SimpleCryptosystems, Shift		
		Cipher		
	2	Chapter 1: Sections 1.1.2 & 1.1.3: The SubstitutionCipher, Affine		
		Cipher	12	Min.15
	3	Chapter 1: Sections 1.1.4 & 1.1.5: The VigenereCipher, The Hill		
		Cipher		
	4	Chapter 1: Sections 1.1.6: The Permutation Cipher		
	5	Chapter 1: Sections 1.1.7: Stream Ciphers		
П		Cryptanalysis		
	6	Chapter 1: Section 1.2 & 1.2.1 : Cryptanalysis:Cryptanalysis of		
		the Affine Cipher		
	7	Chapter 1: Section 1.2.2 : Cryptanalysis of the Substitution Cipher		
	8	Chapter 1: Section 1.2.3 : Cryptanalysis of the Vigenere Cipher	12	Min.15
	9	Chapter 1: Section 1.2.4 : A known plain textattack on the Hill		
		Cipher		
	10	Chapter 1: Section 1.2.5 : Cryptanalysis of the LFSR-based Stream		
		Cipher.		
III		Shannon's Theory		Min.15
	11	Chapter 2 : Sections 2.1, 2.2 : Introduction, Elementary Probability		
		Theory	_	
	12	Chapter 2 : Sections 2.3: Perfect Secrecy	10	
	13	Chapter 2 : Sections 2.4: Entropy, HuffmanEncodings		
	14	Chapter 2 : Sections 2.5: Properties of Entropy		
	15	Chapter 2 : Sections 2.6: Spurious Keys and Unicity Distance	_	
	16	Chapter 2 : Sections 2.7: Product Cryptosystems		
IV		Block Ciphers and Advanced Encryption Standard	_	
	17	Chapter 3: Sections 3.1 and 3.2 : Introduction, Substitution -		
	1.0	Permutation Networks		
	18	Chapter 3: Sections 3.3 (3.3.1 to 3.3.3): LinearCryptanalysis	14	Min.15
	19	Chapter 3: Sections 3.4 : Differential Cryptanalysis	_	
	20	Chapter 3: Sections 3.5 (3.5.1,3.5.2) : Data Encryption Standard		
.		(DES), Description of DES, Analysis of DES		
V		Open Ended	12	
D.C.	4 7	Cryptographic Hash Functions	12	
References		ffrey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to		
		athematical Cryptography, Springer International Edition.	. L TL .	
		oblitz, N. (1994) A course in Number Theory and Cryptography, (Seco	naEa.),	
	-	oringer- Verlag an, S. Y. (2003) Primality Testing and Integer Factorization in Public-K	OV	
		cyptography, Springer	Cy	
		Deffs & H. Knebl: Introduction to Cryptography, Springer Verlag, 20	02	
		lfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handb		
		pplied Cryptography, CRC Press, 1996.	000 01	
	-	illiam Stallings: Cryptography and Network Security Principles and		

Practice, Third Edition, Prentice-hall India, 2003.

- 7. D. Boneh and V. Shoup: <u>A Graduate Course in Applied Cryptography</u> (V 0.5)
- 8. J. Katz and Y. Lindell. Introduction to Modern Cryptography (2nd edition)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	3	3	3	0	0	3
CO 2	3	3	1	1	3	3	3	3	0	0	3
CO 3	2	3	2	1	3	3	3	3	0	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	✓	~	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8EJ408								
Course Title	INTRODUCTIO	N TO FRACTALS							
Type of Course	Elective								
Semester	VIII	VIII							
Academic	400 - 499								
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total					
		per week	per week	Hours					
	4	4	0	60					
Pre-requisites	1. Calculus		•						
	2. Geometry								
Course	This course equip	s students with a thorough	n understandin	g of metric					
Summary	spaces and the ma	spaces and the mathematical foundations of fractal geometry, blending							
	theoretical insights	s with practical applications							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Understand the basic concepts to build fractals	U	С	Internal Examination/ Assignment/ End Sem examination						
CO2	Interpret the dimension of fractals	An	Р	Internal Examination/Seminar/ Assignment/ Report/ End Sem examination						
CO3	To understand how to construct fractals and apply them	Ap	М	Internal Examination/Seminar/ Report/ End Sem examination						
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)									

Text Book	Fracta	als Everywhere, (2/e), Michael F Barnsley, Dover Public	ations, 2012	
Module	Unit	Content	Hrs (48+12)	External Marks(70)
Ι		Metric spaces	15	18
	1	Chapter II, Section 2:- Metric spaces		
	2	Section 3: - Cauchy Sequences, Limit Points, Closed		
		Sets, Perfect Sets, and Complete Metric Spaces	4	
	3	Section 4: - Compact Sets, Bounded Sets, Open Sets, and Boundaries		
	4	Section 5: - Connected Sets, Disconnected Sets, and	-	
		Pathwise-Connected Sets		
II		Space of Fractals	15	17
	5	Section 6: - The Metric Space (H(X), h): The Space Where Fractals Live		
	6	Section 7: - The Completeness of the Space of Fractals – up to Theorem 7.1		
	7	Section 7: - The Completeness of the Space of Fractals – From Theorem 7.1 onwards.		
	8	Chapter III, Section 1 – Transformations on the Real line – up to definition 1.3		
	9	Section 1: – Transformations on the Real line – from definition 1.3 onwards.		
	10	Section 2: – Affine Transformations in the Euclidean Plane		
	11	Section 6: – The Contraction Mapping Theorem		
III		Fractal Dimension	8	18
		Section 7: - Contraction Mappings on the Space of		
		als - up to definition 7.1 Section 7: – Contraction Mappings on the Space of	-	
		als – from definition 7.1 onwards		
		Section 8: – Two Algorithms for Computing Fractals	-	
		Iterated Function Systems		
		Section 10: – How to Make Fractal Models with the]	
		of the Collage Theorem.		
		Chapter V, Section 1: – Fractal Dimension – up to		
		rem 1.2		
		Chapter V, Section 1: – Fractal Dimension – from rem 1.2 onwards.		
IV	Ineor	Determination of Dimensions	10	17
1 4	18	Section 2: – The Theoretical Determination of the Fractal Dimension – up to Theorem 2.1(including)	10	1/
	19	Section 2: – The Theoretical Determination of the Fractal Dimension – rest of the section.		
	20	Section 3: – The Experimental Determination of the Fractal Dimension.	-	
	21	Section 4: – The Hausdorff-Besicovitch Fractal Dimension – up to and including Theorem 4.2		

	22 Section 4: – The Hausdorff-Besicovitch Fractal		
	Dimension – rest of the section		
		10	
V	OPEN ENDED	12	
	Applications of Fractal functions, Fractal interpolation		
	functions, Space filling curves, Construction of Iterated		
	function systems, Applications of Fractals in medical		
	imaging		
References	1. The Fractal Geometry of Nature, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1982.		
	2. Chaos and Fractals: New Frontiers of Science, (2/e),		
	Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar		
	Saupe, Springer, 2004		
	3. Fractals: Form, Chance, and Dimension, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1977.		
	4. Fractals Everywhere, (2/e), Michael F. Barnsley,		
	Academic Press, 1993.		
	5. An Introduction to Fractals and Chaos, Michael F.		
	Barnsley, Cambridge University Press, 2021.		
	Dumbley, Cumonage Oniversity 11655, 2021.		

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	2	2	2	1	1
CO 2	3	3	1	1	2	1	2	2	2	1	1
CO 3	3	2	2	1	2	1	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	✓
CO 2	~	~	~	<	√
CO 3	\checkmark	\checkmark	✓	~	✓

RESEARCH METHODOLOGY

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8CJ489								
Course Title	RESEARCH METHODOLOGY IN MATHEMATICS								
Type of Course	Major	Major							
Semester	VII	VII							
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	1. Mathematical Logic2. Research Aptitude	and necessary exposure to s	et theory.						
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.								

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Set Theory and Mathematical Writing: Students will demonstrate proficiency in axiomatic set theory, including concepts such as relations, functions, and Peano axioms. Students will exhibit competence in mathematical writing.	Lever	Category#	Internal Examination/ Assignment/ End Sem examination			
CO2	Research Skills and Presentation Techniques: Students will acquire research skills, including identifying research topics. Students will develop effective presentation techniques, giving talks.			Internal examination/ Seminar/ Assignment/ End Sem examination			
CO3	Mathematical typesetting: to use LaTeX to create and typeset documents. Beamer Presentations and PSTricks also included.			Internal Examination/S eminar/ Assignment/En d Sem examination			
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text Book	 (1): Naive set theory: Paul R. Halmos, Courier Dover Publications, 2017. (2): A student's guide to the study, practice, and tools of modern mathematics, Donald Bindner and Martin Erickson. CRC Press, ISBN: 978•1•4398•4606•3 							
Module	Unit	Content	Hrs (48+12)	External Marks (70)				
Ι		Axiomatic Set Theory	12					
		(Sections 1 to 12 from the Text 1.)		-				
		1: The axiom of extension						
		2: The axiom of specification						
		3: Unordered pairs						
		4: Unions and intersections						
		5: Complements and powers						
		6: Ordered pairs						
		7: Relations						
		8: Functions						
		9: Families						
		10: Inverses and composites						
		11: Numbers						
		12: The Peano axioms						
Π		Writing Mathematics (Text 2)	12					
		Chapter 1: How to Learn Mathematics		-				
		(A quick review – not part of evaluation)						
		Chapter 2: How to Write Mathematics •		-				
		2.1 : What is the goal of mathematical writing?						
		2.2 : General principles of mathematical writing						
		2.3 : Writing mathematical sentences						
		2.4 : Avoiding error						

	2.5 : Writing mathematical solutions and proofs		
	2.6 : Writing longer mathematical works		
	2.7 : The revision process		
ш	Researching and Presenting	12	
	(Text 2)		
	Chapter 3: How to Research Mathematics •		
	3.1 : What is mathematical research?		
	3.2 : Finding a research topic		
	3.3 : General advice		
	3.4 : Taking basic steps		
	3.5 : Fixing common problems		
	3.6 : Using computer resources		
	3.7 : Practicing goodmathematical judgment		
	Chapter 4: How to Present Mathematics •		
	4.1 : Why give a presentation of mathematics?		
	4.2 : Preparing your talk		
	4.3 : DOs and DON'Ts		
	4.4 : Using technology		
	4.5 : Answering questions		
	4.6 : Publishing your research		
IV	LATEX	12	
	(Text 2)		
	LaTeX		
	9.4 How to create and typeset a simple LATEX document		
	9.5 How to add basic information to your document		
	9.6 How to do elementary mathematical typesetting		
	9.7 How to do advanced mathematical typesetting		
	9.8 How to use graphics		
	PsTricks		

	10.1 What is PSTricks?		
	10.2 How to make simple pictures		
	10.3 How to plot functions		
	10.4 How to make pictures with nodes		
	Beamer		
	11.1 What is Beamer?		
	11.2 How to think in terms of frames		
	11.3 How to set up a Beamer document		
	11.4 How to enhance a Beamer presentation		
V	OPEN ENDED	12	
	OF EN ENDED		
	(General Mathematical Research)		
	Lecturer's choices from the following Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78.		
	 Solving Equations Classifying Generalizing Discovering Patterns Explaining Apparent Coincidences Counting and Measuring Determining Whether Different Mathematical Properties are Compatible Working with Arguments that are not Fully Rigorous Finding Explicit Proofs and Algorithms What do you find in a Mathematical Paper? 		
	Reference 2 (Math Unlimited), any chapters of the lecturer's choices.		
	Reference 3 (Krantz, Mathematical Writing), any topics of lecturer's choice.		

MULTI-DISCIPLINARY COURSES

(MDC)

Programme	B. Sc. Mathematics Honours							
Course Code	MAT1FM105(1)							
Course Title	MATRICES AND	D BASICS OF PROBABI	LITY THEOR	Y				
Type of Course	MDC							
Semester	Ι							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		per week per week Hours						
	3 3 - 45							
Pre-requisites	Basic Arithmetic and Computational Skill.							
Course	The course "Matric	ces and Basics of Probabili	ty Theory" prov	vides students				
Summary	with a comprehen	sive understanding of two	fundamental	mathematical				
	concepts: matrices	s and probability. The syll	abus begins wi	th a focus on				
	the algebra of matr	rices, covering operations s	such as addition	, subtraction,				
	multiplication, determinants, and inverses, followed by applications in							
	solving systems of equations. Transitioning to probability theory, students							
	delve into basic concepts, conditional probability, the addition and							
	multiplication rules, and various counting methods. Additionally, the							
		basic statistics, including f	1 1	-				
	measures of centra	l tendency and variation, ar	nd measures of	position.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Understand the concepts			Internal			
	of matrices and			Exam/Assignment			
	determinants.	U	C	/ Seminar/ Viva /			
				End Sem Exam			
CO2	Apply matrix theory to			Internal			
	solve systems of			Exam/Assignment			
	equations.	Ар	Р	/ Seminar/ Viva /			
				End Sem Exam			
CO3	Understand concepts like			Internal			
	measures of central			Exam/Assignment			
	tendency, measures of	U	С	/ Seminar/ Viva /			
	variation, measures of			End Sem Exam			
	position and probability.						
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metaco	ognitive Knowledge (M)						

Texts:

1. John Bird, Bird's Higher Engineering Mathematics 9/e, Routledge, ISBN: 978-0-367-64373-7, 2021.

2. Ron Larson & Betsy Farber, Elementary Statistics, Picturing the World 6/e, Pearson Education, ISBN: 978-0-321-91121-6, 2015.

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
I		Algebra of Matrices (from text 1)		
	1	Section 20.1 - Matrix notation		
	2	Section 20.2 - Addition, subtraction and multiplication of matrices		
	3	Section 20.3 to 20.4 - The unit matrix, The determinant of a 2 by 2 matrix.	9	Min 10
	4	Section 20.5 - The inverse or reciprocal of a 2 by 2 matrix.		
	5	Section 20.6 - The determinant of a 3 by 3 matrix		
	6	Section 20.7 - The inverse or reciprocal of a 3 by 3 matrix		
Π		System of Equations From Text 1		
	7	Section 21.1 - Solution of simultaneous equations by matrices		
	8	Section 21.2 - Solution of simultaneous equations by determinants	9	Min 10
	9	Section 21.3 - Solution of simultaneous equations using Cramer's rule		
	10	Section 21.4 - Solution of simultaneous equations using the Gaussian elimination method.		
III		Basic Statistics From Text 2		
	11	Section 1.1 to 1.2 - An Overview of Statistics, Data Classification		

	12	Section 2.1 - Frequency Distributions and their Graphs	9	Min 10
	13	Section 2.3 - Measures of Central Tendency		
	14	Section 2.4 - Measures of Variation		
	15	Section 2.5 - Measures of Position		
IV		Basics of Probability (from text 2)		
	16	Section 3.1 - Basic Concepts of Probability and Counting.	9	Min 10
	17	Section 3.2 - Conditional Probability and the Multiplication Rule.		
	18	Section 3.3 - The Addition Rule.		
	19	Section 3.4 - Additional topics in probability and counting.		
V		Open Ended		
		Collection and Experimental Design, More Graphs Displays (for instance refer sections from Text 2: 1.3 .2)	9	

References:

1. Advanced engineering mathematics, 10/e, Erwin Kreyszig, Wiley, 2011.

2. Introduction to Linear Algebra with Applications, Jim DeFranza and Daniel Gagliardi, Waveland Press, 2015.

3. Elementary Statistics, 13/e, Mario F. Triola, Pearson Education, 2018.

4. Elementary Statistics, 8/e, Neil A. Weiss, Pearson Education, 2012.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	3	1	3	2	2	1	2
CO 2	3	0	3	1	3	2	3	1	2
CO 3	3	0	3	1	2	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	~	√

Programme	B. Sc. Mathematics Honours					
Course Code	MAT2FM106(1)					
Course Title	GRAPH THEOR	Y AND LPP.				
Type of Course	MDC					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture/Tutorial	Practical	Total		
		per week	per week	Hours		
	3	3	-	45		
Pre-requisites	Basic Arithmetic and Geometry.					
Course	The course "Gra	aph Theory and Linear	Programming	" introduces		
Summary	The course "Graph Theory and Linear Programming" introduces fundamental concepts in graph theory focusing initially on graph definitions, properties, and structures such as vertex degrees, subgraphs, paths, and cycles. The discussion extends to trees, bridges, spanning trees, cut vertices, and connectivity, emphasizing essential properties and theorems while providing proofs for brevity. Transitioning to linear programming, the course employs graphical methods for solving linear inequalities and optimization problems, progressing to the simplex method for more complex maximization and minimization problems, including duality and nonstandard scenarios. Additionally, the syllabus offers open-ended exploration into graph modellingmixture, matrix representations, and connector problems.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand and apply the			Internal
	fundamental concepts in	T	G	Exam/Assignment
	graph theory.	U	С	/ Seminar/ Viva /
				End Sem Exam
CO2	Analyse properties of			Internal
	graphs and trees.		_	Exam/Assignment
		An	Р	/ Seminar/ Viva /
				End Sem Exam
CO3	Solve linear programming			Internal
	problems by geometrically			Exam/Assignment
	and Simplex method.	Ар	С	/ Seminar/ Viva /
				End Sem Exam
* - Rei	member (R), Understand (U)	, Apply (Ap), Ar	nalyse (An), Evalua	ate (E), Create (C)# -
Factua	l Knowledge(F) Conceptual k	Knowledge (C) P	rocedural Knowled	ge (P) Metacognitive
Knowl	edge (M)			

Texts:
1. John Clark & Derek Allan Holton, A First Look at Graph Theory: Allied Publishers, First
Indian Reprint 1995.

2. Margaret L. Lial, Raymond N, Finite Mathematics and Calculus with Applications 9/e, Greenwell & Nathan P. Ritchey Pearson Education, Inc, ISBN 0-321-74908-1, 2012.

Module	Unit	t Content Hrs (36 +9)		Ext. Marks (50)
Ι		Basics of Graph Theory (from text 1)	- /	
	1	Section 1.1 - Definition of a graph.		
	2	Section 1.3 - More definitions.		N. 10
	3	Section 1.4 - Vertex degrees.	9	Min 10
	4	Section 1.5 - Sub Graphs.		
	5	Section 1.6 - Paths and Cycles (Theorem 1.4 statement only).		
II		Basics of Graph Theory From Text 1		
	6	Section 2.1 - Definitions and Simple Properties of trees (Proof of Theorem 2.1, 2.2 and 2.4 omitted).		
	7	Section 2.2 - Bridges: up to and including Theorem 2.8 (Theorem 2.6 and 2.7 are statement only).		
	8	Section 2.2 - Bridges (Theorem 2.9 statement only) contd.	9	Min 10
	9	Section 2.3 - Spanning trees (Theorem 2.12 statement only).		
	10	Section 2.6 - Cut Vertices and Connectivity (Theorem 2.20 and Theorem 2.21 are statements only).		
III		Linear Programming - The Graphical Method From Text 2		
	11	Section 3.1 - Graphing Linear Inequalities.		
	12	Section 3.2 - Solving Linear Programming Problems Graphically; up to and including Example 2.	9	Min 10
	13	Section 3.2 - Solving Linear Programming Problems Graphically contd.		

	14	Section 3.3 - Applications of Linear Programming; up to and including Example 2.		
	15	Section 3.3 - Applications of Linear Programming contd.		
IV		Linear Programming - The Simplex Method		
		(from text 2)		
	16	Section 4.1- Slack Variables and the Pivot.		
	17	Section 4.2- Maximization Problems.	9	Min 10
	18	Section 4.3- Minimization Problems; Duality.		
	19	Section 4.4- Nonstandard Problems.		
V		Open Ended		
	-	hs as models, Matrix representation of graphs, Connector ems (for instance refer sections from 1.2, 1.7 and 2.4 of	9	
Reference	ces:			

1. Introduction to Graph Theory, 4th ed., R.J. Wilson, LPE, Pearson Education, 1996.

2. Graph Theory with Applications, J.A. Bondy & U.S.R. Murty, North-Holland, 1982

3. Linear Programming: Foundations and Extensions, 2/e, Robert J. Vanderbei, Springer Science+Business Media LLC, 2001.

4. An Introduction to Linear Programming and Game Theory (3/e), Paul R. Thie and G. E. Keough, John Wiley and Sons, 2008.

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	1	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1FM105(2)	MAT1FM105(2)					
Course Title	MATHEMATICS	S FOR COMPETITIVE E	XAMINATIO	NS - PART I			
Type of Course	MDC						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3 3 - 45						
Pre-requisites	Basic Arithmetic a	nd Computational Skill					
Course	The course is designed to equip students with essential arithmetic and						
Summary	problem-solving skills required for competitive exams. It covers topics						
	ranging from fundamental arithmetic operations such as number systems,						
	fractions, and roots to more advanced concepts like financial mathematics,						
	time-speed-distanc	e calculations, and problem	-solving techni	ques			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools	
		Level*	Category#	used	
CO1	Apply mathematical methods to solve problems	Ap	Р	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam	
CO2	Apply numerical skills in competitive examinations	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva/ End Sem Exam	
CO3	Manage time in competitive examinations.	С	М	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam	
- Factu	nember (R), Understand (U), A al Knowledge(F) Conceptual 1 edge (M)				

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
		Fundamentals of Arithmetic		
Ι	1	Number System		
	2	Number Series		
	3	Simple and Decimal Fractions	9	Min 10
	4	HCF and LCM		
	5	Square root and Cube root		
II		Basic Arithmetic Operations		
	6	Simplification		
	7	Average	9	Min 10
	8	Ratio and Proportion		
	9	Problems based on ages		
	10	Percentage		
III		Financial Mathematics		
	11	Profit and Loss		
	12	Discount	9	Min 10
	13	Simple Interest	9	NIIN IU
	14	Compound Interest		
	15	Work and Time		
IV		Time, Speed, and Distance		
	16	Speed, Time and Distance		
	17	Problems based on trains	9	Min 10
	18	Boats and Streams		
	19	Clock and Calendar		

V	Open Ended	9					
	Mixture or Allegation, Partnership, Pipes and Cisterns						
Referen	References: 1. Fast Track Objective Arithmetic, Rajesh Verma, Arihant Publications India						
limited, 2	limited, 2018 (Primary Reference).						
2. Object	2. Objective Arithmetic for Competitive Examinations, Dinesh Khattar, Pearson Education, 2020.						
3. Quick	 Quicker Objective Arithmetic, Dr Lal, Jain, Upkar's publication, 2010. 						

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	0	3	2	3	2	3	1	2
CO 2	2	0	3	1	3	2	3	1	2
CO 3	2	0	2	2	2	2	2	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	<	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2FM106(2)						
Course Title	MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART II						
Type of Course	MDC						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	redit Lecture/Tutorial		Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Basic Arithmetic and Computational Skill						
Course	The course "Mathematics for Competitive Examinations - Part II" is designed						
Summary	to prepare students for competitive exams by focusing on various reasoning						
	and problem-solving skills. It covers a range of topics including non-verbal						
	reasoning, verbal reasoning, spatial reasoning, and abstract reasoning, each						
	module addressing different aspects of these skill sets.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
~~1	Apply mathematical			Internal			
CO1	methods to solve		Р	Exam/Assignment/			
	problems	Ар		Seminar/ Viva / End			
				Sem Exam			
	Understand the basic		Р	Internal			
CO2	concepts of logical			Exam/Assignment/			
	reasoning Skills	U		Seminar/ Viva / End			
				Sem Exam			
	Manage time in		М	Internal			
CO3	competitive examinations			Exam/Assignment/			
		С		Seminar/ Viva / End			
				Sem Exam			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowledge (M)							

Module	Unit	Content	Hrs	Ex
				Marks
			9)	(50)
Ι	1	Non-Verbal Reasoning Similarity of Pairs		
1	2	What come Next		
			9	Min 10
	3	Odd One out		
	4	Coding and Decoding		
	5	Ranking Test		
П		Reasoning Contd.		
	6	Blood relations		
	7	Blood relations Contd.	9	
	8	Direction Sense Test		Min 10
	9	Direction Sense Test contd.		
	10	Logical Venn Diagram		
III		Spatial Reasoning		
	11	Figure analogy		
	12	Figure series	9	Min 10
	13	Figure Classification		
	14	Mirror and Water Images		
	15	Counting of figures		
IV		Abstract Reasoning		
	16	Cube and Dice		
	17	Logical and Analytical Reasoning	9	Min 10
	18	Geometry mensuration		
	19	Data Interpretation		
V		Open Ended		

	Alphabet and Number Sequence Test, Paper folding and paper cutting	9					
Referen	ces:						
1. A Fas	t Track Course in MENTAL ABILITY, Amogh Goel, Arihant Pub	lications	s India				
limited, 2	2016. (Primary Reference).						
2. The M	2. The Mental Ability, Logical Reasoning & Problem-Solving Compendium for IAS Prelims						
General	General Studies Paper 2 & State PSC Exams, Disha Experts, Disha Publications, 2018.						
3. The Pe	3. The Pearson Guide to Verbal Ability and Logical Reasoning for the CAT, Nishit K. Sinha,						
Pearson	Pearson Education, 2014.						

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	1	2	0	1	1	0
CO 2	2	0	2	1	2	0	1	1	0
CO 3	0	1	2	1	2	0	1	1	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	~
CO 3	\checkmark	\checkmark	✓	\checkmark	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

SKILL ENHANCEMENT COURSES

(SEC)

Programme	B. Sc. Mathematics	s Honours						
Course Title	MATHEMATICA	MATHEMATICAL TYPE SETTING SYSTEM - LATEX						
Course Code	MAT5FS112							
Type of Course	SEC							
Semester	V							
Academic Level	300-399							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		1		Hours				
		per week	per week					
	3	3	-	45				
Pre-requisites	1. Fundamental Ma	athematics Concepts		<u> </u>				
Course	The course will co	ver topics such as documer	nt formatting, n	nathematical				
Summary	typesetting, graphics and tables, bibliography management, beamer							
	presentation and understanding the Indian language transliteration							
	package for typese	tting Sanskrit or Hindi or M	alayalam using	, LaTeX.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Preparing a LaTex document with	Ap	С	Internal Exam/
	title page including contents,			Assignment/
	references and index			Seminar/ Viva /
				End Sem Exam
CO2	To Display documents with bullets,	Ap	С	Internal Exam/
	numbering and aligning or ordering			Assignment/
	and adding rows and tables			Seminar/ Viva /
				End Sem Exam
CO3	Use mathematical typesetting and	U	F	Internal Exam/
	equation environments to create			Assignment/
	professional looking equations and			Seminar/ Viva /
	mathematical notation			End Sem Exam
* - Re	member (R), Understand (U), Apply	(Ap), Analys	e (An), Evalua	ate (E), Create (C)
# - F	actual Knowledge(F) Conceptual	Knowledge ((C) Procedura	l Knowledge (P)
Metaco	ognitive Knowledge (M)			

Textbook	by E.	: LATEX TUTORIAL, A PRIMER by Indian TEX Use Krishnan, 2003. 2: George Gratzer, More Math Into LaTeX-Springer 201	1	-	
Module	Unit	Content	Hrs (36+ 9)	Ex. Marks (50)	
Ι		Getting Started with LaTeX (Text-1)	,	()	
	1	The basics- Tutorial I			
	2	The documents – Tutorial II	- 8 Min		
	3	Bibliographic Database- Tutorial III & IV			
	4	Table of contents and Index- Tutorial V(Omit glossary)			
II		Styling Pages			
	5	Displayed Text – Tutorial VI	6	Min 10	
	6	Rows and columns – Tutorial VII	Ŭ		
	7	Tables – Tutorial VII.2			
III		Typesetting Mathematics			
	8	Basic Mathematical equation- Tutorial VIII.1, VIII.2			
	9	Groups of Equations and numbering – Tutorial VIII.3			
	10	Matrices, dots, delimiters and affixing symbols- Tutorial VIII.4	10	Min 10	
	11	Operators, Equations, Symbols, notations, Greek letters etc. Tutorial VIII.5, VIII.6, VIII.7, VIII.8(In VIII.8 focus only on usual symbols, Greek letters, operations etc. commonly used in mathematics)			
IV		Theorems, figures, Cross references and Presentation(Text-1 and 2)			
	12	Theorem in Latex – Tutorial IX.1			
	13	The AMS theorem package- Tutorial IX.2 (Omit IX.2.2, IX.2.3)	12	Min 10	
	14	Boxes – Tutorial X (Section X.1, X.2 Only)			

	15 16 17	Floating Images- Tutorial XI (Section XI.I.I, XI.I.2 and XI.I.5 Only) Cross Reference – Tutorial XII (Section XII.1, XII.2 Only) Footnotes- Tutorial XIII (Section XIII.1 Only)		
	18	Presentation – Text 2, Section 12.1 to 12.2.4		
	19	Presentation – Text 2, Section 12.2.6 to 12.2.9 (Omit 12.2.5 and 12.2.7)		
V		Open Ended	9	
	1	Installation of LaTeX		
	2	Familiarising Overleaf Platform		
	3	Write a chapter in a book that you are studying in any semester having mathematical symbol theorems and figures.		
	4	Create Slides with beamers and posters		
	5	Transliteration symbols with Illustrative examples of the Indian Languages, such as Sanskrit, Hindi (Devanagari) and Malayalam.		

References:

- Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX 2ε (Online Link:- <u>The Not So Short Introduction to LaTeX</u> (oetiker.ch))
- 2) Harvey J. Greenberg, A simplified introduction to LaTeX (Online version)
- 3) Leslie Lamport (second edition. Addison Wiley, 1994)- LaTeX, a Document Preparation System.
- 4) Donald Knuth (Addison-Wesley, 1984), The TeX book
- 5) Frank Mittelbach and Michel Goossens (second edition), Addison-Wesley, 2004).

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	1	1	2	2	1	0	2	3	0
CO 2	2	3	1	0	1	1	1	3	1	0	2	3	0
CO 3	3	2	1	0	1	1	2	1	1	0	2	2	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	<	~
CO 3	✓	\checkmark	✓	~	√

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours				
Course Code	MAT6FS113					
Course Title	DATA SCIENCE WITH PYTHON					
Type of Course	SEC					
Semester	VI					
Academic Level	300 - 399					
Course Details	Credit	Lecture perweek	Tutorial per week	Practical per week	Total Hours	
	3	3	-	0	60	
Pre-requisites	A basic course in Python programming with the understanding of using looping, conditionals, creating variables, writing functions, and importing modules.					
Course Summary	This course is an advanced course for those who have learned the basics of Python. It will enable the students to learn more features of Python with a specific focus on how to use them to analyse data and arrive at conclusions in practical situations with the help of a reasonable knowledge of statistics.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Learn to rearrange and manipulate various data structures in Python to make it more meaningful	U	F	Internal Exam/ Assignments / End Semester Examination				
CO2	Understand fundamentals of Statistics from a real life point of view	U	F	Internal Exam/ Assignments / Quiz / End Semester Examination				
CO3	Learn how to visualise data for clearer understanding of practical situations	Ap	С	Internal Exam / Quiz / End Semester Examination				
Factua	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Note : Python IDLE (with necessary modules like pandas, scipy), Anaconda/Spyder package, Jupyter notebook interface or Google colab (free to use) interface, Pydroid 3 for android (along with Pydroid repository plugin) can be used for training purposes. Python version 3.10 or above should be used to avoid errors with some of the functionalities we discuss in the course.

Textbook	1	Mastering Python for Data Science, Samir Madhavar	n PACk	ΥT				
I CALDOOK	1	Publishing, 2015	n, i Aci	X 1				
	2	Data Science from Scratch, Second Edition ,Joel Grus, O'Reilly,						
	_	2019						
Module	Unit	Content	Hrs	Ext.				
			(2()	Marks				
			(36+ 9)	(50)				
			"	(30)				
	Pyt	hon Tools for Handling and Manipulating Data						
		(Text 2, Chapter 2)						
	1	Exceptions, Lists.						
	2	Tuples, Dictionaries.						
Ι	3	Counters, Sets, List Comprehensions,	8	Min 10				
	4	Truthiness, Automated Testing and assert Iterables and Generators						
	5	Randomness, Regular Expressions, zip and Argument Unpacking						
	Mor	e Tools for Data Handling – Numpy and Pandas	8	Min 10				
		(Text 1, Chapter 1)						
II	6	NumPy: Mathematical operations, Array subtraction, squaring an array, A trigonometric function performed on the array, Conditional operations.						
	7	NumPy : Matrix multiplication, Indexing and slicing, Shape manipulation.						

	1	Making Sense of Data through Advanced Visualization - Controlling the line properties of a chart		
V				
		Open Ended	10	
	19	Studying the Titanic – with all the required analysis		
IV	18	What is data mining? Presenting an analysis.	8	Min 10
		(Text 1, Chapter 3)		
		Applying the Theory to Problems		
	17	The chi-square distribution, Chi-square for the goodness of fit, The chi-square test of independence, ANOVA.		
	16	Correlation, Z-test vs T-test, The F distribution.		
	15	Type 1 and Type 2 errors, confidence interval.		
Ш	14	A z-score, A p-value, One-tailed and two-tailed tests.		
	13	A Poisson distribution, A Bernoulli distribution.	14	Min 10
	12	Various forms of distribution, A normal distribution, A normal distribution from a binomial distribution.	12	
		(Text 1, Chapter 2)		
		Inferential Statistics		
	11	Data operations: The left outer join, The full outer join, The groupby function		
	10	Data operations: Aggregation operations, Joins, The inner join		
	9	Pandas : Filling the missing data, String operations, Merging data		
	8	Pandas : Inserting and exporting data, CSV, Data cleansing, Checking the missing data.		

	2	Using keyword arguments, Using the setter methods, Using the setp() command.
	3	Creating multiple plots, Playing with text, Styling your plots.
	4	Box plots, Heatmaps, Scatter plots with histograms.
	5	A scatter plot matrix, Area plots.
References	1 2 3 4 5 6 7 8 9 10	Thomas Nield, Essential Math for Data Science - Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics, O'Reilly Media, 2022 Wes McKinney, Python for Data Analysis_Data Wrangling with pandas, NumPy, and Jupyter-O'Reilly Media, Third Edition, 2022 Fabio Nelli, Python Data Analytics- With Pandas, NumPy, and Matplotlib, Apress, Second Edition, 2018 https://www.kaggle.com/datasets/yasserh/titanic-dataset https://www.w3schools.com/datascience/ds_python.asp https://realpython.com/python-for-data-analysis/ https://realpython.com/python-for-data-science-with-python-tutorial/ https://learn.microsoft.com/en-us/training/modules/explore- analyze-data-with-python/1-introduction https://onlinecourses.nptel.ac.in/noc20_cs46/preview

Note: For detailed understanding of the topics given in Module II, additional reference 1 can also be used, though it is not very essential.

Roadmap:

Being a practice-oriented course, the teachers may introduce the students to more problems so as to familiarize them with the tools in which they have been trained through this course. Many good examples on how to use these in real life situations can be found in Chapter 13 of additional reference 2 and the URLs provided in the additional references section.

Mapping of COs with PSOs and POs :

	PSO 1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	1	3	2	3	3	1	1	1
CO 2	3	2	3	2	3	2	1	1	1	1	1
CO 3	3	2	2	1	3	1	3	3	1	-	1

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Quiz	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3				\checkmark

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Assignment
- Quiz
- End Semester Examinations

VALUE-ADDED COURSES

(VAC)

Programme	B. Sc. Mathematics Honours					
Course Code	MAT3FV109(MAT3FV109(1)				
Course Title	HISTORY O	FMATHEMATICS				
Type of Course	VAC					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	3	3	-	45		
Pre-requisites	Aptitude for M	lathematics and its History.				
Course	The course goes into the philosophy of mathematics, modern axiom					
Summary	methods, controversies in set theory around axiom of choice, its					
		implications and various philosophical alternative approaches to the foundations of mathematics.				
	ioundations of	mamemancs.				

CO	CO Statement	Cognitive	Knowledge	Evaluation				
		Level*	Category#	Tools used				
CO1	Analyse Key Mathematical	An	С	Internal Exam/				
	Theorems and Concepts from			Assignment/				
	Ancient to Early Modern Times			Seminar/ Viva /				
				End Sem Exam				
CO2	Evaluate and Compare Methods of	E	Р	Internal				
	Addressing Infinity and Large			Exam/Assignme				
	Cardinal Numbers			nt/ Seminar/ Viva				
				/ End Sem Exam				
CO3	Ensure students gain a	An	С	Internal				
	comprehensive understanding of			Exam/Assignme				
	the historical development and			nt/ Seminar/ Viva				
	foundational concepts of			/ End Sem Exam				
	mathematics							
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# -								
Metac	cognitive Knowledge (M)							

Textbook	Mathe 978-1	er (2010) Is	SBN:	
Module	Unit	Content	Hrs (36+9)	Ext. Marks (50)
Ι		Ancient Origins & Foundations		
	Quick	x Review of Ancient Mathematics		
	1	Chapter 1: Pythagoras Theorem		
	2	Chapter 2: Greek Geometry		
	3	Chapter 3: Greek Number Theory		
	Infini	ty in Greek Mathematics – Chapter 4		
	4	Section 4.1, 4.2-Fear of Infinity, Eudoxus' Theory of Proportions	9	Min 10
	5	Section – 4.3, 4.4-The Method of Exhaustion, Area of a Parabolic Segment		
	Sets &	k Logic – Chapter 24		
	6	Sections 24.1, 24.2, 24.4- Sets, Ordinals, Axiom of Choice & Large Cardinals		
	7	Section 24.3- Measure		
	8	Section 24.5-The Diagonal Argument		
	-	aphical Notes: Pythagoras, Euclid, Diophantus, medes		
II		Calculus – Chapter 9		
	9	Section 9.1, 9.2-What is Calculus, Early Results on Areas & Volumes	9	Min 10
	10	Section 9.3-Maxima, Minima & Tangents		
	11	Section 9.4-The Arithemetica Infinitorum of Wallis		
	12	Section 9.5-Newton's Calculus of Series		
	13	Section 9.6-The Calculus of Leibnitz		

	Biogr	aphical Notes: Wallis, Newton & Leibnitz		
III		Algebraic Equations & Numbers		
	Polynomial Equations – Chapter 6			
	14	Section 6.1, 6.2- Algebra, Linear Equations & Elimination		
	15	Section 6.3, 6.4 Quadratic Equations, Quadratic Irrationals		
	16	Section 6.5-The Solution of the Cubic	9	Min 10
	17	Section 6.6-Angle Division	,	
	18	Section 6.7-Higher Degree Equations		
	Biogr	aphical Notes: Tartaglia, Cardano & Viete		
	Com	olex Numbers – Chapter 14		
	19Section 14.1, 14.2, 14.3- Impossible Numbers, Quadratic & Cubic Equations			
	20	20 Section 14.4- Wallis' Attempt at Geometric Representation		
	21	Section 14.5, 14.6- The Fundamental Theorem of Algebra, The Proofs of d'Alembert & Gauss		
	Biogr	aphical Notes: d'Alembert		
IV		Topology – Chapter 22		
	22	Section 22.1, 22.2- Geometry & Topology, Polyhedron Formulas of Descartes & Euler		
	23	Section 22.3-The Classification of Surfaces		
	24	Section 22.4- Descartes & Gauss-Bonnet		
	25	Section Euler 22.5-Characteristic & Curvature	10	Min 10
	26	Section 22.7, 22.8- The Fundamental Group, The Poincare Conjecture		
	Biographical Notes: Poincare			
V		Open Ended Module	9	
	1	Hypercomplex Numbers – Chapter 20		

2	Number Theory in Asia – Chapter 5	
3	Mechanics – Chapter 13	
4	Complex Numbers & Functions – Chapter 16	
5	Non-Euclidean Geometry – Chapter 18	
6	Group Theory – Chapter 19	

References:

- 1. Mathematics, The Queen & Handmaiden of Sciences, E. T. Bell, McGraw Hill.
- 2. Men of Mathematics, E. T. Bell, Simon & Schuster, 1986.
- 3. What is Mathematics?, Richard Courant & Herbert Robbins,
- 4. History of Mathematics, 7th Edition, David M. Burton, McGraw Hill.
- 5. Mathematics In India, Kim Plofker, Princeton University Press, 2009.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT3FV109(2)	MAT3FV109(2)						
Course Title	COMPUTATION	AL LOGIC						
Type of Course	VAC							
Semester	III							
Academic Level	200-299							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		per week	per week	Hours				
	3	3	-	45				
Pre-requisites	Nil							
Course	The course will cover the basics of propositional and predicate logic,							
Summary	Compactness, and	the Resolution Theory.	Compactness, and the Resolution Theory.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Determine the Satisfiability of a	Ap	С	Internal
	Propositional Formula Set.			Exam/Assignment
				/ Seminar/ Viva /
				End Sem Exam
CO2	Analyse Theorems of	Ap	С	Internal
	Propositional Logic			Exam/Assignment
				/ Seminar/ Viva /
				End Sem Exam
CO5	Remember Proofs of Major	An	М	Internal
	Theorems of Logic			Exam/Assignment
				/ Seminar/ Viva /
				End Sem Exam
* - Rem	nember (R), Understand (U), Apply	(Ap), Analy	/se (An), Eval	uate (E), Create (C)
# - Fa	ctual Knowledge(F) Conceptual	Knowledge	(C) Procedur	ral Knowledge (P)
Metacog	gnitive Knowledge (M)			

Text book	Logic	for Computer Scientists, U. Schoning, Birkhauser, 2008	(Reprint).	
Module	Unit	Content	Hrs	Ext.
Module	Unit	(45 = 36 + 9)	Ext. Marks (50)	
Ι	Propo	sitional Logic (Chapter 1 of Text Book).		
	1	Syntax and Semantics, Truth Tables, Satisfiability and Validity.		
	2	Equivalence and Normal Forms, Substitution Theorem	10	Min 10
	3	DNF and CNF forms		
	4	Horn Formulas,		
	5	Compactness Theorem for Propositional Calculus		
	6	Resolution Theorem and Resolution Algorithm		
	Subsec 7 8 9	ction on Mathematical Theories of Section 2.3 Syntax of Predicate Logic Semantics - Structures and Models, Satisfiability and Validity Equivalence of formulas - Substitution, Variable	9	Min 10
	10	Renaming. Skolem Normal Form		
	11	Mathematical Theories - Axioms and Models.		
Ш		and Theory for Predicate Logic: Section 2.4		
	12 13	Herbrand Universe and Structures Herbrand Model and Satisfiability Theorem		
	14	Skolem Lowenheim Theorem	9	Min 10
	15			
	16	Compactness and Herbrand's Theorem		
IV	Resolu	Ition for Predicate Logic: Section 2.5		

	17	Ground Resolution and Resolvants	8	Min 10	
	18	Ground Resolution Theorem			
	19	Robinson's Unification Theorem and Algorithm			
	20	Lifting Lemma			
	21	Resolution Theorem for Predicate Logic			
V	V Logic Programming				
	1	Unsolvability of Predicate Logic (Section 2.3 on Text Book)			
	2	SLD Resolution (Section 2.6 of Text Book)			
	3	Introduction to Logic Programming			
	4	Horn Clause Programs			
	5 Evaluation Strategies for Horn Clause Programs.				
 References: 1. J. H. Gallier, Logic for Computer Science - Foundations of Automatic Theorem Proving, Dower, 2015. 2. S. Reeves, M Clarke, Logic for Computer Science, Addition Wesley, 1990. coding 					

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours								
Course Code	MAT4FV110(1)									
Course Title	STATISTICS AND MATHEMATICS WITH R									
Type of Course	VAC									
Semester	IV									
Academic Level	200-299									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours						
		per week								
	3	3	-	45						
Pre-requisites	1. Basic School (+2)	Level Statistics								
	2. Basic Programming	g Experience								
Course	The "Statistics and	Mathematics with R" cou	urse is designe	d to provide an						
Summary	understanding of R	programming for statistic	cal analysis ar	nd mathematical						
	-	rriculum begins with an in		-						
		ge, and manipulation tec	-	-						
		sualization, programming of								
		computational linear algeb								
		nces to relevant sections		•						
		nted by further reading ma								
	-	udents with practical skill	ls in utilizing l	R for statistical						
	analysis and mathema	atical modeling.								

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate Proficiency in	Ар	Р	Internal Exam/
	Basic and Intermediate R			Seminar/Assignment
	Programming			/ End Sem Exam
CO2	Create and Interpret Various	С	С	Internal Exam/
	Types of Graphs Using R			Seminar/Assignment
				/ End Sem Exam
CO3	Apply Advanced Mathematical	Ар	Р	Internal Exam/
	and Statistical Functions in R			Seminar/Assignment
				/ End Sem Exam
* - Ren	nember (R), Understand (U), Apply	(Ap), Analyse (Ar	n), Evaluate (E)	, Create (C)
# - Fact	ual Knowledge(F) Conceptual Knowledge	owledge (C) Procee	dural Knowledg	ge (P) Metacognitive
Knowle	edge (M)			

Textbook	Murdo	t Course in Statistical Programming with R, och, Cambridge University Press, 3 rd Ed., 20		
Module	Unit	Content	Hrs	External Marks (50)
			(36+9)	(50)
Ι		Introduction to R		
	1	R Studio. R Command Line. R as calculator. Named Storage. Quitting R.		
	2	Basic Features of R.	12	M: 10
	3	Vectors in R.	12	Min 10
	4	Data Storage in R. Packages,		
	5	Libraries and Repositories.		
	6	Getting Help. Useful Features of R.		
	7	Data Frames, tibbles, and lists		
	8	Data Input and Output		
	Refere	ence: Chapter 2, Sections 1 to 10		
II		Graphics with R		
	9	Bar Charts and Dot Charts. Pie Charts.		
	10	Histograms. Box Plots. Scatter Plots.	4	Min 10
	11	Plotting from Data Frames. Quantiles. QQ Plots.		
	Refere	ence: Section 3.1.		
Ш		Programming in R		
	12	Flow Control. For Loop. Examples 4.1 to 4.4.		
	13	If Statement. Examples.	10	NR: 40
	14	Eratosthenes Sieve.	13	Min 10
	15	While Loop. Examples. Newton's Method.		

	16	Repeat loop. Break and Next Statements. Examples and Exercises.		
	17	Functions.		
	18	General Programming Guidelines		
	Refer	ence: Chapter 4, Sections 1-4.		
IV		Computational Linear Algebra		
	21	Vectors and Matrices in R		
	12	Matrix Multiplication and Inversion	7	Min 10
	19	Eigenvalues and Eigenvectors		
	20	Singular Value Decomposition		
	Refer	ence: Sections 7.1, 7.2, 7.3, 7.4.1.		
V		OPEN ENDED	9	
	Sugge	estions:		
	Sectio	on 3.2 - 3.4: Higher Level Graphics with ggpl	lot	
	Sectio	on 4.6: Debugging and Maintenance		
	Sectio	on 4.7: Efficient Algorithms.		
	Sectio	on 6.1: Monte Carlo, 6.2: Pseudo-Random N	Jumbers	
	Apper	ndix A: Overview of Random Variables and	Distributions	
	Sectio	on 6.3: Simulation of Random Variables		
	Sectio	on 8.3: Newton-Raphson		
	Sectio	n 8.5: Linear Programming		
Reference	97813	oger D. Peng, R Programming for Data Scier 365056826. <u>https://bookdown.org/rdpeng/rp</u>	rogdatascience	<u>>/</u>
		urrett Grolemund, Hands-On Programming v 359019. https://rstudio-education.github.io/h	-	y, 2014, ISBN
		riko Yoshida, Linear Algebra and its Applicat 9780367486846	ions in R, Chap	man and Hall, 2021,

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	2	2	2	2	2	1
CO 2	2	3	1	0	2	2	2	2	2	1	1
CO 3	1	1	3	2	2	2	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathem	natics Honours								
Course Code	MAT4FV110	MAT4FV110(2)								
Course Title	THE MATH	THE MATHEMATICAL PRACTICES OF MEDIEVAL KERALA								
Type of Course	VAC	VAC								
Semester	IV	IV								
Academic Level	200 - 299									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours						
		per week	per week							
	3	3	-	45						
Pre-requisites	Mathematical	 Fundamental Mathematics Concepts: Number system, Basic Mathematical operations, Plane Geometry. Convergence of series of numbers and functions. 								
Course Summary		miliarises students with the tra e Medieval Kerala School of A								

CO	CO Statement	Cognitiv	Knowledge	Evaluation	
		e Level*	Category#	Tools used	
CO1	Uncover the underlying	U	С	Seminar	
	fundamental principles of the			Presentation/	
	traditional mathematics			Group Tutorials	
	practised in medieval Kerala.				
CO2	Appreciate the role of thought	U	С	Seminar	
	process and working rules in			Presentation/	
	mathematics.			Group Tutorials	
CO3	Appreciate the usage of	U	С	Seminar	
	infinite series in mathematical			Presentation/	
	analysis.	Group Tu			
* - R	emember (R), Understand (U), A	Apply (Ap), A	Analyse (An), Eval	uate (E), Create (C)	
# -	Factual Knowledge(F) Concept	tual Knowle	edge (C) Procedu	ral Knowledge (P)	
Metao	cognitive Knowledge (M)				

Text B	ook	 Lilavati of Bhaskaracarya Translated by K.S.Patwardhan, S.A.Na S.L.Singh, Motilal Banarsidass Publishers, Delhi. 2006. Ganita Yukti Bhasa of Jyesthadeva. Volume I. English Transla K.V.Sarma with explanatory notes by K.Ramasubramanian, M.D.S M.S.Sriram. Hindustan Book Company, 2008. 	tion by	
Module	Unit	Content	Hours (36 +9)	Ext. Marks (50)
Ι	Meas	surement of sides and areas of triangles, quadrilaterals and circles.	9	14
	1	Computation of sides of a right triangle when one side is given.		
	2	Computation of area of triangles and quadrilaterals.	-	
	3	Computation of the perpendicular below the intersection of	-	
		diagonals.		
	4	Approximating the surface area and volume of spheres.	-	
	5	Computation of sides of polygons inscribed in a circle.	1	
	6	Computation of the arcs and chords of circles.	1	
		ter 28 from Text I (Treatment based on English translations of Sanskrit	1	
	-	s in Lilavati).		
II	R	ules concerned with Solids, Shadow of Gnomon and Pulverizer.	9	12
	7	Volume of Solids		
	8	Volume of a heap of Grain		
	9	Shadows of Gnomon.		
	10	Pulverization		
		ters 29, 30, 31, 32 and 33 from Text I (Treatment based on English		
	transl	ations of Sanskrit verses in Lilavati).		
ш		Circle and Circumference as in Yuktibhasa.	10	14
III	11		10	14
	11	Circumference of a circle approximated by regular polygons.	-	
	12	Circumference of a circle without calculating square roots. Circumference of a circle in terms of the hypotenuses.	-	
	13	Summation of Series.	-	
	14	Calculation of circumference.	4	
	15	Conversion of the Rsine to Arc.	+	
		ons 6.1 to 6.6 of Chapter 6 from Text II.	-	
	Seen			
IV		Sine and Cosine series as in Yuktibhasa.	8	10
1	17	Some technical terms and derivation of Rsines.		
	18	Computation of Rsines.	1	
	19	Computation of Jya and Sara by sankalita and accurate	1	
		circumference.		
	Sectio	ons 7.1 to 7.6 of Chapter 7 from Text II.	1	
V	Fro	m Ancient Mathematical Rules to Modern Computer Algorithms.	9	
(Open	20	Decoding of important Sanskrit verses discussed in Modules I and II		
Ended)		from Lilavati (Text I).		

21	Decoding of important Sanskrit verses discussed in Modules III and IV from Yuktibhasa (Text II).		I				
22 Conversion of selected Rules discussed in Modules I to IV into							
	Computer Algorithms.		1				
Relevant Topics from Text I, Text II and References.							

References:

- 1. The Mathematics of India Concepts, Methods, Connections. P.P.Divakaran, Hindustan Book Agency, New Delhi, 2018.
- 2. A Passage to Infinity Medieval Indian Mathematics from Kerala and its Impact. George Ghevarghese Joseph, Sage Publications, New Delhi, 2009.
- 3. On an Untapped Source of Medieval Keralese Mathematics. C.T.Rajagopal and M.S.Rangachari, Archive for the History of Exact Sciences, 35 (2), (1986), 91 99.
- 4. Yukthibhasha. Rama Varma Maru Thampuran and A.R.Akhileswara Iyer (Editors)}, Mangalodayam Press, Trichur 1948.
- 5. Tantrasangraha of Nilakantha Somayaji with Yuktidipika and Laghuvivrti of Sankara. K.V.Sarma, Vishveshvaranand Visva Bandhu Institute of Sanskrit and Indological Studies, Punjab University, Hoshiarpur 1977.
- 6. Colebrook's translation of the Lilavati with Notes by Haran Chandra Banerji. The Book Company, Calcutta, 1927.
- 7. Mathematical Treasures Lilavati of Bhaskara. Frank J.Swetz and Victor J.Katz. Loci. 2011.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	2	1	0	2	3	0
CO 2	2	3	1	2	2	3	1	0	2	3	0
CO 3	2	2	2	2	2	1	1	0	2	2	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	\checkmark	\checkmark	✓	\checkmark	\checkmark

VOCATIONAL MINORS

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1VN101						
Course Title	PYTHON PR	OGRAMMING					
Type of Course	Vocational M	inor – Data Analytics					
Semester	Ι						
Academic Level	100-199						
Course Details	Credit Lecture/Tutorial Practical Total Hou						
	per week per week						
	4 3 2 75						
Pre-requisites	Nil						
Course	Course aims to provide basic programming skills in Python and Python						
Summary	libraries like N	umPy etc.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools				
CO1	Understand the basics of Python	U	C	Internal				
	Data structures and			Exam/Assignment/				
	Programming constructs			Seminar/ Viva / End				
				Sem Exam				
CO2	Understand the basics of Python	U	Р	Internal				
	Programming constructs			Exam/Assignment/				
				Seminar/ Viva / End				
				Sem Exam				
CO3	Apply Python Libraries for Data	Ар	Р	Internal				
	Science and Machine Learning			Exam/Assignment/				
				Seminar/ Viva / End				
				Sem Exam				
- Rei	- Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F	actual Knowledge(F) Conceptu	al Knowledg	e (C) Procee	lural Knowledge (P)				
Metaco	gnitive Knowledge (M)							

Module	Unit	Content	Hrs (45+ 30)	Ext. Marks (70)
		Data Types and Data Structures		
	1	Introduction to Python: - using the Python interpreter, Overview of programming in Python		
1	2	Expressions and Variables-String Operations.		
	3	Python Data Structures: lists & Tuple –Sets - Dictionaries	10	Min.15
	4	Programming Fundamentals: Conditions and Branching- Loops		
	5	Functions: formal arguments, variable-length arguments		
		Classes, files and modules		
	6	Introduction to Classes and Objects: -classes, class attributes, instances, instance attributes		
Π	7	Binding and method invocation, inheritance, polymorphism,	10	NC: 15
	8	Built-in functions for classes and instances.	12	Min.15
	9	Files and input/output, reading and writing files		
	10	Methods of file objects, using standard library functions		
	11	Exception Handling		
		Introduction to Data Science using Python		
	12	Python libraries: Numpy- Scikit- Pandas.		
ш	13	Importing Datasets: Importing and Exporting Data in Python, Basic Insights from Datasets	10	25
	14	Data cleansing and pre-processing: Identify and Handle Missing Values	12	Min.15
	15	Descriptive Statistics		
	16	ANOVA Correlation		

	17	Dealing with Outliers		
		Data Visualization Packages - Matplotlib and Seaborn		
IV	18	Overview of data visualization concepts		
	19	Introduction to Matplotlib and Seaborn	11	Min.15
	20	Basic Plotting and Customization with Matplotlib		
	21	Basic Plotting and Statistical Visualization with Seaborn		
	22	Other Visualization Libraries – Case Studies		
		Practical's	30	
	1	a) Write a program to calculate compound interest when principal, rate and number of periods are given		
		b) Read name, address, email and phone number of a person through keyboard and print the details		
	2	Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)		
	3	a) Print the below triangle using for loop.		
		5		
		4 4		
		3 3 3		
		2 2 2 2		
		11111		
		b) Python Program to Print the Fibonacci sequence using while loop		
	4	Python program to print all prime numbers in a given interval (use break)		
	5	Write a function called GCD that takes parameters a and b and returns their greatest common divisor		

6	Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built- in function len to check the length of a string
7	Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas
8	Write a python program that defines a matrix and prints
9	Write a python program to perform addition of two square matrices
10	0 Python program to perform read and write operations on a file.
1	1 Use the structure of exception handling all general- purpose exceptions
12	2 Write a Python program that calculates basic statistics measures using NumPy
1:	 sales data for a company. The file has the following columns: Date, Product, Units Sold, and Revenue. Write a Python program using Pandas to perform the following tasks: a) Read the data from the CSV file into a DataFrame. b) Calculate the total revenue generated by each product.
	c) Determine the total units sold for each product.d) Find the date with the highest revenue.
	e) Plot a bar chart showing the total revenue generated by each product.

		· · ·	
	14	Create a CSV file named student_grades.csv, which contains the grades of students in different subjects. The file has the following columns: Student_ID, Maths, Science, English, and History. Write a Python program using Matplotlib to perform the following tasks: a) Read the data from the CSV file into a DataFrame. b) Calculate the average score for each subject. c) Plot a bar chart showing the average scores for each subject. d) Plot a histogram showing the distribution of scores in Maths.	
	15	 Visualizing Titanic Dataset You are given a dataset containing information about passengers on the Titanic, including their survival status, age, sex, class, and fare. Write a Python program using Seaborn to perform the following tasks: a) Load the Titanic dataset into a DataFrame. b) Plot a count plot to visualize the number of passengers in each class. c) Plot a bar plot to visualize the survival rate of passengers based on their class and sex. d) Plot a heatmap to visualize the correlation matrix of numerical features (e.g., age, fare, and survival status). 	
Referen	005.		

References:

- 1. Core Python Programming by Wesley J. Chun, 2nd Edition, Pearson Education.
- 2. An Introduction to Python by Guido Van Russom, Fred L.Drake, Network Theory Limited.
- Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1st Ed. 2021
- 4. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 5. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython ,2nd edition, Wes McKinney, O'Reilly Media (2017)

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	2	1	2
CO 2	2	1	3	1	3	3	2	1	2
CO 3	3	2	3	2	3	3	3	1	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	BSc Mathemat	BSc Mathematics Honours					
Course Code	MAT2VN101	MAT2VN101					
Course Title	LINEAR ALC	GEBRA FOR MACHINE L	EARNING				
Type of Course	Vocational Mi	inor – Data Analytics					
Semester	II						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Foundations in	Foundations in Mathematics					
Course Summary		Course aims to provide basics of linear algebra which is useful in understanding machine learning problems					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Solve system of linear	Ар	C	Internal Exam/Assignment/				
	quations			Seminar/Viva/EndSemExam				
CO2	Apply vector spaces and its	Ар	C	Internal Exam/Assignment/				
	properties			Seminar/Viva/EndSemExam				
CO3	Understand basics of matrix	U	C	Internal Exam/Assignment/				
	algebra and its applications			Seminar/ Viva / End Sem Exam				
* - Reme	mber (R), Understand (U),	Apply (A	Ap), Analyse	(An), Evaluate (E), Create (C)				
# - Factua	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowledg	e (M)							

Textbook		Introduction to Linear Algebra" by Gilbert Strang, Wellesley-Cambridge Press, 2016, ISBN: 978-0980232776					
Module	Unit	Content	Hrs (45+ 30)	Marks (70)			
Ι		Solving Linear Equations					
	1	Vectors and Linear Equation					
	2	The Idea of Elimination					
	3	Elimination Using Matrices	12	Min.15			
	4	Rules for Matrix Operations					
	5	Inverse Matrices					
	6	Elimination = Factorization: A = L U					
	7	Transposes and Permutations					
Π		Vector Spaces and Subspaces					
	8	Spaces of Vectors					
	9	The Nullspace of A: Solving $Ax = 0$	12	NC: 17			
	10	The Rank and the Row Reduced Form	12	Min.15			
	11	The Complete Solution to $Ax = b$					
	12	Independence, Basis and Dimension					
	13	Dimensions of the Four Subspaces					
III		Orthogonality					
	14	Orthogonality of the Four Subspaces	8	Min.15			
	15	Projections					
	16	Least Squares Approximations					
	17	Orthogonal Bases and Gram-Schmidt					
IV		Eigenvalues and Eigenvectors					
	18	Introduction to Eigenvalues					
	19	Diagonalizing a Matrix	13	Min.15			
	20	Symmetric Matrices					

21	Positive Definite Matrices		
22	Similar Matrices		
23	Singular Value Decomposition (SVD)		
	Practical using Python	30	
1	Write Python function for vector operations: addition, scalar multiplication, norm,		
2	Write Python function for matrix operations: addition, multiplication, inverse, transpose		
3	Implement a Python function to solve a system of linear equations using NumPy's linear algebra module.		
4	Implement matrix factorization techniques such as LU decomposition in Python using NumPy		
5	Write a Python function to check if a set of vectors forms a vector space. And to determine if a set of vectors forms a subspace of a given vector space.		
6	Write a Python function to find the basis of the column space, null space of a matrix, to calculate the rank, dimension of a matrix using NumPy,		
7	Write a function to determine if a set of vectors is linearly independent, to find the span of a set of vectors. and to check if a set of vectors forms a basis for a given vector space.		
8	Create a function to determine if two given vectors are orthogonal to each other and to calculate the projection of one vector onto another vector.		
9	Use orthogonalization to find the least squares approximation of a vector that does not lie in the span of a given set of vectors.		
10	Implement the Gram-Schmidt process in Python to orthogonalize a given set of vectors and to orthogonalize columns of a given matrix		
11	Implement a function to perform a change of basis operation on a given vector.		
12	Write a Python script to verify the rank-nullity theorem by computing the rank and nullity of a matrix and		

 -		
	comparing with the dimensions of its domain and codomain.	
13	Write a Python function to compute the eigenvalues and eigenvectors of a square matrix using SciPy.	
14	Write a Python function to check if a given square matrix is diagonalizable, to diagonalize a matrix using its eigenvectors and eigenvalues.	
15	Write a Python function to compute the singular value decomposition of a matrix using NumPy, Use Singular Value Decomposition (SVD) to find the rank and dimension of a matrix, and discuss how it can be used for dimensionality reduction.	
	Reference	
1	"Linear Algebra and Its Applications" by David C. Lay, Steven R. Lay, and Judi J. McDonald, Pearson, 2020,ISBN: 978-0134860244	
2	Linear Algebra: Concepts and Applications" by Charles R. Johnson and Dean E. Riess, Wiley, 2017, ISBN: 978- 1118612596	
3	Linear Algebra: A Modern Introduction" by David Poole, Cengage Learning, 2016, ISBN: 978- 1305658004	
4	Linear Algebra for Machine Learning" by Jason Brownlee, Machine Learning Mastery, 2021	
5	Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib" by Robert Johansson, Apress, 2018, ISBN: 978-1484242452	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	1
CO 2	3	2	3	1	2	2	3	1	1
CO 3	3	3	3	1	2	2	3	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	<	\checkmark
CO 3	✓	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathematics Honours						
Course Code	MAT3VN201	MAT3VN201					
Course Title	INTRODUCT	FION TO MACHINE LEAF	RNING				
Type of Course	Vocational M	inor – Data Analytics					
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Minor 1, Minor 2 (Code)						
Course	Course aims to provide basic concepts of machine learning including						
Summary	paradigms of s	upervised, unsupervised and	reinforcement le	earning.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used								
		Level*	Category#									
CO1	Machine Learning concepts	U	С	Internal Exam/Assignment/								
	and basic parameter			Seminar/Viva/End Sem								
	estimation methods.			Exam								
CO2	Distinguish between	U	С	Internal Exam/Assignment/								
	Supervised, Unsupervised			Seminar/ Viva / End Sem								
	and semi supervised			Exam								
	learning and evaluate the											
	performance measures											
CO3	Apply the algorithms	Ар	Р	Internal Exam/Assignment/								
	identifying problem			Seminar/ Viva / End Sem								
	situations			Exam								
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)												
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)												
Metaco	gnitive Knowledge (M)			Metacognitive Knowledge (M)								

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
		Introduction to Machine Learning	,	
	1	Introduction: Machine Learning - Machine Learning Foundations		
Ι	2	Machine Learning Paradigms- Supervised, Unsupervised, Reinforcement	10	Min.15
	3	Applications of Machine Learning, Case studies		
	4 Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum a posteriori Estimation (MAP).			
	5	Introduction to Bayesian formulation.		
		Supervised Learning & SVM		
	6	Regression – Simple Linear regression and Multiple Linear Regression		
	7	Gradient Descent algorithm and Matrix method, Overfitting in regression.		
П	8	Methods for Classification- Logistic regression, Naive Bayes, Decision tree algorithm- ID3	14	Min.15
	9	SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification		
	10	Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM		
	11	Kernels for learning non-linear functions, polynomial kernel, Radial Basis Function (RBF)		
		Performance Measures & Unsupervised Learning		
	12	Regression Evaluation Metrics – Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (Coefficient of Determination)		

Ш	13	Classification Evaluation Metrics - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve (ROC), Area Under Curve (AUC)	11	Min.15
	14	Bootstrapping, Cross Validation, Ensemble methods, Bias-Variance decomposition.		
	15	Clustering - Similarity measures, Hierarchical Agglomerative Clustering, K-means partitional clustering		
	16	Expectation maximization (EM) for soft clustering		
	17	Dimensionality reduction –Principal Component Analysis, t-Distributed Stochastic Neighbour Embedding (t-SNE)		
		Introduction to Advanced Machine Learning		
	18	Introduction to Reinforcement Learning, Learning Task		
IV	19	Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning		
	20	Introduction to Neural Network, Perceptron, Multilayer feed forward network,	10	Min.15
	21	Activation functions (Sigmoid, ReLU, Tanh), Back - propagation algorithm.		
	22	Case Study: Applying Reinforcement Learning in Autonomous Vehicle Navigation Case Study: Predicting Customer Churn in Telecommunications Industry using Neural Networks		
		Practical's	30	
	1	Create a dataset containing measurements of the heights of students in a class. Estimate the parameters of a normal distribution that best describes the distribution of heights using Maximum Likelihood Estimation (MLE)		

2	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result
3	Implement Simple Linear regression using python
4	Implement Multiple Linear regression using python
5	Implement the Logistic regression algorithm
6	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets
7	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
8	Create a dataset containing information about the prices of houses in a certain city. The dataset includes various features such as the size of the house, number of bedrooms, location, and age of the house, as well as the corresponding sale prices. Your task is to build a regression model to predict the sale price of houses based on their features and evaluate the model's performance using appropriate evaluation metrics (MAE, MSE, RMSE, R-squared)
9	Implement the support vector machine algorithm
10	Create a dataset containing information aboutcustomers of a telecommunications company. The dataset includes features such as customer demographics, service usage and contract details, as well as a binary target variable indicating whether eachcustomer churned (1) or not (0) Your task is to build aclassification model to predic customer churn based on the available features. Evaluate the trained model's performance on the testing data using the following evaluation metrics: Accuracy, Precision, Recall, F1-score and ROC Curve. Use SVM Classification
11	Program to implement K-Means clustering Algorithm

12	Create dataset containing information about customers of a retail store, including features such as age, income, and spending score. Your task is to perform clustering on the dataset to identify distinct groups of customers based on their purchasing behaviour. Use K-means Algorithm	
13	Implement Dimensionality reduction using Principal Component Analysis (PCA) method	
14	Implementing a simple reinforcement learning algorithm	
15	Create a dataset containing information about patients with diabetes, including features such as age, BMI, blood pressure, and glucose levels, as well as an indication of whether each patient has diabetes or not. Your task is to build a simple neural network classifier to predict whether a patient has diabetes based on their features	
	References	
1.	M. Gopal, "Applied Machine Learning", McGraw Hill Education	
2.	Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013	
3.	Machine Learning: A Probabilistic Perspective by Kevin P. Murphy	
4.	Ethem Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press 2010.	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathemat	BSc Mathematics Honours							
Course Code	MAT8VN401								
Course Title	INTRODUCTION TO ARTIFICIAL INTELLIGENCE								
Type of Course	Vocational M	Vocational Minor – Data Analytics							
Semester	VIII								
Academic Level	400-499	400-499							
Course Details	Credit Lecture/Tutorial Practical Total Hours								
	per week per week								
	4 3 2 75								
Pre-requisites	Python Progra	mming, Foundation of Mathe	matics, Machin	e Learning					
Course Summary	This course of	This course on "Introduction to Artificial Intelligence" offers a thorough							
	exploration o	f AI fundamentals and tec	hniques. Cove	ering topics like					
	representation	, search algorithms, and intel	ligent agents, st	tudents' progress					
	to advanced co	oncepts including knowledge	representation,	neural networks,					
	and practical	implementations. With ha	ands-on sessio	ons focusing on					
	algorithm imp	lementation and machine lear	ming models, st	udents gain both					
	theoretical unc	lerstanding and practical skill	s essential for A	I development.					

Course Outcome

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand foundation principles,	U	С	Internal exam/					
	mathematical tools and program			Assignment/ Seminar/					
	paradigms of AI and Apply problem			External/ Practical					
	solving through search for AI applications			Assessment					
CO2	Understand formal methods of	U	Р	Internal exam/					
	knowledge representation and Apply			Assignment/ Seminar/					
	logic and reasoning techniques to AI			External/ Practical					
	applications			Assessment					
CO3	Apply intelligent agents for Artificial	Ар	Р	Internal exam/					
	Intelligence programming techniques			Assignment/ Seminar/					
				External/ Practical					
				Assessment					
* - Remen	- Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual								
Knowledg	e(F) Conceptual Knowledge (C) Procedura	al Knowledg	ge (P) Metaco	ognitive Knowledge (M)					

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Artificial Intelligence		
	1	Introduction to AI, History and Evolution of AI, Applications		
	2	Introduction to representation and search		
I	3	The Propositional calculus, Predicate Calculus, Calculus expressions and Applications	10	Min.15
	4	State Space Search, Production Systems, Problem Characteristics, types of production systems, Graph theory		
	5	Intelligent Agents: Agents and Environments, The nature of environments, The structure of agents. concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation		
		Search Strategies		
	6	Uninformed Search Strategies - Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening Depth First Search		
	7	Bidirectional Search, Comparison of Uninformed search Strategies, Searching with partial information		
II	8	Sensor-less problems, Contingency problems		
	9	Informed Search Strategies - Generate& test, Hill Climbing, Best First Search	14	Min.15
	10	A* and AO* Algorithm, Constraint satisfaction, Backtracking Search		
	11	Game playing: Minimax Search, Alpha-Beta Cutoffs		
	12	Optimal Decisions in Games, Stochastic Games		
		Knowledge Representation		
	13	Knowledge Representation -Knowledge based agents, Wumpus world		
III	14	Knowledge Representation -issues, The frame problem.		
	15	First order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining	13	Min.15

	16	Propositional Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining		
	17	Agent based and distributed problem solving		
	18	Introduction to Expert System Technology, Bayes Rule,Bayesian Network, Hidden Markov Model, Decision Network		
IV		Introduction to ANN		
	19	Introduction ANN, biological neuron, Artificial neuron		
	20	Perceptron Learning	0	NC 15
	21	Back Propagation algorithm	8	Min.15
	22	Introduction to Natural Language Processing, Pattern recognition Case study - Enhancing Customer Service with AI- Powered Chatbots		
		Practical's	30	
	1	Write a program to implement depth first search algorithm.		
	2	Write a program to implement breadth first search algorithm.		
	3	Write a program to simulate 4-Queen / N-Queen problem.		
	4	Write a program to solve tower of Hanoi problem.		
	5	Write a program to implement alpha beta search.		
	6	Write a program for Hill climbing problem.		
	7	Write a program to implement A*algorithm		
	8	Write a program to implement AO*algorithm		
	9	Design the simulation of tic-tac-toe game using min-max algorithm		
	10	Write a program to shuffle Deck of cards		
	11	Write a program to derive the predicate.		
	12	Solve constraint satisfaction problem		
		(a) Derive the expressions based on Associative law		

(b)Derive the expressions based on Distributive law.	
13 Develop a simple text-based game using Python that simulates a classic "Guess the Number" game. The game should generate a random number between 1 and 100 and prompt the player to guess the number. After each guess, the game should provide feedback to the player (e.g., "Too high", "Too low", or "Correct!") and keep track of the number of attempts it takes for the player to guess the correct number. Once the player guesses the correct number, the game should display the number of attempts and ask if the player wants to play again	
14 Train a simple machine learning model, such as a linear regression or logistic regression classifier, using a dataset of your choice and evaluate its performance using appropriate metrics.	
15Implement a decision tree classifier from scratch and apply it to a classification task with a real-world dataset	
References	
1S. Russel and p. Norvig, Artificial intelligence – A Modern Approach, 3rdEdn, Pearson	
2 Artificial Intelligence: Elaine Rich, Kevin Knight, Mc- GrawHill	
3 Artificial Intelligence by Luger (Pearson Education)	
4 D W Patterson, introduction to Artificial Intelligence and Expert Systems, PHI, 1990	
5 Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville:	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	\checkmark	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	BSc Mathematics Honours				
Course Code	MAT1VN102				
Course Title	STATISTICS	FOR DATA SCIENCE			
Type of Course	Vocational M	inor – Data Analytics			
Semester	Ι				
Academic Level	100-199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4 3 2 75				
Pre-requisites	Foundations in mathematics				
Course Summary	Course aims to provide basic concepts such as central tendency, probability, sampling and testing				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand measures of	U	С	Internal exam/ Assignment/				
	central tendency, dispersion,			Seminar/ External/				
	regression			Practical Assessment				
CO2	Distinguish discrete and	U	С	Internal exam/ Assignment/				
	ontinuous distributions and			Seminar/ External/				
	its properties			Practical Assessment				
CO3	Analyse data using testing	An	С	Internal exam/ Assignment/				
	hypothesis			Seminar/ External/				
				Practical Assessment				
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metaco	gnitive Knowledge (M)							

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
Ι		Descriptive statistics	,	
	1	Measures of central tendency: - mean, median, mode		
	2	Measures of dispersion: Range, Mean deviation, Quartile deviation and Standard deviation		
	3	Moments, Skewness and Kurtosis,	11	Min.15
	4	Correlation - Linear correlation		
	5	Karl Pearson's coefficient of Correlation, Rank correlation		
	6	Linear regression- Simple and Multiple		
II		Probability		
	7	Sample space, Events, Different approaches to probability	7	Min.15
	8 Addition and multiplication theorems on probability			
	9			
	10	Bayes Theorem		
III		Probability Distributions		
	11	Random variables, Probability density functions and distribution functions		
	12	Marginal density functions, Joint density functions		
	12	Mathematical expectations	12	Min.15
	14	Moments and moment generating functions		
	15	Discrete probability distributions – Binomial, Poisson distribution		
	16			
Ш		Sampling and Testing		
	17	Theory of Sampling: - Population and sample, Types of sampling Theory of Estimation: - Introduction, point estimation		

		-		
	18	methods of point estimation-Maximum Likelihood estimation and method of moments, Central Limit Theorem(Statement only)		
	19	Null and alternative hypothesis, types of errors, level of significance, critical region		May 15
	20	Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations	15	Min.15
	21	Small sample tests – t Test for single mean, difference of means. Paired t-test		
	22	Chi-square test (Concept of test statistic ns $2/\sigma^2$), F test - test for equality of two population variances		
	23	ANOVA – one-way & two-way classification		
		Practical using MS Excel	30	
		 Calculate the mean, median, and mode of a dataset. Calculate the range of a dataset. Calculate the mean deviation of a dataset. Calculate the quartile deviation of a dataset. Calculate the standard deviation of a dataset. Calculate the Karl Pearson's coefficient of correlate two variables. Calculate rank correlation (e.g., Spearman's rank or between two variables. Perform simple linear regression analysis. Perform multiple linear regression analysis. Calculate probabilities of events using different approximate classical, relative frequency, subjective). Apply addition and multiplication theorems of prosolve problems. Calculate conditional probabilities and use Bayes' Generate random samples from various probabili (e.g., binomial, Poisson, normal) and calculate rel Conduct hypothesis testing using Excel functions sample tests (e.g., z-test, t-test), small sample tests single mean, paired t-test), chi-square test, F-test 	oproache obability Theoren ty distril evant sta s for larg s (e.g., t-	on) es (e.g., 7 to n. outions atistics. ge test for
		References		
	1	Fundamentals of statistics: S. C. Gupta, 6th Revised and enlarged edition April 2004, Himalaya Publications		
L		1	I	

2	Fundamentals of Mathematical Statistics- S. C. Gupta, V. K. Kapoor. Sultan Chand Publications	
3	Introduction to Mathematical Statistics - Robert V. Hogg & Allen T. Craig. Pearson education	
3	Probability and Statistics for Engineering and the Sciences, Jay L. Devore, Cengage Learning, January 2022, ISBN for the 10th Edition: 978-1305251809	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	✓
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematic	BSc Mathematics Honours				
Course Code	MAT2VN102					
Course Title	R PROGRAM	MING				
Type of Course	Vocational Mi	nor – Data Analytics				
Semester	II					
Academic Level	100-199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4 3 2 75					
Pre-requisites	Foundations in Mathematics, Programming Fundamentals					
Course	Course aims to provide R programming fundamentals and algorithm					
Summary	writing					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the basic	U	Р	Internal exam/ Assignment/				
	programming structure of			Seminar/ External/ Practical				
	R, visualization of models			Assessment				
	nd their inference.							
CO2	Apply statistical functions,	Ар	Р	Internal exam/ Assignment/				
	models and their Inferences			Seminar/External/Practical				
				Assessment				
CO3	Design data model,	С	Р	Internal exam/ Assignment/				
	visualization and inference			Seminar/External/Practical				
	of dataset to gain insights			Assessment				
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F								
Metaco	gnitive Knowledge (M)							

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to R		
Ι	1	Introduction to R: R Studio, Basic components in R Studio.		
	2	Basic R syntax: variables, data types, operators	- 10	Min.10
	3	Working with Data structures Vectors, List, Matrices & Arrays, Factors and Data frame		WIII.10
	4	Control structures (if-else statements, Loops) & Functions		
	5	Measures of Central Tendency & Dispersion		
		Data Manipulation and Visualization with R		
	6	Importing and exporting data in R (CSV, Excel, Xml, Json, databases)		
	7	Data Cleaning: Exploring raw data, Missing values, Zeros and NAs – Separating, Uniting Columns, String Manipulation, Filling Missing values	13	
II	8	Data manipulation with dplyr: filtering, selecting, mutating, summarizing		Min.20
	9	Basic Charts: Pie, Bar, Histogram, Boxplot and Scatterplot		
	10	Data visualization with ggplot2: creating plots (scatter plots, bar plots, line plots)		
	11	Customizing plots and Introduction to other Visualization Packages (ggplot2 extensions, plotly)		
		Statistical Analysis with R		
ш	12	Overview of statistical analysis in R		
	13	Descriptive statistics: mean, median, standard deviation, variance	9	Min 15
	14	Probability distributions and random variables)	Min.15
	15	Hypothesis testing: t-tests, chi-square tests, ANOVA		

	16	Linear regression analysis: simple and multiple regression		
	17	Introduction to statistical modelling with R		
IV		Introduction to Machine Learning with R		
	18	Introduction to machine learning concepts and algorithms		
	19	Supervised learning techniques: classification and regression	13	Min.15
	20	Unsupervised learning techniques: clustering and dimensionality reduction		
	21	Case study – Explore Diamond dataset for prize prediction		
	22	Applied Analytics – HR, Finance & Marketing, Case studies		
		Practical's	30	
	1	Write a R program to take input from user (name, age, occ and display the values with datatypes. Also print version o	-	• /
	2	Write a R program to calculate the sum of numbers from	1 to 10.	
	3	 Write a R Program to create a list containing a vector, a r and write a code for the following. 1) Give names to the elements in the list 2) Add element at the end of the list 3) Remove the second element 	natrix a	nd a list

· · · · · · · · · · · · · · · · · · ·		
	4	R program to create a data frame of student with four given vectors and write a code
		1) to get the structure of a given data frame.
		2) to get the statistical summary and nature of the data of a given data frame.
		3) to extract specific column from a data frame using column name.
		4) to extract first two rows from a given data frame.
		5) to extract 3rd and 5th rows with 1st and 3rd columns from a given data frame.
		6) to add a new column in a given data frame.
		7) to add new row(s) to an existing data frame.
		8) to drop column(s) by name from a given data frame.
		9) to drop row(s) by number from a given data frame.
		a) 10) to extract the records whose grade is greater than 9
	5	Write a R program to find biggest of 3 number (if -else)
	6	Write a R program to find sum of elements of vector and to find minimum and maximum elements of vector (loop)
	7	Write a R program to Import a CSV file named 'data.csv' into a data frame named 'data_df'.
		a) Display the structure of the 'data_df' data frame using the 'str()' function.
		b) Print the first few rows of the data frame to inspect the data using the 'head()' function.
		c) Calculate summary statistics (mean, median, min, max) for numerical variables in the data frame using the 'summary()' function.

8	 Write a Program in R for Missing value imputation Load the 'iris' dataset into a data frame named 'iris_df'. Introduce missing values into the 'iris_df' dataset by randomly replacing a certain percentage of values with NA. Display the summary of missing values in the dataset using the 'is.na()' and 'colSums()' functions. Impute missing values in the dataset using a simple technique (e.g., replacing missing values with the mean or median of the corresponding column). Verify that there are no missing values remaining in the dataset after imputation. Compare summary statistics (mean, median, min, max) of the dataset before and after missing value imputation.
9	Import a dataset from a CSV file and use dplyr to filter rows based on a condition.
10	Write a R Program to print data in different graph formats (Histogram, Pie, Bar, Boxplot, Scatterplot)
11	 Write a R program to visualize different plot using ggplot Load the 'iris' dataset into a data frame named 'iris_df'. Create a scatter plot of 'Sepal.Length' against 'Sepal.Width' with points colored by 'Species'. Generate a box plot of 'Petal.Length' for each 'Species'. Create a histogram of 'Sepal.Length' with customized bin widths and colors. Generate a density plot of 'Petal.Width' for each 'Species' overlaid on the same plot. Create a bar plot showing the count of each 'Species' in the dataset. Generate a violin plot of 'Petal.Length' for each 'Species' with custom fill colors. Create a line plot showing the trend of 'Sepal.Length' over 'Petal.Length' for each 'Species'. Combine multiple plots into a single visualization using facets based on 'Species'. Customize the appearance of the plots by adding titles, axis labels, legends, and adjusting plot aesthetics (e.g., colors, transparency).
12	Write a Program to find mean, median, standard deviation and variance

13	The heights of 6 randomly chosen sailors are 63,65,68 Those of 10 randomly chosen soldiers are 61,62,65,66,6 inches. Discuss whether this data gives a suggestion the taller than soldiers. Aim: To test the claim that sailors are taller than soldiers	59,69,70 hat the s	,71,72,73		
14 Write a R Program to Apply Simple Linear Regression and Linear Regression					
15	Write a R Program to Apply K-means clustering algorithm to the data and visualize the clusters.				
	References				
1	Hands-On Programming with R by Garrett Grolemund				
2	R Cookbook by Winston Chang, Paul Teetor, and Joseph Adler				
3	Beginning R: The Statistical Programming Language by Mark Gardener				
4	The Art of R Programming by Norman Matloff				
5	Advanced R by Hadley Wickham				

Mapping of COs with	PSOs and POs :
---------------------	-----------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	3	3	2	2
CO 2	3	3	3	2	3	3	3	2	2
CO 3	3	3	3	2	3	3	3	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathem	BSc Mathematics Honours				
Course Code	MAT3VN20	2				
Course Title	DATA MIN	ING				
Type of Course	Vocational N	Minor – Data Analytics				
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Basic Knowledge in MS Excel					
Course Summary	Course aims to provide basic data mining techniques using Weka tool					

Course Outcome:

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools used		
		Level*	Category#			
CO1	Understand the fundamental	U	С	Internal exam/ Assignment/		
	concepts and principles of			Seminar/External/Practical		
	data mining			Assessment		
CO2	Understand the mining	U	Р	Internal exam/ Assignment/		
	techniques like association,			Seminar/ External/ Practical		
	classifications and			Assessment		
	clustering on datasets					
CO3	Apply data mining	Ар	Р	Internal exam/ Assignment/		
	techniques to real-world			Seminar/ External/ Practical		
	datasets			Assessment		
* - Rer	nember (R), Understand (U)	, Apply (A	p), Analyse (A	An), Evaluate (E), Create (C)		
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)					
Metaco	Metacognitive Knowledge (M)					

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Data Mining	,	
	1	Data Warehousing - Data warehousing architecture, Warehouse Schema, Data warehouse backend process, Multidimensional Data Model		
	2	OLAP Operations, Introduction to KDD process, Data mining	8	Min 15
Ι	3	Data mining Functionalities, Classification of Data Mining Systems.		
	4	Data Warehousing Case Study: Government, Tourism and Industry		
	5	Data Preprocessing - Data Cleaning, Data Integration and Transformation, Data Reduction, Data discretization		
		Association Analysis		
	6	Association Analysis - Basic Concepts, Frequent Item set Mining Methods: Apriori Algorithm, generating association Rules from Frequent Item sets, Improving the Efficiency of Apriori.	7	Min 15
Π	7	Evaluation of Association Patterns, Visualization, Partition algorithm		
		A Case Study on Association using Orange Tool		
	8	Dynamic Item set Counting algorithm- FP-tree growth algorithm-Incremental Algorithm-Border algorithm		
		Classification & Prediction		
	9	Classification Technique: Introduction, Decision Trees: Tree Construction Principle – Attribute Selection measure – Tree Pruning - Decision Tree construction Algorithm – CART – ID3		
III	10	Bayesian Classification: Bayes' theorem, Naïve Bayesian Classification	14	Min 15
	11	K- Nearest Neighbour Classifiers, Support Vector Machine. Evaluating the performance of a Classifier, Methods for comparing classifiers, Visualization		
	12	Case Study of Classification using Orange Tool		

	13	Linear Regression, Nonlinear Regression, Other Regression-Based Methods		
		Clustering		
	14	Clustering techniques: Data Attribute Types – Data Similarity and Dissimilarity		
	15	Partitioning Methods: k-Means and k- Medoids, CLARANS		
	16	Hierarchical Method: Agglomerative and Divisive Hierarchical Clustering		
	17	Density-based Clustering - DBSCAN, Grid based clustering-STING		
IV	18	Evaluation of Clustering Method	16	Min 15
	19	Case Study of Clustering using Orange Tool		
	20	Introduction to Web Mining - Basic concepts, Web content mining, Web structure mining, Web usage mining		
	21	Introduction to Text mining, Text Preprocessing, Text clustering		
	22	Case Study – Web Mining: Analysing User Behaviour on E-commerce Website Case Study - Sentiment Analysis of Customer Reviews		
		Practical's		
	1	Installation of WEKA Tool		
	2	Creating new Arff File		
	3	Pre-Processes Techniques on Data Set		
	4	Pre-process a given dataset based on Handling Missing Values		
	5	Generate Association Rules using the Apriori Algorithm		
	6	Generating association rules using FP growth algorithm	30	
	7	Build a Decision Tree by using ID3 algorithm		
	8	Build a Naïve Bayesian Classifier		
	9	Build a K- Nearest Neighbour Classifiers		
	10	Build a Support Vector Machine		

11	Build a Linear Regression	
12	Build K-Means Algorithm	
13	Build K-Medoids Algorithm	
14	Build Hierarchical Clustering Algorithms	
15	Create Student. ariff file to suggest better college using Decision tree	
	References	
1	Arun K Pujari, "Data Mining Techniques", Universities Press. 2012	
2	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 'Introduction to Data Mining'	
3	G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.	
4	Data Mining: Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal:	
5	Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei:	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathemati	BSc Mathematics Honours					
Course Code	MAT8VN402						
Course Title	DATA VISUA	LIZATION					
Type of Course	Vocational Mi	Vocational Minor – Data Analytics					
Semester	VIII						
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Minor 1 and minor 2						
Course Summary	Course aims to provide data visualization techniques using R programming and interactive chart building						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the methods for	U	С	Internal exam/ Assignment/
	visualizing data			Seminar/External/Practical
				Assessment
CO2	Apply Visualization	Ар	Р	Internal exam/ Assignment/
	methods for different data			Seminar/ External/ Practical
	domains			Assessment
CO3	Design an Interactive data	С	С	Internal exam/ Assignment/
	visualization story board for			Seminar/ External/ Practical
	data			Assessment
* - Rei	member (R), Understand (U)	, Apply (A	p), Analyse (An), Evaluate (E), Create (C)
# - F	actual Knowledge(F) Conc	eptual Kno	owledge (C)	Procedural Knowledge (P)
Metaco	gnitive Knowledge (M)			

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Data Visualization	8	Min.10
	1	Definition, Methodology, Data Visualization and Theory, Visualization Design objectives		
	2	Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation		
I	3	Seven stages of data visualization, widgets, and introduction to different data visualization tools		
	4	Computational Statistics and Data Visualization, Presentation and Exploratory Graphics		
[5	Graphics and Computing, Statistical Historiography		
		Visualizing Data Methods	13	Min.15
	6	Mapping, Time series, Connections and correlations - Scatter plot maps		
	7	Hierarchies and Recursion – introduction to Networks and Graphs, Info graphics		
п	8	Complete Plots, Customization of plots -Parameters, Arranging Plots, Annotation,		
	9	Extensibility-Building Blocks, Combining Graphical Elements, 3-D Plots, Data Handling		
	10	Data and Graphs, Graph Layout Techniques, Graph Drawing		
	11	Bipartite Graphs, Hierarchical Trees, Spanning Trees, Networks, Directed Graphs, Tree maps		
		Data visualization using R	12	Min.20
	12	Environment setup - R and RStudio, Basic plotting functions in R		
Ш	13	Creating scatter plots, histograms, pie chat, bar charts, Boxplot, violin plot, line chart, heatmap, Customizing plot appearance,		
	14	Introduction to ggplot2, Grammar of graphics, creating static plots with ggplot2, Customizing plots with themes and scales		

	15 16	Introduction to plotly for interactive plotting, Creating interactive scatter plots, line plots, and bar charts, Adding interactivity with tooltips, zooming, and brushing Designing interactive dashboards with Shiny and plotly, Other Visualization Pacakges		
IV		Introduction to Tableau	12	Min.15
	17	Environment Setup, Design flow, Data Types, File Types		
	18	Data Source - Custom Data View, Extracting Data, Field operations, Metadata, Data Joining and Blending		
	19	Worksheets- Adding, renaming, reordering Worksheet, Workbook Calculations		
	20	Sort and Filters- Sorting, Quick filtering, Context filtering, Condition filtering, Filter operations		
	21	Tableau Charts — Bar Chart, Line Chart, Multiple Measure Line Chart, Pie Chart		
	22	Scatter Plot, Bubble Chart, Bullet Graph, Box Plot, Dashboard – Formatting – Forecasting – Trend Lines		
		Practical's using R	30	
	1	Exploring Data with Basic Plots		
		• Load a dataset (e.g., Iris dataset) into R.		
		• Create scatter plots, histograms, and box plots to explore the distribution of variables.		
		• Label axes, add titles, and customize colors and styles		
	2	Visualizing Relationships		
		• Choose a dataset with multiple variables.		
		• Create scatter plots to visualize relationships between pairs of variables.		
		• Use color or shape to represent categorical variables.		
		• Analyze patterns and correlations in the data		

	1	
3	Time Series Visualization	
	• Load a time series dataset (e.g., stock prices, weather data) into R.	
	• Create line plots to visualize trends and fluctuations over time.	
	• Use different line styles or colors to represent multiple time series.	
	• Add labels, titles, and annotations to the plot	
4	Bar and Pie Charts:	
	• Load a dataset with categorical variables (e.g., survey responses, product categories).	
	• Create bar charts and pie charts to visualize the distribution of categories.	
	• Customize the appearance of the charts (e.g., colors, labels, legends).	
5	Heatmaps and Correlation Plots:	
	• Load a dataset with numerical variables (e.g., correlation matrix).	
	• Create heatmaps to visualize correlations between variables.	
	• Customize the color scheme and add annotations to the heatmap.	
	• Interpret the patterns of correlation in the data	
6	Box Plots and Violin Plots:	
	• Load a dataset with numerical and categorical variables (e.g., Iris dataset).	
	• Create box plots and violin plots to visualize the distribution of numerical variables across different categories.	
	• Compare the use of box plots and violin plots for data visualization	

7	Interactive Visualizations with ggplot2 and Shiny:	
	• Create interactive plots using ggplot2 and Shiny.	
	• Design a Shiny app with interactive controls (e.g., sliders, checkboxes) to explore different aspects of the data.	
8	Geospatial Visualization:	
	• Load a dataset with geographical information (e.g., map coordinates, regions).	
	• Create maps using packages like ggmap, leaflet, or tmap to visualize spatial data.	
	• Add layers, markers, and tooltips to the map to provide additional information	
9	Faceted Plots:	
	• Load a dataset with multiple groups or categories.	
	• Create faceted plots using ggplot2 to display subsets of the data in separate panels.	
	• Customize the appearance of each panel (e.g., axis limits, labels, titles	
10	Network Visualization:	
	• Load a dataset representing a network or graph (e.g., social network, co-authorship network).	
	• Create network visualizations using packages like igraph or networkD3.	
	• Customize the layout, node colors, and edge weights to convey information about the network structure.	
11	Word Clouds and Text Visualization:	
	• Load a dataset containing text data (e.g., tweets, reviews).	
	• Create word clouds to visualize word frequency and importance.	
	• Customize the appearance of the word cloud (e.g., colors, fonts, word sizes).	

	12	Dashboards with Plotly and Shiny:	
	12		
		• Design an interactive dashboard using Plotly and Shiny.	
		• Incorporate interactive plots, tables, and controls to explore and analyze data dynamically.	
	13	Dynamic Visualizations	
		• Load a dataset with time-varying data (e.g., stock prices, sensor readings).	
		• Create animated plots using package plotly.	
		• Customize the animation settings (e.g., frame rate, transition effects) to enhance datavisualization.	
	14	Visualizing Hierarchical Data	
		• Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories).	
		• Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures.	
		• Customize the appearance of the plots to highlight different levels of hierarchy.	
	15	Dashboard Design	
		• Design a dashboard layout with multiple visualizations and interactive components.	
		• Arrange the visualizations in a coherent and informative manner.	
		• Add text annotations, titles, and summaries to provide context and insights.	
		References	
	1	Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.	
	2	Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 2017	
	3	Fundamentals of Data Visualization" by Claus O. Wilke	
	4	Data Visualization: A Practical Introduction" by Kieran Healy	
	5	Learning tableau by Joshua N. Milligan	
-	•		

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	<	~
CO 3	✓	\checkmark	✓	\checkmark	\checkmark

MINOR COURSES

Programme	B. Sc. Mathem	atics Honours						
Course Code	MAT1MN101							
Course Title	CALCULUS							
Type of Course	Minor							
Semester	Ι							
Academic Level	100-199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4 4 - 60							
Pre-requisites	Basic Idea of Fu	nctions, Limits and Continuit	у					
Course Summary	introducing the illustrating the instantaneous r product, quotie higher-order de differentials, ex inflection poin integration by definite integra	vers fundamental concepts e idea of tangent lines, rates in application in describing rates of change. Basic rules ent, and power rules, as well erivatives are discussed. It extrema of functions, the me ts, curve sketching, indefin substitution, and the geome al. These sections explore v tions, determining areas un s.	s of change, and motion and fir of differentiation also covers rela- ean value theor ite and definite etric interpretate various calculus	d the derivative, ading on, including the s for finding ated rates, em, concavity, e integrals, ion of the s techniques for				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Demonstrate proficiency in finding derivatives using various differentiation techniques and apply them to describe motion, rates of change, and related rates problems.	Ар	С	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam		
CO2	Analyse functions to determine extrema, concavity, and inflection points using the Mean Value Theorem, First and Second Derivative Tests, leading to effective curve sketching.	An	С	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam		
CO3	Apply integration techniques to compute areas between curves, volumes of solids of revolution, arc lengths, and surface areas, culminating in understanding the Fundamental Theorem of Calculus and its applications.	Ap	С	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Text Book		Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (201 0-534-46579-7.	0)1501	13.978-		
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)		
		Introduction to Differentiation				
	1	A Quick Review of Functions, Limits, and Continuity (This				
		unit is optional)				
	2	Section 1.5: Tangent Lines and Rates of Change -				
		An intuitive Look, Defining a Tangent Line, Tangent				
	3	lines, Secant lines and Rates of Change. Section 2.1: The Derivative -	-			
	3	The Derivative, Using the Derivative to Describe the				
		Motion of the Maglev, Differentiation, Finding the				
		Derivative of a Function, Differentiability,				
		Differentiability and Continuity	14	Min 15		
Ι	4	Section 2.2: Basic Rules of Differentiation -	-			
-	-	Some Basic Rules				
	5	Section 2.3: The Product and Quotient Rules -				
		The Product and Quotient Rules(Example 6 is optional),				
		Extending the Power Rule, Higher- Order Derivatives	S			
	6	Section 2.6: The Chain Rule – Composite Functions, The				
		Chain Rule, Applying The Chain Rule				
	7	Section 2.7 : Implicit Differentiation – Implicit				
		Functions, Implicit Differentiation	-			
	8	Section 2.8: Related Rates -				
		Related Rates Problems, Solving Related Rates				
		Problems. Applications of Differentiation				
	9	Section 2.9: Differentials and Linear Approximations -	-			
		Increments, Differentials, Linear Approximations				
	10	Section 3.1: Extrema of Functions -				
	_	Absolute Extrema of Functions, Relative Extrema of				
		Functions, Finding the Extreme Values of a Continuous				
		Function on a Closed Interval				
	11	Section 3.2: The Mean Value Theorem -				
		Rolle's Theorem, Some Consequences of the Mean				
II		Value Theorem, Determining the Number of Zeros of a		Min 15		
	10	Function.	12			
	12	Section 3.3: Increasing and Decreasing Functions and				
		the First Derivative Test -				
		Increasing and Decreasing Functions, Finding the Relative Extrema of a Function				
	13	Section 3.4: Concavity and Inflection Points -				
	1.5	Concavity, Inflection Points (Example 6 is optional),				
		The Second Derivative Test, The roles of f' and f'' in				
		Determining the Shape of a Graph.				
ш		Introduction to Integration				
III	14	Section 3.6: Curve Sketching -]			

		The Graph of a Function, Guide to Curve Sketching(Up to and including Example 2)	10	Min 15			
	15	Section 4.1: Indefinite Integrals -	10				
		Antiderivatives, The indefinite Integral, Basic Rules of Integration.16Section 4.2: Integration by Substitution -					
	16	-					
		How the method of Substitution Works, The Technique					
		of Integration by Substitution (Example 8 is optional)					
	17	Section 4.3: Area -	-				
		An Intuitive Look, Sigma Notation, Summation					
		Formulas, Defining the Area of The Region Under the					
		Graph of a Function (Example 9 is optional)					
	18	Section 4.4: The Definite Integral -	-				
		Definition of the Definite Integral (Examples 2,3, and 4					
		are optional), Geometric Interpretation of the Definite					
		Integral, The Definite Integral and Displacement,					
		Properties of the Definite Integral.					
	1	The Main Theorem and Applications of Integration					
	19	Section 4.5: The Fundamental Theorem of Calculus -	-				
		The Mean Value Theorem for Definite Integrals, The					
		Fundamental Theorem of Calculus - Part 1, Fundamental					
		Theorem of Calculus - Part 2, Evaluating Definite					
		Integrals using Substitution, Definite Integrals of Odd					
		and Even Functions	12	Min 1			
	20	Section 5.1: Areas Between Curves -	14				
IV	20	A Real-Life Interpretation, The Area Between Two					
IV		Curves, Integrating with Respect to \Box					
	21	Section 5.2: Volumes: Disks, Washers, and Cross					
		Section 5.2. Volumes. Disks, washers, and Cross Sections -					
		Solids of Revolution, The Disk Method, The Method of					
		Cross Sections.					
	22	Section 5.4: Arc Length and Areas of Surfaces of					
		Revolution - Definition of Arc Length, Length of a					
		Smooth Curve, Surfaces of Revolution					
		Open Ended	12				
	1	Limits Involving Infinity; Asymptotes	14				
	2	Derivatives of Trigonometric Functions					
	3	The General Power Rule and using the Chain Rule					
	4	Volumes Using Cylindrical Shells					
V	5	Work, Moments and Centre of Mass	-				
v	6	Taylor & Maclaurin's Series	-				
	7	Approximation by Taylor Series	-				
	8	Transcendental Functions	-				
	<u>8</u> 9		{				
		Improper Integrals	-				
	10	Numerical Integration					

- Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.
 Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson
- Publications.

- 3. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.
- 4. Advanced Engineering Mathematics, 10th Ed, Erwin Kreyszig, John Wiley & Sons.
- 5. Calculus, 4th Edition, Robert T Smith and Roland B Minton, McGraw-Hill Companies
- 6. Calculus, 9th Edition, Soo T Tan, Brooks/Cole Pub Co.
- 7. Calculus, Vol 1, Tom M. Apostol, John Wiley & Sons.
- 8. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	1
CO 2	2	1	3	1	3	1	3	1	2
CO 3	3	2	3	1	3	1	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	✓	\checkmark	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT2MN101							
Course Title	DIFFERENTI	DIFFERENTIAL EQUATIONS AND MATRIX THEORY						
Type of Course	Minor							
Semester	Π							
Academic Level	100–199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week						
	4	4	-	60				
Pre-requisites	Basic Calculus							
Course	This course cov	vers a range of topics. It star	ts with introduc	ing fundamental				
Summary		d methods for solving differ						
		tions, linear equations, exact	1	-				
		cients. Then it proceeds into						
	<u> </u>	inear equations with constan		•				
		iding methods for their solu						
		definition, properties, and ap						
		ransforming derivatives are	1					
		ction to vector spaces matrix						
		and separable partial differe						
		foundation in advanced cal	culus and its ap	plications to				
	engineering and	d physics.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Solve basic ordinary differential equations using separation of variables, linear methods, and Laplace transforms.	Ap	Category# C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO2	Apply concepts from linear algebra, including matrices, determinants, and eigenvalues, to solve systems of equations and analyse linear systems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
CO3	Analyse periodic functions using Fourier series and solve separable partial differential equation	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam					
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

	Text	Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zill, Learning LLC (2018) ISBN: 978-1-284-10590-2	, Jones & B	Bartlett
	Module	Content	Hrs (48 +12)	Ext. Marks (70)
Ι	1	Differential Equations Introduction to Differential Equations - Section 1.1: Definitions and Terminology - A Definition, Classification by Type, Notation, Classification		
	2	by Order, Classification by Linearity, Solution. Section 2.2: Separable Equations - Introduction, A Definition, Method of Solution.		
	3	Section 2.3: Linear Equations - Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem (Examples 4 & 5, ref section 1.1)	11	Min 15
	4	Section 2.4: Exact Equations - Introduction, Differential of a Function of Two Variables, Method of Solution.		
	5	Section 3.3: Homogeneous Linear Equations with Constant Coefficients - Introduction, Auxiliary Equation.		
	6	Section 3.6: Cauchy-Euler Equations - Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Laplace Transforms		
Π	7	Section 4.1: Definition of the Laplace Transform - Basic Definition (Definition 4.1.1 onwards)		
	8	Section 4.1: Definition of the Laplace Transform - □is a Linear Transform.		
	9	Section 4.2: The Inverse Transform and Transforms of Derivatives - Inverse Transforms		
	10	Section 4.2: The Inverse Transform and Transforms of Derivatives - Transforms of Derivatives	14	Min 15
	11	Section 7.6: Vector Spaces - Vector Space (Example 2 is optional), Subspace.		
	12	Section 7.6: Vector Spaces - Basis, Standard Bases, Dimension, Span		
		Matrix Theory	13	Min 15
Ш	13	Section 8.2: Systems of Linear Algebraic Equations - Introduction, General Form, Solution, Augmented Matrix, Elementary Row Operations, Elimination Methods.		
	14	Homogeneous Systems, Notation		
	15	Section 8.3: Rank of a Matrix -		

		Introduction, A Definition, Row Space, Rank by Row		
		Reduction, Rank and Linear Systems.	-	
	16	Section 8.4: Determinants -		
		Introduction, A Definition (Topics up to and including		
		Example 2).	-	
	17	Section 8.8: The Eigenvalue Problem -		
		Introduction, A Definition (Topics up to and Including		
		Example 2)	_	
	18			
		A Definition (Topics from Example 3 onwards), Eigenvalues		
		and Eigenvectors of A^{-1} .		
IV		Fourier Series and PDE		
	19	Section 12.2: Fourier Series -	-	
		Trigonometric Series (Definition 12.2.1 onwards),		
		Convergence of a Fourier Series.		
	20	Section 12.3: Fourier Cosine and Sine Series -		
		Introduction, Even and Odd Functions, Properties, Cosine	10	
		and Sine Series (Definition 12.3.1 onwards).	10	Min 15
	21	Section 13.1: Separable Partial Differential Equations -		
		Introduction, Linear Partial Differential Equation, Solution of		
		a PDE, Separation of Variables.		
	22	Section 13.1: Separable Partial Differential Equations -		
		Classification of Equations.		
		Open Ended		
	1	Initial-Value Problems		
	2	Differential Equations as Mathematical Models		
	3	Second Order Non-Homogeneous Equations-Method of	-	
		Undetermined Coefficients, Variation of Parameters.		
	4	Linear Models – IVP	12	
	5	Linear Models - BVP		
	6	Non-linear Models		
	7	Half-Range Fourier Series	-	
	8	Classical PDEs and Boundary-Value Problems		
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edit	 tion_Wiley I	ndia
	2	Calculus & Analytic Geometry, 9 th Edition, George B. Thomas		
		Pearson Publications.		•
	3	Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis,	Wiley India	•

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	✓	~	✓

Programme	B. Sc. Mathem	natics Honours						
Course Code	MAT3MN201	MAT3MN201						
Course Title	CALCULUS	OF SEVERAL VARIABLE	S					
Type of Course	Minor							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit	Credit Lecture/Tutorial Practical Total H						
		per week	per week					
	4	4	-	60				
Pre-requisites	Calculus of Sin	ngle Variable						
Course	This course pr	ovides a comprehensive stud	y of advanced o	calculus topics,				
Summary	including part	ial derivatives, limits, continu	ity, the chain ru	lle, and vector-				
	valued function	ons. Students will explore d	irectional deriv	atives, tangent				
	planes, and ex	trema of functions of multipl	e variables, as v	well as integral				
	calculus techr	niques such as line integrals	s, double integ	rals (including				
	those in polar of	coordinates), surface integrals	s, and the applic	ations of these				
	concepts in ve	ctor calculus and field theory						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools					
		Level*	Category#	used					
CO1	Apply Multivariable	Ар	Р	Internal					
	Calculus Concepts to			Exam/Assignment/					
	Vector Valued Functions			Seminar/ Viva /					
				End Sem Exam					
CO2	Apply Techniques of	Ар	Р	Internal					
	Multivariable Integration			Exam/Assignment/					
				Seminar/ Viva /					
				End Sem Exam					
CO3	Apply Advanced Theorems	Е	С	Internal					
	in Multivariable Calculus			Exam/Assignment/					
				Seminar/ Viva /					
				End Sem Exam					
# -	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								

Textbook	534-46579-7						
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)			
Ι		Partial Derivatives	14	Min 15			
	1	12.1: Vector Valued Functions & Space Curves					
	2	12.2: Differentiation & Integration of Vector Valued Functions					
	3	13.1: Functions of Two or More Variables					
	4	13.2: Limits & Continuity					
	5	13.3: Partial Derivatives					
	6	13.4: Differentials					
	7	13.5: The Chain Rule					
	8	13.6: Directional Derivatives					
	9	13.7: Tangent Planes & Normal Lines					
	10	13.8: Extrema of Functions of Two Variables					
II	V	Vector Derivatives – Calculus of Scalar & Vector Fields	11	Min 15			
	11	13.6: Gradient Vector of a Scalar Field					
	12	15.1, 15.2: Divergence & Curl of Vector Fields					
	13	15.3: Line Integrals					
	14	15.4: Path Independence & Conservative Vector Fields					
тт		(Fundamental Theorem of Line Integration- Gradients)	1.4	Min 15			
III	1.5	Multiple Integration	14	Min 15			
	15	14.1: Double Integrals					
	16	14.2: Iterated Integrals					
	17	14.3: Double Integrals in Polar Coordinates					
	18	14.4: Applications of Double Integrals					
	19	14.5: Surface Area					

	20	14.6: Triple Integrals		
	21	14.7: Triple Integrals in Cylindrical & Spherical Coordinates		
	22	14.8: Change of Variables in Multiple Integrals		
IV		Integral Calculus of Fields & Fundamental Theorems	11	Min 15
	23	15.5: Green's Theorem		
	24	15.6: Parametric Surfaces		
	25	15.7: Surface Integrals		
	26			
	27	15.9: Stoke's Theorem		
V		Open Ended Module – Complex Analysis	12	
	1	Algebra of Complex Numbers, Complex Functions, Complex Differentiation		
	2	Cauchy-Riemann Equations, Analytic Functions		
	3	Complex Line Integrals		
	4	Cauchy's & Cauchy-Goursat Theorems		
	5	Cauchy's Integral Formula, Derivative Formula		
	6	Morera's & Liouville's Theorem, Fundamental Theorem of Algebra		
	7	12.3: Arc Length & Curvature		
	8	12.4: Velocity & Acceleration		
	9	12.5: Tangential & Normal Components		
	10	13.9: Lagrange Multipliers		

. References:

1. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.

2. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

3. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.

4. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.

5. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.

Note: 1) Optional topics are exempted for end semester examination.2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	3	3	1	2
CO 2	3	0	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours					
Course Code	MAT1MN102					
Course Title	DIFFERENTIAL C.	ALCULUS				
Type of Course	MINOR					
Semester	Ι					
Academic Level	100-199					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
	per week per week					
	4	4	-	60		
Pre-requisites	Set theory along with	an understanding of the r	eal number sys	stem.		
Course Summary	This course provides	a foundational understand	ding of calculu	is concepts: From		
	the beginning section	s students learn about lin	nits (including	one-sided limits		
	and limits at infinity)	, continuity (definitions a	nd properties),	, and the		
	intermediate value the	eorem. Modules II and III	cover different	tiation techniques,		
	including tangent line	es, the definition of deriva	atives, rules of	differentiation		
	(product, quotient, ch	ain), implicit differentiat	ion, and advan	ced topics like		
	L'Hopital's Rule for in	ndeterminate forms. Mod	ule IV focuses	on the analysis of		
		concepts such as increasi				
		points, and techniques for	identifying rel	ative extrema and		
	graphing polynomials	S.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used				
CO1	Analyse limit, continuity and differentiability of a function	Level* An	Category#	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	Apply rules and techniques of differentiation to solve problems, also find limit in indeterminate forms involving transcendental functions	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	Draw a polynomial function by analysing monotonicity, concavity and point of inflection using derivatives test	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Text book		Anton, Howard, Irl C. Bivens, and Stephen Davis. <i>Calculus: ea. transcendentals</i> . 10 th Edition, John Wiley & Sons, 2021.	rly	
Module			Hrs 60	External Marks (70)
		Fundamentals of Limits and Continuity		
	1	Section 1.1: Limits (An Intuitive Approach) - Limits, One-Sided Limits, The Relationship Between One- Sided and Two Sided Limits		
	2	Section 1.2: Computing Limits - Some Basic Limits, Limits of Polynomials and Rational Functions as $x \rightarrow a$		
	3	Section 1.2: Computing Limits - Limits involving Radicals, Limits of Piecewise-Defined Functions		
Ι	4	Section 1.3: Limits at Infinity; End Behaviour of a Function Limits of Rational Functions as $x \to \pm \infty$ - A Quick Method for Finding Limits of Rational Functions as $x \to \pm \infty$ or $x \to -\infty$	14	Min.15
	5	Section 1.5: Continuity - Definition of Continuity, Continuity on an interval, Some Properties of Continuous Functions,		
	6	Section 1.5: Continuity - Continuity of Polynomials and Rational Functions, Continuity of Compositions, The Intermediate- Value Theorem.		
		Differentiation		
	7	Section 2.1: Tangent Lines and Rates of Change - Tangent lines, Slopes and Rate of Change		
	8	Section 2.2: The Derivative Function - Definition of the Derivative Function-Topics up to and including Example 2.		
II	9	Section 2.3: Introduction to Techniques of Differentiation - Derivative of a Constant, Derivative of Power Functions, Derivative of a Constant Times a Function, Derivatives of Sums and Differences, Higher Derivatives	14	Min.15
	10	Section 2.4: The Product and Quotient Rules - Derivative of a Product, Derivative of a Quotient, Summary of Differentiation Rules.		
	11	Section 2.5: Derivatives of Trigonometric Functions - Example 4 and Example 5 are optional		
	12	Section 2.6: The Chain Rule Derivatives of Compositions, An Alternate Version of the Chain Rule, Generalized Derivative Formulas		
		Differentiation contd :		
	13	Section 3.1: Implicit Differentiation - Implicit Differentiation (sub section)	10	

	14	Section 3.2: Derivatives of Logarithmic Functions - Derivative of Logarithmic Functions (sub section) Logarithmic Differentiation, Derivatives of Real Powers of x.		
III 15		Section 3.3: Derivatives of Exponential and Inverse Trigonometric Functions - Derivatives of Exponential Functions		
	16	Section 3.3: Derivatives of Exponential and Inverse Trigonometric Functions - Derivatives of the Inverse Trigonometric Functions		Min.15
	17	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type 0/0, Indeterminate Forms of Type $^{\circ}/^{\infty}$		
	18	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type $0 \cdot \infty$, Indeterminate Forms of Type $\infty - \infty$		
		Applications of Differentiation		
	19	Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity -		
	Increasing and Decreasing Functions Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity - Concavity, Inflection Points			
IV	21	Section 4.2: Analysis of Functions II: Relative Extrema;		Min 15
	22	Section 4.2: Analysis of Functions II: Relative Extrema; Graphing Polynomials Geometric Implications of Multiplicity, Analysis of Polynomials		
		Module V (Open Ended)		
		Infinite Limits Differentiability, Relation between Derivative and Continuity	_	
		Parametric Equations, Parametric Curves Inverse Trigonometric Functions and their derivatives	12	
V	Taylor series expansion of functionsMaclaurin series of sin x, cos x, tan x, $log(1+x), log(1-x)$ etcBinomial expansion of $1, -1, -1, -1, -1$ etc		-	
		$(1+x) (1-x) \sqrt{1+x} \sqrt{1-x}$ Different coordinate systems: - Cartesian, Spherical, and Cylindrical coordinates		
		Conic sections with vertex other than the originIndeterminate Forms of Type 0^0 , ∞^0 , 1^∞		
		Graphing Rational Functions	-	
Refere	nces		1	
	1	Calculus and Analytic Geometry, 9 th Edition, George B. The L. Finney, Pearson Publications.	omas Jr	and Ross

2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) ISBN-13: 978-0- 534-46579-7.
3	Marsden, Jerrold, and Alan Weinstein. <i>Calculus I</i> . Springer Science & Business Media, 1985.
4	Stein, Sherman K. <i>Calculus in the first three dimensions</i> . Courier Dover Publications, 2016.

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	2
CO 2	3	1	3	1	2	1	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	>	\checkmark
CO 3	\checkmark	\checkmark	✓	~	\checkmark

Programme	B. Sc. Mathematics H	lonours			
Course Code	MAT2MN102				
Course Title	CALCULUS AND	MATRIX ALGEBRA			
Type of Course	MINOR				
Semester	II				
Academic Level	100-199				
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours	
		per week	per week		
	4	4	-	60	
Pre-requisites	Basic Calculus				
Course Summary	Students learn about antiderivatives, the indefinite and definite integrals, Riemann sums, and the Fundamental Theorem of Calculus. Course explores the average value of functions, evaluating definite integrals by substitution, calculating areas between curves, and finding the length of plane curves. Next it introduces functions of multiple variables, including notation, graphs, limits, continuity, and partial derivatives for functions of two or more variables. Course also focuses on matrix algebra, determinants, eigenvalue problems (including complex eigenvalues) and orthogonal matrices and their properties.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Demonstrate proficiency in applying calculus techniques to solve analytical and geometrical problems involving indefinite and definite integrals, substitution methods, and integration by parts.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva/ End Sem Exam			
CO2	Apply multivariable calculus concepts, including functions of multiple variables, limits, continuity, and partial derivatives, to model and analyse real-world phenomena and mathematical problems.	Ар	С	Internal Exam/Assignment/ Seminar/Viva/EndSem Exam			
CO3	Apply linear algebra principles, such as matrix operations, determinants, and eigenvalue problems, to analyze and solve systems of equations and geometric problems.	Ар	С	Internal Exam/Assignment/ Seminar/Viva/EndSem Exam			
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text Book		 Howard Anton, Bivens and Stephen Davis, Calculus • Early Transo Edition). Advanced Engineering Mathematics(6/e): Dennis G Zill Jones & F LLC (2018) ISBN: 9781284105902 		
Module	Unit	Content	Hrs 60	External Marks (70)
		Indefinite and Definite Integrals	12	Min 15
	1	Section 5.2: The Indefinite Integral - Antiderivatives, The Indefinite Integral, Integration Formulas, Properties of the Indefinite Integral, Integral Curves		
I	2	Section 5.3: Integration by Substitution - u-Substitution, Easy to Recognize Substitutions, Less Apparent Substitutions		
	3	Section 5.5: The Definite Integral - Riemann Sums and the Definite Integral, Properties of the Definite Integral.		
	4	Section 5.6: The Fundamental Theorem of Calculus - The Fundamental Theorem of Calculus (sub section), The Relationship Between Definite and Indefinite Integrals.		
		Techniques and Applications	13	Min 15
	5	Section 5.8: Average Value of a Function and its Applications - Average Value of a Continuous Function (up to and including Example 2 only)		
	6	Section 5.9: Evaluating Definite Integrals by Substitution - Two Methods for Making Substitutions in Definite Integrals		
Π	7	Section 6.1: Area Between Two Curves - Area Between $\Box = \Box(\Box)$ and $\Box = \Box(\Box)$, Reversing the Roles of \Box and \Box		
11	8	Section 6.4: Length of a Plane Curve - Arc Length		
	9	Section 7.2: Integration by Parts - The Product rule and Integration by Parts, Guidelines for Integration by Parts, Repeated Integration by Parts		
	10	Section 7.5: Integrating Rational Functions by Partial Fractions - Partial Fractions, Finding the form of a Partial Fraction Decomposition, Linear Factors, Quadratic Factors (Example 4 is optional), Integrating Improper Rational Functions.		
		Multivariable Calculus	10	Min 15
	11	Section 13.1: Functions of Two or More Variables: Notation and Terminology, Graphs of Functions of Two Variables.		
III	12	Section 13.1: Functions of Two or More Variables: Level Curves, Level Surfaces.		
	13	Section 13.2: Limits and Continuity - Limit along Curves		
	14	Section 13.2: Limits Continuity - Continuity		
	15	Section 13.3: Partial Derivatives -		

		Partial Derivatives of Functions of Two Variables, The							
		Partial Derivative Function, Partial Derivative Notation,							
		Implicit Partial Differentiation, Partial Derivatives and							
_		Continuity Section 13.3: Partial Derivatives							
	16	Partial Derivatives of Functions with more than Two							
	10	Variables, Higher order Partial Derivatives, Equality of							
		Mixed Partials.							
		Linear Algebra Essentials	13	Min 15					
	17	Section 8.1: Matrix Algebra							
	18	Section 8.2: Systems of Linear Algebraic Equations							
	19	Section 8.8: The Eigenvalue Problem -							
	19	Topics up to and including Example 4							
IV	20	Section 8.8: The Eigenvalue Problem -							
	20	Topics from Complex Eigenvalues onwards							
	01	Section 8.10: Orthogonal Matrices -							
	21	Topics up to and including Theorem 8.10.3							
	22	Section 8.10: Orthogonal Matrices -							
	22	Topics from Constructing an Orthogonal Matrix onwards							
		Module V (Open Ended)	12						
		Fundamental theorems in Vector Calculus such as Green's							
		theorem, divergence theorem, and the Stokes' theorem.							
-		Trigonometric Substitutions							
		Integrating Trigonometric Functions							
N7		Volume of Solids of Revolution, Area of Surfaces of Revolution							
V									
		The Chain Rule in Partial Differentiation							
		Directional Derivatives and Gradients, Tangent Planes and							
		Normal Vectors							
		Basics of Vector Calculus including the differential operators							
		such as gradient, divergence and curl.							
		Simpsons Rule, Trapezoidal rule in Numerical Integration							
		Algebra of Complex Numbers							
Referen	ces								
	1	Calculus and Analytic Geometry, 9 th Edition, George B. Thon	nas Jr a	nd Ross L.					
		Finney, Pearson Publications.							
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) IS	BN-13	3:978-0-					
		534-46579-7.							
	3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Scie	ence &	Business					
		Media, 1985.							
	4	Stein, Sherman K. Calculus in the first three dimensions. Courier	er Dove	er					
		Publications, 2016.							
	5	Kreyszig, Erwin. Advanced Engineering Mathematics 9th Editi Set Vol. 334 US: John Wiley & Sons 2007	on with	n Wiley Plus					
	S Kreyszig, Erwin. Advanced Engineering Mainematics 9in Edition with Wiley Flus Set. Vol. 334. US: John Wiley & Sons, 2007.								
	6	6 Elementary Linear Algebra, Applications version, 9 th edition, Howard Anton							
-	6		Howar	d Anton					

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	2	1	2	0	0
CO 3	2	1	2	1	2	1	2	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathematics H	lonours						
Course Code	MAT3MN202	MAT3MN202						
Course Title	DIFFERENTIAL E	QUATIONS AND FOU	RIER SERIES	5				
Type of Course	Minor							
Semester	III							
Academic Level	200-299							
Course Details	Credit Lecture/Tutorial Practicum Total Hours							
		per week per week						
	4	4	-	60				
Pre-requisites	Basic Calculus and fa	miliarity with Real Numb	pers					
Course Summary	In Module I students are introduced to various types of differential equations, including linear, separable, exact equations, and Bernoulli's equation. Module II delves deeper into linear equations, both homogeneous and nonhomogeneous. Module III introduces Fourier series, including trigonometric series, Fourier cosine and sine series, and half-range expansions. Module IV transitions into algebra of complex numbers, , and functions of complex variables, including analytic functions and the Cauchy•Riemann equations, which are fundamental in complex analysis.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply various methods, such as separation of variables, linear, and exact equations, integrating factors, and substitution, to solve differential equations, including those with constant coefficients and Cauchy-Euler equations.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Analyse and solve partial differential equations, including separable ones, and comprehend Fourier series and their applications in solving differential equations and understanding periodic function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Apply complex number theory, including arithmetic operations, polar forms, powers, roots, sets in the complex plane, functions of a complex variable, and Cauchy-Riemann equations, to analyze and solve real-world problems in various fields.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text Book		nced Engineering Mathematics(6/e) : Dennis G Zill, Jones & Bar 2018)ISBN: 978-1-284-10590-2	rtlett, Le	earning,
Module	Unit	Content	Hrs 60	External Marks (70)
		Foundations of Differential Equations		
	1	Introduction to Differential Equations Section 1.1: Definitions and Terminology Introduction, A Definition, Classification by Type, Notation, Classification by Order Classification by Linearity, Solution.		
	2	Section 2.2: Separable Equations Introduction, A Definition, Method of Solution.		
I	3	Section 2.3: Linear Equations Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem	10	
	4	Section 2.4: Exact Equations Introduction, Differential of a Function of Two Variables (Definition 2.4.1 and Theorem 2.4.1 only), Method of Solution.		Min 15
	5			
	6	Integrating Factors Section 2.5: Solutions by Substitutions Bernoulli's Equation		
		Linear Differential Equations		
	7	Section 3.1: Theory of Linear Equations 3.1.2 Homogenous Equations, Linear Dependence and Independence, Solutions of Differential Equations,		
Π	8	Section 3.1: Theory of Linear Equations 3.1.3 Nonhomogeneous Equations, Complementary Function		
	9	Section 3.3: Homogeneous Linear Equations with Constant Coefficients Introduction, Auxiliary Equation.	11	Min 15
	10	Section 3.4: Undetermined Coefficients Introduction, Method of Undetermined Coefficients (Topics up to and including Example 4.)		
	11	Section 3.6: Cauchy-Euler Equations Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Fourier Series		
	12	Section 12.2: Fourier Series Trigonometric Series (Definition 12.2.1 onwards), Convergence of a Fourier Series, Periodic Extension		Min 15
ш	13	Section 12.3: Fourier Cosine and Sine Series Introduction, Even and Odd Functions, Properties, Cosine and Sine Series (Definition 12.3.1 onwards).	13	
	14	Section 12.3: Fourier Cosine and Sine Series Half-Range Expansions.		

	1		1		
		Section 13.1: Separable Partial Differential Equations			
	15	Introduction, Linear Partial Differential Equation, Solution of			
		a PDE, Separation of Variables. Section 13.1: Separable Partial Differential Equations			
	16				
	10	Classification of Equations.			
		Introduction to Complex Analysis			
		Section 17.1: Complex Numbers			
	17	Introduction, A definition, Terminology, Arithmetic			
		Operations, Conjugate, Geometric Interpretation			
		Section 17.2: Powers and Roots	1		
	18	Introduction, Polar Form, Multiplication and Division,			
		Integer Powers of z.			
		Section 17.2: Powers and Roots	-		
IV	19	DeMoivre's Formula, Roots.			
		Section 17.3: Sets in the Complex Plane	14	Min 15	
	20	Introduction, Terminology.			
		Section 17.4: Functions of a Complex Variable	-		
	21	Introduction, Functions of a Complex Variable, Limits and			
	21	Continuity, Derivative, Analytic Functions.			
		Section 17.5: Cauchy- Riemann Equations	-		
	22	Introduction, A Necessary Condition for Analyticity,			
		Harmonic Functions, Harmonic-Conjugate Functions.			
		Module V (Open Ended)	12		
		Initial Value Problems	14		
		Differential Equations as Mathematical Models	-		
			-		
		Method of Variation of Parameters in solving DE	-		
V		Solving DE with the Runge-Kutte Method	4		
		Interpolation, Extrapolation	4		
		Classical PDEs and Boundary Value Problems			
		Heat Equation			
		Wave Equation			
		Fourier Transform			
Refere	ences				
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 8th Editi	on, Wi	ley	
		Student Edition.		5	
	2 Mathematics For Engineers and Scientist, Alan Jeffrey, Sixth Edition				
	3	Complex Analysis A First Course with Applications (3/e), Den	nis Zill	& Patric	
		Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-9			

Note: Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	3	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	B. Sc. Mathema	atics Honours				
Course Code	MAT1MN103					
Course Title	BASIC CALC	ULUS				
Type of Course	Minor					
Semester	Ι					
Academic	100-199					
Level						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites		ry including functions and th	<u> </u>			
Course	This course pro	vides a comprehensive expl	loration of calcu	ulus and its		
Summary	1 1 1	begins with fundamental co	1 0 1			
		ns, laying the groundwork fo				
		tion techniques, including pr				
		derivatives of inverse function				
		as Rolle's and Mean Value				
	-	Module IV explores integral calculus, covering the fundamental theorem of				
	-	calculus, numerical integration techniques (like the Trapezoidal Rule and				
	Simpson's Rule), and introduces hyperbolic	functions and th	neir derivatives and		
	integrals.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply graphical analysis skills to mathematical models:	Ap	С	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam			
CO2	Evaluate and solve calculus problems involving limits and continuity	E	С	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam			
CO3	Apply differentiation and integration techniques to analyse functions:	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam			
# - Factu	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text B	ook	Calculus: Early Transcendental Functions (6edn), Ron Larson and I Cengage Learning ISBN-13: 978-1-285-77477-0.	Bruce Edv	wards
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Foundations of Calculus: Graphs, Functions, and Limits		
	1	A quick review of sections 1.1 and 1.2 (not for external exam)		
		Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions -		
		Inverse Functions, Existence of an Inverse Function	-	
Ŧ	3	Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number , The Natural Logarithmic Function		
Ι	4	Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics)	13	Min 1
	5	Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	-	
	6	Section 2.3: Evaluating Limits Analytically -	-	
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
_		Continuity, Derivatives, and Differentiation Rules		
	7	Section 2.4: Continuity and One-Sided Limits - Continuity at a Point and on an Open Interval, Properties of		
		Continuity, The Intermediate Value Theorem.		
	8	Section 3.1: The Derivative and the Tangent Line Problem - The Derivative of a Function, Differentiability and Continuity		
Π	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The Constant Rule, The Power Rule, The Constant Multiple Rule, The Sum and Difference Rules	12	
	10	Section 3.2 : Basic Differentiation Rules – rest of the section.	-	Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order	1	
		Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
		oplications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers, Finding Extrema on a Closed Interval		Min 1
	15	Finding Extrema on a Closed Interval Section 4.2: Rolle's Theorem and The Mean Value Theorem -	+	
Ш	15	Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First Derivative Test -		
		Increasing and Decreasing Functions, The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

		Concavity, Points of Inflection, The Second Derivative Test			
	18	Section 4.6: A summary of Curve Sketching -			
		Analyzing the Graph of a Function			
		Integral Calculus: Fundamental Theorems and Applications"Section 5.1: Antiderivatives and Indefinite Integration –			
	19				
IV	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann Sums, Definite Integrals, Properties of Definite Integrals.			
IV	21	Section 5.4: The Fundamental Theorem of Calculus - The Fundamental Theorem of Calculus, The Mean Value Theorem for Integrals.	11	Min 15	
	22	Section 5.4: The Fundamental Theorem of Calculus - Average Value of a Function, The Second Fundamental Theorem of Calculus, Net Change Theorem			
		Open Ended			
V	One Sided Limits and Discontinuity, Derivatives of Inverse Functions,				
Referen	ces:		1	1	
		ulus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.			
2		ulus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney, ications	Pearson		
		ulus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India			
4		ulus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.			
5	. Calc	ulus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright			

Note: 1) Optional topics are exempted for end semester examination.2) Proofs of all the results are also exempted for the end semester exam.,

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Internal Exam Assignment Seminar Viva End Semester Examinations CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B.Sc. Mathema	B.Sc. Mathematics Honours					
Course Code	MAT2MN103	MAT2MN103					
Course Title	ANALYSIS A	ND SOME COUNTING P	RINCIPLES				
Type of Course	Minor						
Semester	II						
Academic	100-219						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus	and familiarity with Real N	umber system.				
Course	This course cov	vers fundamental topics in c	alculus and con	nplex analysis,			
Summary		sequences and series in Mc					
		n test, comparison tests, and					
		umbers and functions, discu	•	e			
		omplex numbers, along with					
		Module III, the focus shifts to limits, continuity, and differentiability of complex					
		ding the Cauchy-Riemann					
		e IV introduces counting pr					
	combinations, t	he pigeonhole principle, an	d basic element	s of probability.			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe and apply convergence tests for sequences and series.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Demonstrate proficiency in manipulating complex numbers and functions.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Evaluate limits, continuity, and differentiability of real and complex functions.	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factu	ual Knowledge(F) Conceptua	al Knowledge (C)	Procedural Know	eledge (P) Metacognitive			
Knowle	dge (M)						

Text B	ook	 Calculus: Early Transcendental Functions (6/e), Ron Larson and Edwards, Cengage Learning ISBN 13: 978-1-285-77477-0. Complex Analysis A First Course with Applications (3/e), Denn Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-94 Discrete Mathematical Structures (6/e), Bernard Kolman, Rober Sharon C. Ross, Pearson ISBN 978-93-325-4959-3 	nis Zill & 461-6	Patric
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Sequences and Series (Text 1)		
	1	Section 9.1: Sequences - Sequences (sub section), Limit of a Sequence, Monotonic Sequences and Bounded Sequences.		
	2	Section 9.1: Sequences Monotonic Sequences and Bounded Sequences		
Ι	3	Section 9.2: Series and Convergence - Infinite Series, Geometric Series, nth-Term Test for Divergence	13	Min
	4	Section 9.3: The Integral Test and p-Series - The Integral Test, p-series and Harmonic Series	13	15
	5	Section 9.4: Comparisons of Series - Direct Comparison Test, Limit Comparison Test		
	6	Section 9.5: Alternating Series - Alternating Series (sub section), Alternating Series Remainder, Absolute and conditional Convergence		
		Complex Numbers (Text 2)		
	7	Section 1.1: Complex numbers and their Properties - The Imaginary Unit, Terminology, Arithmetic Operations, Zero and Unity, Conjugate, Inverses		
	8	Section 1.2: Complex Plane - Complex Plane, Vectors, Properties, Distance Again, Inequalities		
Π	9	Section 1.3: Polar Form of Complex Numbers - Polar Form, Principal Argument, Multiplication and Division, Integer Powers of z, de Moivre's Formula	12	Min
	10	Section 1.4: Powers and Roots - Roots, Principal nth Root	13	15
	11	Section 1.5: Sets of Points in the Complex Plane - Circles, Disks and Neighborhoods, Open Sets, Annulus, Domain, Regions, Bounded Sets		
	12	12 Section 2.1: Complex Functions - Introduction, Function, Real and Imaginary Parts of a Complex Function, Exponential Function		
		Complex Analysis (Text 2)		
ш	13	Section 3.1: Limits and Continuity - Introduction, Real Limits, Complex Limits (definition only), Real Multivariable Limits (Example 2 and Problems Using Epsilon Delta		

	Continuity of Real Functions, Continuity of Complex Functions (Example 6 is optional), Properties of Continuous Functions.12Min 1515Section 3.2: Differentiability and Analyticity - Introduction, The Derivative, Rules of Differentiation1516Section 3.2: Differentiability and Analyticity - Analytic Functions, Entire Functions, Singular Points, An Alternate Definition of $f'(z)$.1717Section 3.3: Cauchy -Riemann Equations - Introduction, A Necessary Condition for Analyticity, A Sufficient Condition for Analyticity1818Section 3.4: Harmonic Functions, Harmonic Conjugate Functions					
		Introduction to Counting and Probability Theory (Text 3)				
	19 20	Chapter 3: Counting Section 3.1 - Permutations Chapter 3: Counting	_			
IV		Section 3.2 - Combinations	10	Min		
	21	Chapter 3: Counting	10	15		
		Section 3.3 – Pigeonhole Principle				
	22	Chapter 3: Counting				
		Section 3.4 – Elements of Probability				
		Open Ended				
V	VPattern Recognition for Sequences, Rearrangement of Series, The Ratio Test, The Root Test, Taylor Polynomials and Approximations, Power Series, Taylor Series, Maclaurin Series, Complex Functions as Mappings, Linear Mappings, Special Power Functions, Relations and Di Graphs.12					
Referen	ces:					
		Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.				
		& Analytic Geometry, (9/e)., George B. Thomas & Ross L. Finney, Pear	son			
	ications					
	-	(7/e), Howard Anton, Biven, & Stephen Davis, Wiley India.				
		Early Transcendentals, (4/e)., Dennis G. Zill and Warren S. Wright.				
		d Engneering Mathematics, (10/e), Erwin Kreyszig, John Wiley and Sor				
	6. Complex Variables and Applications, (8/e), James Brown and Ruel Churchill, McGraw-Hill					
		l (UK) Ltd				
7.Di	screte N	Aathematics, (6/e), Richard Johnsonbaugh, Pearson				
Not	e: 1) O	ptional topics are exempted for end semester examination.				

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	2	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	✓

Programme	BSc Mathematics I	Honours					
Course Title	MATRIX ALGEI	MATRIX ALGEBRA AND VECTOR CALCULUS					
Course Code	MAT3MN203	MAT3MN203					
Type of Course	Minor	Minor					
Semester	III	III					
Academic Level	200 - 299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus and	d familiarity with Euclidian	Geometry.				
Course	This course cove	rs fundamental concepts in	n vectors, vect	tor calculus, and			
Summary	matrices. Students	will explore vectors in 2-sp	pace and 3-spa	ce, including dot			
	and cross products	, as well as lines and planes	in 3-space. Th	e vector calculus			
	portion includes ve	portion includes vector functions, partial and directional derivatives, tangent					
	planes, normal line	es, curl, divergence, line int	egrals, double	integrals, surface			
	integrals, and trip	le integrals. Additionally,	the course del	lves into matrix			
	algebra, systems of	linear equations, matrix ran	k, and the eigen	value problem.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Discuss the geometry of Vectors in	U	С	Internal Exam/
	two- and three-dimensional spaces			Assignment/ Seminar/
				Viva/End Sem Exam
CO2	Discuss the basic concepts of	Ap	Р	Internal
	matrices, and evaluate the solutions			Exam/Assignment/
	of system of linear equations using			Seminar/Viva/End
	matrices.			Sem Exam
CO3	Describe the idea of eigen values	U	С	Internal Exam/
	and eigen vectors.			Assignment/ Seminar/
				Viva/ End Sem Exam
* - Re	member (R), Understand (U), Apply (A	p), Analyse (An), Evaluate	(E), Create (C) #
	ual Knowledge(F) Conceptual Knowle	-		
	eledge (M)			

		anced Engineering Mathematics, 6 th Edition, Dennis G. Zill, J LC (2018) ISBN: 978-1-284-10590-2.	ones &	Bartlett
Module	Unit	Content	Hrs (60)	Ext. Marks (70)
Ι		Vectors		
	1	Section 7.1-Vectors in 2 -Space (quick review)		
	2	Section 7.2-Vectors in 3-Space (quick review)	11	Min. 15
	3	Section 7.3- Dot Product up to and including Example 5		
	4	Section 7.4- Cross Product up to and including Example 3]	
	5	Section 7.5- Lines and Planes in 3-space- upto and including Example 6		
	6	Section 7.5- Lines and Planes in 3-space- From Planes: Vector Equation onwards		
Π		Vector Calculus		
	7	Section 9.1 – Vector Functions		
	8	Section 9.4 – Partial Derivatives	1.	
	9	Section 9.5 – Directional Derivative – upto and including Example 4.	15	Min. 15
	10	Section 9.5 – Functions of Three Variables onwards.		
	11	Section 9.6 – Tangent Planes and Normal Lines – upto and including Example 4		
	12	Section 9.6 – Topics from Normal Line onwards		
	13	Section 9.7 – Curl and Divergence -		
ш		Vector Calculus – contd.		
	14	Section 9.8 – Line Integrals – upto and including Example 5.		Min. 15

	15	Section 9.10 – Double Integrals – upto and including Example	12	
		2		
	16	Section 9.13 – Surface Integrals – upto and including Example 4		
	17	Section 9.15 – Tripple Integrals (Examples 5 and 7 areoptional)		
IV		Matrices		
	18	Section 8.1- Matrix Algebra.		
	19	Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7	10	Min. 15
	20	Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations		
	21			
	22	Section 8.8-The Eigenvalue ProblemUp to and including Example 4		
V		Open Ended	12	
		Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions		
		References:		
		1. Calculus and Analytic Geometry (9 th Edn), George B		
		Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing		
		Company. 2. A Freshman Honors Course in Calculus and Analytic		
		Geometry, Emil Artin (Author), Marvin J Greenberg		
		(Foreword).		

3. Advanced Engineering Mathematics (10 th Edn), Erwin	
Kreyszig, John Wiley and Sons.	
4. Improper Riemann Integrals: Ioannis M. Roussos CRC	
Press by Taylor & Francis Group, LLC(2014) ISBN:	
978-1-4665-8808-0 (ebook -pdf)	

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	\checkmark	~	<	\checkmark
CO 3	~	\checkmark	✓	~	\checkmark

Programme	B.Sc Mathema	tics Honours					
Course Code	MAT1MN104						
Course Title	MATHEMA	FICAL LOGIC, SET THEO	ORY AND COM	IBINATORICS			
Type of Course	Minor	Minor					
Semester	Ι	Ι					
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Second	ary Mathematics.					
Course Summary	This course explores mathematical logic, set theory, and combinatorics, covering fundamental ideas like propositions, logical equivalences, and quantifiers. It introduces set theory concepts such as sets, operations with sets, and cardinality. Additionally, it delves into functions and matrices, along with topics like permutations, combinations, and discrete probability in combinatorics.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Analyse propositional logic and	An	Р	Internal
	equivalences			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Apply set theory and operations	Ap	С	Internal
				Exam/Assignment/
				Seminar/Viva/End
				Sem Exam
CO3	Implement functions, matrices,	Ар	Р	Internal
	and combinatorics			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
# - Fa	emember (R), Understand (U), Apactual Knowledge(F) Conceptual Knowledge (M)			

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003),	
ISBN: 978-0124211803.	

Module	Unit	Content	Hrs	Ext.	
Wibuut	Unit	Content	1115	Marks	
			(48		
			+12)	(70)	
I		Mathematical Logic	,		
	1	1.1 Propositions: Conjunction, Disjunction.			
	2	1.1 Propositions: Converse, Inverse and Contrapositive.			
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).			
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15	
	5 1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)				
	6				
II		Set Theory			
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).			
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).			
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15	
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		-	
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).			
III		Functions and Matrices			

	12	3.1. The Concept of Functions - up to and including example3.2	10	Min.			
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15			
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).					
	15 3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).						
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).					
IV		Combinatorics and Discrete Probability					
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)					
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)					
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15			
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)					
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)					
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)					
V			12				
	 Basic calculus concepts such as limits, continuity, differentiati integration. Relations and Digraphs, Conditional Probability, M theorem of Probability, Dependent and Independent Events, I Distributions, Correlation and Regression, Bisection Method, I Method, Gauss-Jordan Method. 						

References:

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	~	\checkmark	✓	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B.Sc Mathema	tics Honours					
Course Code	MAT2MN104	MAT2MN104					
Course Title	GRAPH THE	CORY AND AUTOMATA					
Type of Course	Minor						
Semester	Π						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Second	ary Mathematics					
Course	This course in	troduces students to Graph T	heory and Auto	mata, covering			
Summary	topics such a	s graphs, adjacency matrice	es, and isomor	phic graphs in			
	Module I. In	Module II, it explores Eule	rian and Hami	ltonian graphs,			
	including paths, cycles, and connected graphs. Module III focuses on						
	Planar Graphs, Graph Coloring, Trees, and Spanning Trees. Finally,						
	Module IV de	Module IV delves into Automata, covering concepts like formal					
	languages, gra	mmars, and finite state autor	nata.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools					
		Level*	Category#	used					
CO1	Analyse Graph Structures and	Е	С	Internal					
	Properties			Exam/Assignment/					
				Seminar/ Viva /					
				End Sem Exam					
CO2	Apply Algorithms to Eulerian and	Ap	Р	Internal					
	Hamiltonian Graphs			Exam/Assignment/					
				Seminar/ Viva /					
				End Sem Exam					
CO3	Explore Formal Languages and	Е	С	Internal					
	Finite State Automata			Exam/Assignment/					
				Seminar/ Viva /					
				End Sem Exam					
* - Re	emember (R), Understand (U), App	ly (Ap), Ana	lyse (An), Eva	luate (E), Create (C)					
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metac	ognitive Knowledge (M)								

Text: Discrete Mathematics with Applications, Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)	
Ι		Graphs	112)		
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).			
	2	8.1 Graphs - Adjacency and Incidence, Degree of a Vertex, Adjacency Matrix (Example 8.5 and proof of Theorem 8.2 are optional).			
	3	8.1 Graphs – Subgraph of a Graph.	14	Min. 15	
	4	8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).			
	5	8.1 Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).			
	6	8.3 Isomorphic Graphs.			
II		Eulerian and Hamiltonian graphs			
	7	 8.4 Paths, Cycles and Circuits – Path, Independent Subsets of the Vertex set, Cycle and Circuit (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional). 	10	Min.	
	8	8 8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		15	
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31).			

	r –			1	
	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)			
III					
	11				
	12	8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.	11	Min.	
	13	8.7 Graph Coloring- Graph Coloring, Chromatic Number, The Four-Color Problem (Example 8.27 is optional).		15	
	14	9.1 Trees- Trees (Proof of theorem 9.1 and 9.2 are optional).			
	15	9.2 Spanning Trees - Spanning Trees, Kruskal's Algorithm for a Spanning Tree.			
IV					
	16	2.1 The Concept of Sets – Alphabet, Length of a Word, Language, Concatenation.			
	17	11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional).	13	Min.	
	18	11.1 Formal Languages – Kleene Closure.	15		
	19	11.2 Grammars – Grammars, Phase Structure Grammar.			
	20	11.2 Grammars – Derivation and Language.			
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).			
	22	11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.			
V		Open Ended Module	12		
	-	outer representation of graphs, minimal spanning trees, rooted t phs and Finite state machines	rees,		

References:

1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).

2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).

3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	0	3	0	0
CO 2	2	1	2	0	1	1	2	0	0
CO 3	2	1	2	0	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	\checkmark	\checkmark	✓	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours					
Course Code	MAT3MN204	MAT3MN204					
Course Title	BOOLEAN A	LGEBRA AND SYSTEM (OF EQUATION	NS			
Type of Course	Minor						
Semester	III						
Academic Level	200-299						
Course Details	Credit Lecture/Tutorial Practical Tot						
		per week	per week				
	4	4	-	60			
Pre-requisites	MAT1MN203	and MAT2MN203					
Course	This course c	comprises four main module	es: Lattice, Bo	olean Algebra,			
Summary	System of E	quations, and Eigenvalue	and Eigenvecto	ors. Module I			
	introduce conc	cepts like ordered sets and lat	tices, while Mo	dule II explores			
	Boolean Algel	ora and its applications. Mod	ule III covers lin	near systems of			
	equations, incl	equations, including Gauss elimination and determinants. Finally, Module					
	IV delves into Eigenvalue and Eigenvectors, offering insights into matrix						
	properties and	applications.					

Course Outcome

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Analyse Lattices and Boolean	Е	С	Internal				
	Algebra			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO2	Apply Matrix Operations and	Ар	Р	Internal				
	Linear Systems			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO3	Investigate Eigenvalue and	An	Р	Internal				
	Eigenvector Problems			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
# -	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

336

Textboo k	1. Theory and Problems of Discrete mathematics (3/e), Seymour Lipschutz, Marc Lipson, Schaum's Outline Series.									
K	 Advanced Engineering Mathematics (10/e), Erwin Kreyzsig, Wiley India. 									
Module	Uni	Content	Hrs	Ext.						
	t		(48	Marks						
			+12)	(70)						
Ι		Lattice (Text 1)	12	Min 15						
	1	14.2 Ordered set								
	2	14.3 Hasse diagrams of partially ordered sets								
	3	14.5 Supremum and Infimum								
	4	14.8 Lattices								
	5	14.9 Bounded lattices, 14.10 Distributive lattices								
	6	14.11 Complements, Complemented lattices								
Π		Boolean Algebra (Text 1)	10	Min 15						
	7	15.2 Basic definitions								
	8	15.3 Duality								
	9	15.4 Basic theorems								
	10	15.5 Boolean algebra as lattices								
	11	15.8 Sum and Product form for Boolean algebras								
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms								
III		System of Equations (Text 2)	14	Min 15						
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication								
	14	7.2 Matrix Multiplication (Example 13 is optional)								
	15	7.3 Linear System of Equations- Gauss Elimination								
	16	7.4 Linear Independence- Rank of a matrix- Vector Space (Proof Theorem 3 is optional)								

	17	7.5 Solutions of Linear Systems- Existence, Uniqueness (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)					
IV		Eigen Value and Eigen Vectors (Text 2)	12	Min 15			
	18	7.6 Second and Third Order Determinants- up to and including Example 1					
	19						
	20						
	21	7.8 Inverse of a Matrix- Gauss- Jordan Elimination (Proof Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)					
	22	8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)					
V		Open Ended Module	12				
	Relation on a set, Equivalence relation and partition, Isomorphic ordered sets, W ordered sets, Representation theorem of Boolean algebra, Logic gates, Symme Skew-symmetric and Orthogonal matrices, Linear Transformation.						

References:

1. Howard Anton & Chris Rorres, Elementary Linear Algebra: Application (11/e): Wiley

2. Ron Larson, Edwards, David C Falvo : Elementary Linear Algebra (6/e), Houghton Mi_in

Harcourt Publishing Company (2009)

3. Thomas Koshy - Discrete Mathematics with Applications-Academic Press (2003)

4. George Gratzer, Lattice theory: First concepts and distributive lattices. Courier Corporation (2009)

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	✓	\checkmark	✓	\checkmark	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics	s Honours					
Course Title	MATRIX THEO	RY					
Course Code	MAT1MN105						
Type of Course	Minor						
Semester	Ι						
Academic Level	100 – 199						
Course Details	Credit Lecture/Tutorial Practical Total Hou						
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Secondary	Algebra	•				
Course Summary	This course prov	vides a comprehensive int	troduction to	linear algebra,			
	focusing on systems of linear equations, matrix algebra, determinants, and						
	Euclidean vector spaces. Through a blend of theoretical concepts and						
	practical application	ons, students will develop a	ı strong founda	tion in linear			
	algebra techniques	and their uses in various fie	elds.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the fundamental	U	С	Internal
	operations and concepts of systems of			Exam/Assignme
	linear equations, including Gaussian			nt/ Seminar/
	elimination and elementary row			Viva / End Sem
	operations, leading to an			Exam
	understanding of matrix algebra			
CO2	Apply the properties of determinants	Ар	Р	Internal Exam/
	to evaluate them using cofactor			Assignment/
	expansions and row reduction			Seminar/Viva/
	techniques, and comprehend the			End Sem Exam
	relationships between matrices and			
	determinants.			
CO3	Explore the geometry and properties	An	С	Internal Exam/
	of Euclidean vector spaces, including			Assignment/
	norms, dot products, distances,			Seminar/Viva/
	orthogonality, and the cross product.			End Sem Exam
* - Rem	nember (R), Understand (U), Apply (Ap),	Analyse (An),	Evaluate (E), 0	Create (C) #
- Factu	al Knowledge(F) Conceptual Knowledge	(C) Procedura	al Knowledge	(P) Metacognitive
Knowl	edge (M)			

Text : Howard Anton and Chriss Rorres, Elementary Linear Algebra (11/e), Applications version, Wiley

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		System Of Linear Equations	12	
	1	Section 1.1: -Introduction to systems of linear equations – up to and		
		including Example 5		
	2	Section 1.1: - Rest of the section.		
	3	1.2 :- Gaussian Elimination – up to Example 5		
	4	Section 1.2; - From Example 5 onwards.	-	
	5	Section 1.3: - Matrices and Matrix Operations – up to and including Example 7.		
	6	Section 1.3; - Rest of the section.		
II		Matrix Algebra	12	
	7	Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6.		
	8	Section 1.4; - Properties of inverses onwards – up to and including Example 12.		
	9	Section 1.4: - Rest of the section.		
	10	Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)		
	11	Section 1.6: - More on Linear systems and Invertible Matrices (Proofs of all the theorems are optional)		
	12	Section 1.7; - Diagonal, Triangular and Symmetric Matrices (Proof of theorem 1.7.1 is optional)		
III		Determinants	12	
	13	Section 2.1 :- Determinants by Cofactor expansions		
	14	Section 2.2; - Evaluating determinants by row reduction	_	
	15	Section 2.3: - Properties of determinants; Cramer's Rule – up to and including Theorem 3.2.5 (proofs of all the results are optional).		
	16	Section 2.3;- up to and including Example 7.		
	17	Section 2.3;- rest of the section.(proofs of all the results are optional)		
IV		Euclidean Vector Spaces	12	
	18	Section 3.1:- Vectors in 2-space, 3-space and n-space		
	19	Section 3.2:- Norm , dot product and distance in R^n (proofs of all the results are optional).		
	20	Section 3.3: - Orthogonality (proofs of all the results are optional).		
	21	Section 3.4:-The geometry of linear systems.		
	22	Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional)		
V		Open Ended Module	12	
		x Transformations, Combinatorial approach to determinants, Rank of Ma reference 1) Orthogonal Matrices (from reference 1)	atrix	

References:

- 1. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978•1•284•10590•2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module. Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	2
CO 2	3	2	3	1	2	2	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	~	~	<	~
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathema	atics Honours						
Course Code	MAT2MN105							
Course Title	VECTOR SPA	VECTOR SPACES AND LINEAR TRANSFORMATIONS						
Type of Course	Minor							
Semester	II	II						
Academic	100-199							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Linear Algebra	Course in Semester 1 - Vector	ors and Matrice	es				
Course		ves into advanced concepts						
Summary	general vector	spaces, basis and dimensior	n, matrix transf	formations, and				
	eigenvalues and diagonalization. The course builds on foundational linear							
		algebra principles and explores their applications in higher-dimensional						
	spaces and com	plex transformations.						

CO1Define and apply concepts related to vector spaces, including understanding vector space axioms, subspaces, and the solution space of homogeneous systems.UCInternal E Assignme End Sem 1CO2Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, including computing basis vectors and understanding coordinate systemsApPInternal E Assignme End Sem 1CO2Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, including computing basis vectors and understanding coordinate systems relative to a basis.ApPInternal E Assignme End Sem 1	xam/ nt/ Viva/ Exam									
vector spaces, including understanding vector space axioms, subspaces, and the solution space of homogeneous systems.Assignme Seminar/1 End Sem 1CO2Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, including computing basis vectors and understanding coordinate systems 	nt/ Viva/ Exam									
vector space axioms, subspaces, and the solution space of homogeneous systems.Seminar/ End Sem End Sem End Sem End Sem 	Viva/ Exam									
the solution space of homogeneous systems.End Sem 2CO2Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, 	Exam									
systems. CO2 Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, including computing basis vectors and understanding coordinate systems relative to a basis. Ap P Internal E										
CO2Explore the concepts of linear independence, coordinates, basis, and dimension within vector spaces, including computing basis vectors and understanding coordinate systems relative to a basis.ApPInternal E Assignme Seminar/ End Sem 2	/									
independence, coordinates, basis, and Assignme dimension within vector spaces, Seminar/ including computing basis vectors and End Sem 3 understanding coordinate systems Felative to a basis.	/									
dimension within vector spaces, including computing basis vectors and understanding coordinate systems relative to a basis.	xam/									
including computing basis vectors and understanding coordinate systems relative to a basis.										
understanding coordinate systems relative to a basis.	Viva/									
relative to a basis.	Exam									
CO3AnalyseandapplymatrixAnCInternal E	xam/									
transformations, including basic Assignme										
transformations in R2R2 and R3R3, Seminar/	Viva/									
understanding properties of these End Sem	Exam									
transformations, and exploring										
concepts related to eigenvalues,										
eigenvectors, and diagonalization of										
Amatrices.										
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# -									
Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacog	· /									
Knowledge (M)										

I General Vector Spaces 12 1 Section 4.1: -Real vector spaces – up to and including Example 8. 2 2 Section 4.1: -Reat of the section. 3 3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 12 6 Section 4.3: - Linear independence – up to and including Theorem .4.3.3 7 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 10 8 Section 4.4: - coordinates and Basis -up to and including Example 5 9 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 11 Section 4.9: - Rest of the section. 12 12 Section 4.9: - Rest of the section. 12 13 Section 4.9: - Rest of the section. 12 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 15 Section 4.10: - Rest of the section (p	Hrs Ext. (60) Mark (70)	Content	Unit	Module	
2 Section 4.1:- Rest of the section. 3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 6 Section 4.2: - Rest of the section (Linear transformation view point is optional) 7 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.9: - Rest of the section from Example 3 (proofs of all the theorems are optional). III Matrix Transformations in R ² and R ³ . Reflection operators, Projection operators 13 Section 4.9: - Rest of the section. 15 Section 4.0: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 5.1: - Eigen values and Biagonalization 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including)	12	General Vector Spaces		Ι	
3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: - Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Rest of the section. 13 Section 4.9: - Rest of Matrix Transformations = up to and including Example 4. 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 15 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 5.1: - Eigen Values and Diagonalization 18 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general line			1		
Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) II Basis And Dimension 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.4: - rest of the section from Example 3 (proofs of all the theorems are optional). II Section 4.9: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators 13 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 14 Section 4.10: - properties of Matrix Transformations – up to and including Example 4. 16 16 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.1		Section 4.1:- Rest of the section.	2		
4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 12 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 12 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 12 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.5: - Dimension – up to and including Example 3. 11 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 11 Section 4.9: - Basic matrix transformations in R ² and R ³ . Reflection operators, Projection operators 12 12 Section 4.9: - Rest of the section. 12 13 Section 4.9: - Rest of the section. 13 15 Section 4.10: - rest of the section (proofs of theorems are optional) 17 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21			3		
is optional) Basis And Dimension 12 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 8 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.5: -Dimension – up to and including Example 5 9 9 Section 4.5: -Dimension – up to and including Example 3. 11 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 12 Section 4.9: - Basic matrix transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³ . Reflection operators, Projection operators – Rotation in R ³ 14 14 Section 4.9: - Rest of the section (proofs of theorems are optional) 15 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 17 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 5.1.3 to Example 7 (including) 20 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21			4		
6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³ . Reflection operators, Projection operators 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 15 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen Values and Diagonalization 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Sectio			5		
4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: -Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen Values and Diagonalization 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are o	12	1 /			
optional). 8 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 Section 4.9: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - Properties of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 5.1.3 is optional) 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of			6		
9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5:-Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - Properties of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen Values and Diagonalization 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebraic		L L L L L L L L L L L L L L L L L L L	7		
10 Section 4.5:-Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic	5		8		
11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) V Eigen Values and Diagonalization 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)			9	F	
11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). II Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 13 Section 4.9: - Rest of the section. 15 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - Eigen Values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2: - Rest of the section (Geometric and algebraic 11		Section 4.5:-Dimension – up to and including Example 3.	10		
II Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³ . Reflection operators, Projection operators 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 13 Section 4.9: - Rest of the section. 15 Section 4.9: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - Eigen Values and Diagonalization 12 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2: - Rest of the section (Geometric and algebraic 14			11		
12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic					
operators, Projection operators13Section 4.9:- Rotation Operators – Rotation in R³14Section 4.9:- Rest of the section.15Section 4.10: - Properties of Matrix Transformations – up to and including Example 4.16Section 4.10:- rest of the section (proofs of theorems are optional)17Section 4.11: - Geometry of Matrix Operators on R² (proof of Theorem 4.11.2 is optional)18Section 5.1:- Eigen values and Diagonalization19Section 5.1: - From Theorem 5.1.3 to Example 7 (including)20Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional)21Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)22Section 5.2; - Rest of the section (Geometric and algebraic	12	Matrix Transformations		Π	
13 Section 4.9:- Rotation Operators – Rotation in R ³ 14 Section 4.9:- Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) V Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic			12		
14 Section 4.9:- Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) V Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebraic	-		13	Ē	
15Section 4.10: - Properties of Matrix Transformations – up to and including Example 4.16Section 4.10: - rest of the section (proofs of theorems are optional)17Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional)VEigen Values and Diagonalization18Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.319Section 5.1: - From Theorem 5.1.3 to Example 7 (including)20Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional)21Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)22Section 5.2: - Rest of the section (Geometric and algebraic		-	14	F	
16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) V Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic		Section 4.10: - Properties of Matrix Transformations – up to and			
17Section 4.11: - Geometry of Matrix Operators on R2 (proof of Theorem 4.11.2 is optional)VEigen Values and Diagonalization1218Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.319Section 5.1: - From Theorem 5.1.3 to Example 7 (including)20Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional)21Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)22Section 5.2: - Rest of the section (Geometric and algebraic		Section 4.10:- rest of the section (proofs of theorems are optional)	16		
18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1; -From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic		Section 4.11: - Geometry of Matrix Operators on R ² (proof of	17		
 19 Section 5.1; -From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic 	12	Eigen Values and Diagonalization		V	
 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic 		Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3	18		
transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic		Section 5.1; -From Theorem 5.1.3 to Example 7 (including)	19		
(proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic			20		
22 Section 5.2; - Rest of the section (Geometric and algebraic			21		
multiplicity are optional)			22		
V OPEN ENDED 12	12	OPEN ENDED		V	

References:

1 Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	3	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	~	~	~	<	~
CO 3	✓	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours						
Course Code	MAT3MN205							
Course Title	OPTIMIZATI	ON TECHNIQUES						
Type of Course	Minor							
Semester	III	III						
Academic Level	200 - 299							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
	per week per week							
	4 4 - 60							
Pre-requisites	Basic understan	ding of linear algebra and in	troductory optin	mization				
	concepts.							
Course Summary	1	ovides a comprehensive exp		1 0 0				
		on techniques, focusing on	0 1	· ·				
	method, and specialized problems like transportation and assignment.							
		Students will gain practical skills in formulating, solving, and analyzing linear programming models, with applications in various optimization						
	.1 0	ming models, with applic	cations in vari	ous optimization				
	scenarios.							

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Describe the fundamental properties and types	U	С	Internal
	of linear programming models, distinguishing			Exam/
	between maximization and minimization			Assignment/
	models, and explain various methods used for			Seminar/
	solving linear programming problems			Viva/ End
	including graphical methods.			Sem Exam
CO2	Apply the simplex method to solve both	Ap	Р	Internal
	maximization and minimization linear			Exam/
	programming problems, compare the			Assignment/
	graphical method with the simplex method in terms of efficiency and applicability, and			Seminar/
	demonstrate problem-solving skills through			Viva/ End
	worked-out examples.			Sem Exam
CO3	Evaluate and solve transportation and	An	С	Internal
	assignment problems using specific techniques			Exam/
	such as the North-West corner method, Least			Assignment/
	Cost cell method, Vogel's approximation			Seminar/
	method, and the Hungarian method, while also			Viva/ End
	comparing the transportation model with			Sem Exam
	general linear programming models.			

	ext ook	Operations Research (2/e), P Rama Murthy ,New Age Internationa	l Publis	hers
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Linear Programming Models: (Graphical Method)	10	Min 15
	1	Section 2.1- Introduction, 2.2- Properties of Linear Programming		
		Model		
	2	Section 2.3-Maximization Models	-	
	3	Section 2.4- Minimization Models	-	
	4	Section 2.5- Methods for the Solution of a Linear Programming Problem (up to Problem 2.9)		
	5	Section 2.5- Methods for the Solution of a Linear Programming Problem (From Problem 2.9)		
II		Linear Programming Models: (Simplex Method)	13	Min 15
11	6	. 15	Will 13	
	7	Methods Section 3.3- Maximisation Case	-	
	8	-		
	9	Section 3.4- Minimisation Case Section 3.5- Worked Out Problems- Maximization	-	
	10	Section 3.7- Minimisation Problems	-	
III		Linear Programming Models: (Two Phase Simplex Method and Transportation Problem)	11	Min 15
	11	Section 3.8- Mixed Problems	-	
	12	Section 3.10- Artificial Variable Method or Two Phase Method		
	13	Section 3.11- Degeneracy in Linear Programming Problems		
	14	Section 4.1, 4.2 Transportation model		
	15	Section 4.3 – Comparison between Transportation model and		
		general linear programming model, 4.4- Approach to solution to a		
		transportation problem by Transportation Algorithm.		
IV		near Programming Models: (Transportation Problem and Assignment Problem)	14	
	16	Section 4.4.3- Basic feasible solution by North -West corner method		Min 15
	18	Section 4.4.4- Solution by Least Cost cell method		
	19	Section 4.4.5- Solution by Vogel's approximation method		
	20	Section 4.4.6- Optimality test- Stepping stone method (Modified		
		distribution method is in open ended module)		
	21	Section 5.1, 5.2 – Assignment model,		
	22	Section 5.4- Approach to solution-Hungarian method(Other		
		methods of solution are optional)	10	
	~.	Open Ended Module	12	
	with	plex method special Cases- Alternate solution. Unbound Solutions ,Prob n Unrestricted Variables nsportation model- Modified distribution method	olem	
	Gan	ne theory		

References :

1. KV Mittal and C Mohan, Optimization methods in Operations research and system analysis(3/e)

2. Kanti Swarup, PK Gupta and Manmohan, Operations Research(20/e)

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	>	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	✓	\checkmark	✓	~	√

Programme	B. Sc. Mathemat	ics Honours						
Course Code	MAT1MN106							
Course Title	PRINCIPLES (PRINCIPLES OF MICRO ECONOMICS						
Type of Course	Minor							
Semester	Ι							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Higher Seconda	ry Mathematics						
Course Summary	the law of dem Functions to une demand elasticit utility maximiz optimization tec	behaviour in Demand and Su and, supply, and elasticity, lerstand cost structures, reve ty. Explore the Theory of Co ation and rational consume hniques using derivatives in T lve constrained optimization	and delve into C nue functions, an onsumer Behavio er choices, then Economic Applic	Cost and Revenue ad their relation to ur to comprehend apply economic sations to optimize				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the factors affecting demand and supply and determine market equilibrium.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the concepts of cost and revenue functions to analyze short-run and long- run production decisions.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate economic functions and optimize using derivatives and Lagrange multipliers.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (A Knowledge(F) Conceptual Know e (M)	• • • •		

Text B	ook	 Principles Of Microeconomics, 15th revised edition H.L.Ahuja, Introduction to Mathematical Economics, 3rd edition, Edward.T Schaum's Outline series, TMH 						
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)				
Ι		Demand and Supply Analysis Text(1)	13					
	1	(Relevant sections of chapter 5 and 7)1Utility and demand, the meaning of demand and quantity demanded						
	2	The law of demand- demand curve- market demand curve						
	3	Reasons for the law of demand- slope of a demand curve						
	4	Shift in demand- demand function and demand curve						
	5	The meaning of supply- supply function- law of supply						
	6	Slope of a supply curve- shift in supply- market equilibrium						
	7	Price elasticity if demand- measurement of price elasticity- arc elasticity of demand- cross elasticity of demand						
II		Cost and Revenue Functions Text (2) (Relevant sections of chapter 19and 2)	12					
	8	Cost function-Average Cost(AC) and Marginal Cost(MC)						
	9	Short run costs: Total Fixed and Variable Cost- Short Run average cost curve- Average Variable Cost(AVC)- Relationship between AVC and Average product- Average Total Cost- Marginal Cost						
	10	Long run costs: Long Run Average Cost Curve- relationship of Long run Average Cost Curve(LAC) and Long run Marginal Cost Curve(LMC) with SAC and SMC						
	11	Revenue function, Marginal Revenue(MR) and Average Revenue(AR)						
	12	Relation between MR, AR and elasticity of demand						
III		10						
	13	(Relevant sections of chapter 9 and 11) Cardinal utility analysis- the law of diminishing marginal utility- illustration of law of diminishing marginal utility						
	14	The law of equi-marginal Utility						
	15	Indifference curves- ordinal utility						
	16	Marginal rate of substitution- properties of indifference curves						
IV		Economic Applications of Derivatives Text (2) (Chap-4:sec.4.7&4.8 ,Chap 5,Chap6:sec.6.1-6.6)	13					
	17	Economic application of derivatives- marginal, average, total concepts						

	18	Optimizing economic function		
	19	Functions of several variables and partial derivatives		-
	20	Second order partial derivatives, optimization of multivariable function		-
	21	Constrained optimization with Lagrange multipliers		-
	22	Significance of Lagrange multipliers, total differential		-
V		Open Ended	1	
		vative of a function, first order derivative, second order derivative, local m na, optimization	axima,	local
Reference	es:			
1. I	RGD Alle	en, Mathematical analysis for economists Macmillan		
2. (Geoff Re	nshaw: Maths for Economics(3/e) Oxford University Press, N.Y. (2012)		

ISBN 978•0•19•96212•4

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	1	3	2	3	2	3	1	2
CO 3	3	2	3	1	3	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	~	\checkmark	✓	\checkmark
CO 2	√	√	✓	✓	\checkmark
CO 3	✓	\checkmark	~	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathemat	ics Honours					
Course Code	MAT2MN106						
Course Title	OPTIMIZATIO	IN TECHNIQUES IN ECO	DNOMICS				
Type of Course	Minor						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total			
		per week	per week	Hours			
	4	4	-	60			
Pre-requisites	Higher Secondar	y Mathematics					
Course Summary	inequality, inclu and Gini ratio. directional deriv constrained and such as profit ma course covers in	amines the causes, effects ding its measurement using It explores calculus of se vatives, gradients, and op unconstrained, with applic aximization and monopolist put-output analysis, introdu odels to analyse economic	g tools like the L everal variables, otimization techr cations in econor ic practices. Add cing technologica	focusing on iques, both nic contexts itionally, the l coefficient			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the causes and effects of income inequality and evaluate the measures used to reduce it.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the principles of calculus to optimize economic functions without constraints.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate constrained optimization problems using appropriate mathematical techniques.	E	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (A Knowledge(F) Conceptual Know e (M)	• • •		

Text book:		1. M.L.Jhingan: Micro Economic Theory(6/e), Vrinda publications					
		2. Carl.P.Simon, Lawrence Blume: Mathematics for Economists W.W. Norta Inc(1994) ISBN 0•393•95733•0	n& Com	pany,			
		3. Mehta• Madnani: Mathematics for Economics Revised Edn S. Chand.					
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)			
Ι		Inequalities in Income Text (1)(Chapter 47)	10				
	1	Inequalities in Income- Causes of inequality					
	2	Effects of inequality – measures to reduce inequality	-				
	3	Measurement of inequality of income- Lorenz curve Gini ratio	_				
II		Calculus of Several Variables and Unconstrained Optimization Text(2)(Chap:14:sec.14.6,14.7,14.8,Chap 17: sec.17.1-17.5)					
	4	Directional derivatives and gradients, the gradient vector					
	5	Approximation by differential Jacobian derivative	_				
	6	The chain rule, higher order derivative	_				
	7	Second order derivatives and Hessians					
	8	Young's theorem, economical applications					
	9	Unconstrained optimization: definitions, first order conditions, second order conditions					
	10	Global maxima and minima, global maxima of concave functions					
	11	Economic applications- profit maximising firm- discriminating Monopolist					
	12	Least square analysis					
Ш		Constrained Optimization Text (2) (Chap 18: sec.18.1-18.7)	12				
	13	First order conditions: objective function, constraint functions, examples					
	14	Equality constraints, two variables and one equality constraints, several equality constraints	-				
	15	Ineuality constraints, one inequality constraints, several inequality constraints	-				

	16	Mixed constraints, constrained minimization problems				
	17 Kuhn-Tucker formulation, examples and applications					
IV		Input output analysis Text(3) (Chap 19 :sec.19.1-19.7,19.9,19.11,19.13)	12			
	18	Introduction- assumption- technological coefficient matrix				
	19	Closed and open input output model- coefficient matrix and open model				
	20	The Hawkins- Simon conditions- solution for two industries				
	21	Determination of equilibrium of prices- coefficient matrix and closed model				
	22	The Leontief production function-limitation of input output analysis				
V		Open Ended Module	12			
		otal derivative, The chain rule, Level curves and their tangents, Concave and yex Functions	1			
Reference			I.			
		en: Mathematical analysis for economists Macmillain g& K Wainwright: Fundamentals of Mathematical Economics(4/e) McGraw Hill				
		Distriligator: Mathematical Optimization and Economic Theory Classics in Appli	ed			
		ics, SIAM(2002)	cu			

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2	2	1	3	2	1
CO 2	3	2	3	1	2	1	3	1	1
CO 3	2	2	3	1	2	1	3	1	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	✓	~	\checkmark
CO 2	✓	~	~	<	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathemat	B. Sc. Mathematics Honours				
Course Code	MAT3MN206	MAT3MN206				
Course Title	APPLIED MAT	THEMATICS FOR ECONO	MIC ANALYS	IS		
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	4	-	60		
Pre-requisites	Higher Secondary Mathematics					
Course Summary	This course covers differential and difference equations and their economic applications. It explores production functions, including the law of variable proportions, isoquants, and optimization of Cobb-Douglas and CES functions. Additionally, it introduces econometrics, focusing on regression analysis and econometric methodology.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply differential and difference equations to model and solve economic problems.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Analyse production functions to understand the relationship between inputs and outputs, including optimization techniques.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate econometric models to interpret statistical relationships and economic variables.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ber (R), Understand (U), Apply (Ap), A Knowledge(F) Conceptual Knowledge e (M)	•	()··	

Text		dward.T.Dowling: Introduction to mathematical Economics, Schaum's Outline	e series,	3rd
Books		Psingh, AP Parashar, HP singh: Econometrics and Mathematical Economics, S.	Chand	
		amodar N Gujarati and Sangeeta: Basic Economics(4/e) TMH Indian Reprint, 2		
Module	Unit	Hrs (48 +12)	Ext. Marks (70)	
Ι		Differential and Difference Equations Text(1)	12	
	1	(Chapter 16, 17)	_	
	1	Differential Equation: definition and concepts		
	2	First order linear differential equation, exact differential equations, integrating factors		
	3	Separation of variables, Economic applications		
	4	Difference equations: definitions and concepts		
	5	First order linear difference equations, Economic applications		
	6	The Cobweb Model, the Harrod model		
Π		The Production Function Text (2) (Chapter 14: sec 14.1-14.9)	10	
	7	Meaning and nature of production function, the Law of Variable Proportions		
	8	Isoquants, Marginal Rate of Technical Substitution(MRTS)		
	9	Producers' equilibrium, expansion of path.		
	10	The elasticity of substitution, ridge lines and Economic region of production		
III	(Cha	The Production Function(contd.) and Euler's theorem Text(1&2) pter 14: sec 14.10-14.3 of text 2, Chap 6: sec 6.9 &6.10 of text 1)	14	
	11	Euler's theorem(Statement only), Euler's theorem and homogenous production function		
	12	Cobb Douglas production function, properties, limitations		
	13	CES production function, properties, advantages, limitations		
	14	Returns to scale, Cobb Web theorem		
	15	Optimization of Cobb Douglas, Optimization of CES production Function		
IV		Econometrics Text(3) (Pages 1 to 59)	12	
	16	Introduction to econometrics	1	
	17	Statistical v/s deterministic relationships, regression v/s correlation	1	
	18	Types of data, Measurements of Economic variables		
	19	Methodology of Econometrices		
	20	Two variable regression analysis		
	21	Population regression function (PRF), Stochastic specification of PRF		
	22	Sample regression function (SRF)		

V	Open Ended Module
	Matrix solution of Simultaneous Differential and Difference equations, Differentiation of Exponential and Logarithamic functions
2. AC Ch	es: Illen Mathematical Analysis for Economists MacMillan iang & K Wainwright: Fundamentals of Mathematical Economics (4/e,) McGraw Hill .M. Wooldridge: Introductory Econometrics: A modern Approach (6/e), Cengage learning

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
 - Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	\checkmark	~	\checkmark
CO 2	✓	✓	\checkmark	~	\checkmark
CO 3	✓	\checkmark	\checkmark	~	√

DOUBLE MAJOR COURSES

(Courses other than listed in the pathways 1-4)

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours			
Course Title	ELEMENTARY LINEAR ALGEBRA				
Type of Course	Double Major				
Semester	IV				
Academic	200-299				
Level					
Course Details	Credit	Lecture/Tutorial	Practicum	Total	
		per week	per week	Hours	
	4	3	2	75	
Pre-requisites		c and necessary exposure	to set theory.		
	2. Basic Calculus				
Course	After introducing the basic notions in set theory, the course develops into				
Summary	the construction of the Real number system. Thereafter Real functions are				
	introduced and the no	otion of limit is developed	l in a rigorous	way	

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Analyse the properties and relationships within vector spaces, eigenvalues, eigenvectors, and orthogonality, demonstrating proficiency in identifying subspaces, bases, eigen decomposition, and orthogonal sets.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO2	Apply techniques such as finding null spaces, column spaces, solving characteristic equations, diagonalizing matrices, and performing QR factorization.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO3	Evaluate the significance and utility of results such as Spectral theorem and singular value decomposition in various applications	E	М	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Text	Linear Algebra and its Applications, Third Edition, David .C. Lay, Pearson Publications.					
Module	Unit	Content	Hrs (45+30)	Externa Marks (70)		
Ι		Vector Spaces	14	20		
	1	Section 4.1 – Vector Spaces and Subspaces				
	2	Section 4.2 – Null Spaces, Column Spaces and Linear Transformations.				
	3	Section 4.2 – The Column Space of a Matrix.				
	4	Section 4.2 – Kernel and Range of a Linear Transformation.				
	5	Section 4.3 – Linearly Independent; Bases.				
	6	Section 4.3 – Bases for Nul A and Col A.				
	Co	ontinue the study of sections 4.5 to 4.6 in the practicum mo instructed.	ode as			
II		Eigen Values and Eigen Vectors	11	20		
	7	Section 5.1 – Eigen Vectors and Eigen Values.				
	8	Section 5.2 – The Characteristic Equation.				
	9	Section 5.2 – Similarity of Matrices.				
	10	Section 5.3 - Diagonalization				
	11	Section 5.3 – Diagonalizing Matrices				
III		Orthogonality	10	15		
	12	Section 6.1 – Inner Product, Length and orthogonality.				
	13	Section 6.1 – Orthogonal Vectors (Orthogonality)				
	14	Section 6.2 – Orthogonal Sets.				
	15	Section 6.2 – Orthonormal sets.				
	16	Section 6.4 – The Gram – Schmidt Process – Orthonormal Bases				
	17	Section 6.4 – QR Factorization of Matrices				
IV		Singular Value Decomposition	10	15		
	18	Section 7.1 – Diagonalization of Symmetric Matrices.				
	19	Section 7.1 – The Spectral Theorem.				
	20	Section 7.2 - Quadratic Forms - Change of Variable and Geometric View of Principal Axes omitted.				
	21	Section 7.2 – Quadratic Forms – Classifying Quadratic Forms.				
	22	Section 7.4 - The Singular Value Decomposition – (applications are omitted for exam)				
V		Practicum:	30	-		
	topi assis	goal is for the students to learn the following selected cs via self-study and group activities. The lecturer may st by running and overseeing group discussions and class				
	se	eminars and referring library books for self-study and note preparations.				

Chapters 1 to 3 of the textfor giving an introduction and motivation to the concepts of vector spaces, subspaces, Linear dependence and independence, Linear Transformations and theirrelations with matrices.	
Section 4.4 – Coordinate Systems.	
Section 4.4 – The Coordinate Mapping.	
Section 4.5 – The Dimension of a Vector Space.	
Section 4.5 – Subspaces of a Finite Dimensional	
Space.	
Section 4.6 – Rank.	
Section 4.6 – The Rank Theorem.	

References

- 1. Elementary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wiley
- 2. Algebra Done Right, 3/e, Sheldon Axler, Springer Nature, 2015.
- 3. Introduction to Linear Algebra, 6/e, Gilbert Strang, Wellesley•Cambridge Press.
- 4. Basic Linear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.
- 5. Linear Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.
- 6. Bretscher, Otto. *Linear algebra with applications*. Vol. 52. Eaglewood Cliffs, NJ: Prentice Hall, 1997.
- 7. Blyth, Thomas Scott, and Edmund F. Robertson. *Basic linear algebra*. Springer Science & Business Media, 2013.

Mapping of COs with	PSOs and POs :
---------------------	----------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	1	3	2	3	1	2
CO 2	3	3	3	2	3	1	3	2	3	1	2
CO 3	3	3	2	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	✓	\checkmark	\checkmark
CO 2	~	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	✓	\checkmark	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics He	onours				
Course Title	REAL ANALYSIS	REALANALYSIS				
Type of Course	Double Major					
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	3	2	75		
Pre-requisites	1. Mathematical Logic 2. Basic Calculus	c and necessary exposure t	to set theory.			
Course Summary	After introducing the basic notions in set theory, the course develops into the construction of the Real number system. Thereafter Real functions are introduced and the notions of limit and continuity are developed.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse sequences and their limits, apply limit theorems, and demonstrate understanding of monotone sequences and apply the Bolzano Wierstrass theorem and its implications on sub sequences.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To apply the concepts of continuous functions, including combinations of continuous functions and their behaviour on intervals. Also demonstrate proficiency in determining uniform continuity and its applications.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To evaluate Riemann integrals, identify Riemann integrable functions, and apply the Fundamental Theorem of Calculus. Demonstrate proficiency in solving problems related to L'Hospital's Rule, Taylor's Theorem, Pointwise and Uniform Convergence, and Interchange of Limits.	E	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
	ember (R), Understand (U), Apply (Ap), An al Knowledge(F) Conceptual Knowledge (C dge (M)			

Detailed Syllabus:

Text		luction to Real Analysis, 4/e, Robert G Bartle, Donald (2011)	l R Sherber	t John Wiley	/ &
Module	Unit	Content	Hrs (45+30)	External Marks (70)	Interna Marks
Ι		Sequences and Limits	12	20	
	1	Section 3.1 – Sequences and their limits.	3		
	2	Section 3.2 – Limit theorems.	3		
	3	Section 3.3 – Monotone sequences – Euler's number introduction only.	2		
	4	Section 3.4 – Sub sequences and the Bolzano Wierstrass theorem – 3.4.1 to 3.4.9 (second proof of Theorem 3.4.8 is optional)	2		
	5	Section 4.1- Limit of functions (Proofs included in Practicum).	1	-	
	6	Section 4.2: Limit theorems (Proofs included in Practicum).	1		
Π	Continuous Functions		10	20	
	7	Section 5.1 – Continuous functions.	2		
	8	Section 5.2 – Combinations of continuous functions.	2		
	9	Section 5.3 – Continuous functions on Intervals • 5.3.1 to 5.3.5	2		
	10	Section 5.3 – from 5.3.7 to 5.3.10	2		
	11	Section 5.4 – Uniform Continuity - 5.1.1 to 5.4.8	2		10
III		Differentiation	10	20	
	12	Section 6.1 – The Derivative – 6.1.1 to 6.1.4	2		
	13	Section 6.1 – from 6.1.5 to 6.1.7	2		
	14	Section 6.2- The Mean Value Theorem - 6.2.1 to 6.2.4	2		
	15	Section 6.2- from 6.2.5 to 6.2.9	2		
	16	Section 6.2- from 6.2.10 to 6.2.13	2		
IV		The Riemann Integral	13	15	
	17	Section 7.1 – Riemann Integral – 7.1.1 to 7.1.4 (a)	2		
	18	Section 7.1 – from 7.1.5 to 7.1.7	2]	
	19	Section 7.2 – Riemann Integrable functions – 7.2.1 to 7.2.5 (example 7.2.6 is optional)	2		
	20	Section 7.2 – from 7.2.7 to 7.2.13	2	1	
	21	Section 7.3 – The Fundamental Theorem – 7.3.1 to 7.3.9	3		
	22	Section 7.3 – The Fundamental Theorem – 7.3.10 to 7.3.18	2		

V	Practicum: The goal is for the students to learn the following selected topics in 15 practicum sessions of two hours each via self-study and group activities. The lecturer may assist by running group discussions and supervising class seminars and referring library books for self-study and note preparations.	30	-	20
	Session 1: Sets and Functions – Section 1.1 Session 2: Mathematical Induction – Section 1.2 Session 3: Finite and Infinite Sets – Section 1.3 Session 4: The Algebraic and Order Properties of R-Section 2.1 Session 5: Absolute Value and the Real Line - Section 2.2 Session 6: The Completeness property of R- Section 2.3	- - - -		
	Session 7: Intervals - Section 2.5 Session 8: The Cauchy Criterion – Section 3.5 Session 9: Introduction to Infinite Series - Section 3.7 Session 10: Section 4.1 – proofs as in Module I Session 11: Section 4.2 - proofs as in Module I			
	Session 12: L'Hospital's Rules - Section 6.1 Session 13: Taylor's Theorem - Section 6.4 Session 14: Pointwise and Uniform Convergence -Section 8.1 Session 15: Interchange of Limits - Section 8.2			
References	 Tom.M.Apostol, Calculus I, Wiley & Sons. Tom.M.Apostol, Mathematical Analysis, 2/e, Addison•V Richard R Goldberg, Methods of Real Analysis, 2/e, Wil Raymond L Wilder, Introduction to the Foundations of & Sons 	ey	tics,2/e, John	Wiley

Note: 1) Optional topics are exempted for end semester examination (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	1	3	2	3	1	2
CO 2	3	3	2	3	3	1	3	2	3	1	2
CO 3	3	3	3	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Internal Exam Assignment Seminar Viva End Semester Examinations CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO 2 \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathematics Honours							
Course Title	COMPLEX ANALY	COMPLEX ANALYSIS						
Type of Course	Double Major							
Semesters	5/6							
Academic Level	300 - 399							
Course Details	Credit Lecture/Tutorial Practicum Total Hour per week per week							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Pre-requisites Course Summary	This course discusses the numbers and their proper and roots and sets point functions, special power includes the concepts Cauchy Riemann equ	Basic algebra of numbers, basic Calculus and basic proof techniques. This course discusses the concepts of complex numbers. Module-I discusses complex numbers and their properties, complex plane, polar form of complex numbers, powers and roots and sets points in the complex plane. Module-II discusses the complex functions, special power functions such as z^n and $z^{1/n}$. The third module includes the concepts of limits and continuity, Differentiability and analyticity, Cauchy Riemann equations and Harmonic conjugates. Module-IV discusses						
	Trigonometric and hy	such as Exponential func perbolic functions. Final appings, reciprocal funct	module is an	open ended part				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Understanding the concepts of Complex numbers and their properties.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam		
CO2	To gain a thorough understanding of the algebraic, geometric, and topological aspects of the complex number system, as well as complex variable functions, their limits and continuity.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam		
CO3	To understand harmonic functions and their relationship with analytic functions. Also to understand a few simple analytic functions of complex analysis and their properties.	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam		
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Detailed Syllabus:

Module	Unit	Content	Hrs (75)	External Marks (70)
		Module I	11	
	1	Section 1.1 Complex Numbers and Their Properties		
	2	Section 1.2 Complex Plane		
	3	Section 1.3 Polar Form of Complex Numbers-up to and including Example 2.		
Ι	4	Section 1.3 Polar Form of Complex Numbers- All the topics after Example 2.		15
	5	Section 1.5 Sets of Points in Complex Plane- up to and including Example 2.		
	6	Section 1.5 Sets of Points in Complex Plane -All the topics after Example 2.		
		Module II	12	
	7	Section 2.1 Complex Functions		
	8	Section 2.2 Complex Functions as Mappings- up to and including Example 4.		
II	9	Section 3.1 Limits and Continuity-Limits (All the topics in 3.1.1)		15
	10	Section 3.1 Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.)		
	11	Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property.		
		Module III	10	
	12	Section 3.2 Differentiability and Analyticity- up to and including Example 2.		
ш	13	Section 3.2 Differentiability and Analyticity- All the topics after Example 2.		20
m	14	Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2		
	15	Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2.		
	16	Section 3.4 Harmonic Functions	10	
	17	Module IV	12	
	17	Section 5.2 Complex Integrals-up to and including Example 2	-	
IV	18 19	Section 5.2 Complex Integrals- All the topics after Example 2 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4.	_	20
1 1	20	Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4.		20
	21	Section 5.4 Independence of Path- up to and including Example 1.		
	22	Section 5.4 Independence of Path- All the topics after Example 1.	1	
		Practicum	30	
V	Sectio	n 5.5 Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1)		
Ŧ	Sectio	n 5.5 Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral Formulas (All the topics in 5.5.2)		

	Sectio	on 6.1 Sequences and Series- up to and including					
	Sactio	Example 4. on 6.1 Sequences and Series- All the topics after Example 4.					
		on 6.2 Taylor Series-up to and Excluding Theorem 6.2.4.					
		on 6.2 Taylor Series-From Theorem 6.2.4 to Example 3.					
		on 6.3 Laurent Series-up to and including Example 1.					
		on 6.3 Laurent Series- All the topics after Example 1.					
	Sectio	on 6.4 Zeros and Poles- Proofs of Theorem 6.4.1, Theorem 6.4.2,					
	G	Theorem 6.4.3 are omitted.					
	Sectio	on 6.5 Residues and Residue Theorem-up to and including					
		Example 3.					
		on 6.5 Residues and Residue Theorem-All the topics after Example 3.					
	Sectio	on 6.6 Some Consequences of the Residue Theorem-					
	Evaluation of Real Trigonometric Functions (up to						
	and including example1 of 6.6.1)						
	Section 6.6 Some Consequences of the Residue Theorem-						
	Evaluation of Real Improper Integrals(up to and						
	including Example 2)						
	Sectio	on 6.6 Some Consequences of the Residue Theorem- Theorem 6.6.1 and Example 3.					
	Sectio	on 6.6 Some Consequences of the Residue Theorem-					
		Theorem 6.6.2 and Example 4.					
Refere	ences						
	1	Brown, James Ward, and Ruel V. Churchill. Complex variables and applications. McGraw-Hill,, 2009.					
	2 Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.						
	3	Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012.					
	4	Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.					
	5	Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.					
	5	[j, j j j j j					

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	1	3	2	3	1	2
CO 2	3	3	2	3	3	1	3	2	3	1	2
CO 3	3	3	2	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation			
-	Nil			
1	Slightly / Low			
2	Moderate / Medium			
3	Substantial / High			

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to	Assessment Rubrics:
-------------------	----------------------------

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	~	~	~	<	\checkmark
CO 3	\checkmark	\checkmark	✓	\checkmark	\checkmark

Programme	BSc Mathematics Honours					
Course Title	INTRODUCTI	INTRODUCTION TO PYTHON AND SCIENTIFIC COMPUTING				
Type of Course	SEC – Double	Major				
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	3	2	75		
Pre-requisites	calculus with an	ledge to start a desktop/lapt understanding of differenti algebra (higher secondary	al and integral ca			
Course Summary	programming. Ge Lists, Tuples, Fur and Strings and f the Python progra SageMath is give concepts from ca the open-ended p	duces the fundamentals of Pyt etting started with Python, Vari nctions, Branching, Input and inally Classes and Object-Orie amming structure, an introduct n in the last part of the course. lculus and linear algebra are to ractical part so that the student mpute typical problems from t	ous Interfaces, Van Output, Arrays and ented Programming tion to the advance Various practical p be solved using th s will come to know	riables, Modules, Loops, d Plotting, Dictionaries g are introduced. Using d mathematics software problems making use of he SageMath software in		

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand Basics of Python Programming.	U	С	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO2	Intermediate Level Concepts such as Object- Oriented Programming.	An	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO3	Scientific Computation using SageMath.	E	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
	hber (R), Understand (U), Apply (Anowledge(F) Conceptual Knowledge	- · · ·		

Detailed Syllabus:

 Introduction to Scientific Programming with Python, Joakin SpringerBriefs on Computing, 2020, ISBN: 978-3-030-50355 https://link.springer.com/book/10.1007/978-3-030-50356-7 Sage for Undergraduates, 2nd Ed., Gregory V. Bard, 2022, Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: http://www.people.vcu.edu/~clarson/bar undergraduates-2014.pdf Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	6-7. Open American	Access:
 2. Sage for Undergraduates, 2nd Ed., Gregory V. Bard, 2022, Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: <u>http://www.people.vcu.edu/~clarson/barundergraduates-2014.pdf</u> it Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	rd-sage-fo Hrs (36+ 9)	<u>r-</u> Marks
Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: http://www.people.vcu.edu/~clarson/barundergraduates-2014.pdf it Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	rd-sage-fo Hrs (36+ 9)	<u>r-</u> Marks
2014 Online Ed: http://www.people.vcu.edu/~clarson/barundergraduates-2014.pdf it Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	Hrs (36+ 9)	Marks
undergraduates-2014.pdf it Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	Hrs (36+ 9)	Marks
Image: Content Content Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	(36+ 9)	
Python Basics (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	(36+ 9)	
 (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	9)	Ext: 50
 (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	-	
 (Text 1, Ch. 1, 2, 3, 4.) Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	8	
Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2).Formatting Text Output. Importing Modules. (Sec 2.3, 2.4).Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	8	
 (Sec 2.1). Variables and Variable Types (Sec 2.2). Formatting Text Output. Importing Modules. (Sec 2.3, 2.4). Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3). 	8	
Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).	-	
Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).		
		Min.10
Iterating over a List with a for Loop Nested Lists and List Slicing. (Sec 3.4, 3.5).		
Tuples. (Sec 3.6)	1	
Functions, Branching, I/O, Modules.		
Programming with Functions Function Arguments and Local Variables. Default Arguments and Doc Strings. (Sec 4.1, 4.2, 4.3)		
If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5)		
Solving Equations with Python Functions. (Sec 4.6)	1	Min 10
Writing Test Functions to Verify Programs (Sec 4.7).	8	
 User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted). 		
Handling Errors in Programs. (Sec 5.5)	1	
2 Making Modules. (Sec 5.6)	1	
-1		
3 7 1	 4.1, 4.2, 4.3) If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5) Solving Equations with Python Functions. (Sec 4.6) Writing Test Functions to Verify Programs (Sec 4.7). User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted). Handling Errors in Programs. (Sec 5.5) 	 4.1, 4.2, 4.3) If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5) Solving Equations with Python Functions. (Sec 4.6) Writing Test Functions to Verify Programs (Sec 4.7). User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted). Handling Errors in Programs. (Sec 5.5) Making Modules. (Sec 5.6)

	 (Text 1, Ch. 6, 7). 13 Arrays and Plotting. Numpy and Array Computing. Plotting Curves with Matplotlib. (Sec 6.1, 6.2) 14 Plotting Discontinuous and Piecewise Defined Functions. (Sec 6.3). 15 Dictionaries and Strings. Examples: A Dictionary for Polynomials, Reading File Data to a Dictionary. (Sec 7.1 7.2, 7.3), 16 String Manipulation (Sec 7.4). 	7	Min 10
IV	Classes and Object-Oriented Programming. (Text 1, Ch. 9, 10.)		
	17 Basics of Classes. (Sec 8.1) 18 Protected Class Attributes, Special Methods.		
	Example: Automatic Differentiation of Functions. (Sec 8.2, 8.3, 8.4).	7	Min 10
	19Test Functions for Classes. Example: A Polynomial Class. (Sec 8.5, 8.6).		
	20 Class Hierarchies and Inheritance. Example: Classes for Numerical Differentiation, Integration. (Sec 9.1, 9.2, 9.3).		

Practical (Open-Ended)

Lecturer's selections of 15 sessions of 2 hours each from below.

Miscellaneous Python Exercises

- 1. Pitfalls of Programming, Text 1, Section 2.5.
- Familiarize various Python runtime environments and IDEs like IDLE, Spyder, VS Code, Virtual Environments, Jupyter Notebook, Google Colab, Anaconda/Miniconda/Mamba, Replit.
- 3. Familiarize various documentation websites and how to refer to the syntax and implementation of a Python concept or Package.
- 4. Case studies from Reference 2:, Income Tax Calculator (page 38), Investment Report (p. 73), Approximating Square Roots. (p. 92), Text Analysis (p. 126), Generating Sentences (p. 150).

Sagemath

- 1. Getting and installing sagemath in Windows, Ubuntu OS Using sagemath using cocalc (online).
- 2. Using Sage as a Calculator, Using Sage with Common Functions, Using Sage for Trigonometry (Text 2, sections 1.1, 1.2, 1.3).
- 3. Using Sage to Manipulate Polynomials (Text 2, section 1.7)
- 4. Matrices and Sage-A First Taste of Matrices, Doing the RREF in Sage (Text 2, section 1.5)
- 5. Using Sage for 2-D graphs (Text 2, section 1.4)
- 6. The Derivative, Slope of Tangent, Higher-Order Derivatives (Text 2, section 1.11))
- 7. Antiderivatives (Indefinite Integral), Definite Integrals, Improper Integrals (Text 2, sec 1.12, upto sec 1.12.6))

Sympy (Reference 3).

- 1. Sympy Introductory Tutorial.
- 2. Solve an equation algebraically.
- 3. Solve a system of equations algebraically.
- 4. Solve one or a system of equations numerically.
- 5. Find the roots of a polynomial symbolically or numerically.
- 6. Solve a matrix equation algebraically.
- 7. Solve a Diophantine equation algebraically.
- 8. Solve an ODE algebraically.

More Numpy and Data Visualization (Reference 1: Chapter 3, 4)

- Numpy Functions: arange, linspace, zeros, ones, random.random, reshaping. (Sec 3.1.1 to 3.1.6). Copying, Saving and Restoring, Slicing, Arithmetic Operations. (Sec 3.1.7 to 3.1.10).
- 2. Matplotlib Module: 2D Plots, Polar Plots, Pie Charts, Multiple Plots. (Sec 4.1)
- 3. Sine function and friends, Circle, Parametric Plots, Error Bars. (Sec 4.2)

4.	Simple 2D Animation (Reference 1, Section 4.4), Making a movie of a Plot (Text 1, Section 4.4)
5.	Famous Curves: Astroids, Ellipse, Spirals of Archimedes and Fermat (Reference 1, Sec 4.5)
6.	2D Plots and Fractals (Reference 1, Section 4.6)
7.	3D Plots (Reference 1, Section 4.7)
Numer	rical methods using SageMath (Reference 5: Chapter 7)(7.1 - 7.10, 7.12)
1)	Evaluate a Taylor series numerically.
2)	Interpolate a function using
	a) Newton's forward interpolation.
	b) Newton's backward interpolation.
	c) Lagrange's Interpolation.
	d) Newton's General Interpolation.
3)	Find integral of function using a. Trapezoidal Rule b. Simpson's 1/3-rule
4)	Find derivative of function numerically.
5)	Solve first order differential equations numerically.
	a) Euler method
İ	b) Fourth order Runge-Kutta method
6)	Solve algebraic equations numerically.
	a) The Bisection method
	b) Regula Falsi Method

References

- 1. Python for Education, Ajith Kumar B. P., 2023 https://scischool.in/python/pythonForEducation.pdf
- 2. Fundamentals of Python First Programs, Kenneth A Lambert, 2 Ed., Cengage, 2018.
- 3. Sympy Tutorial: <u>https://docs.sympy.org/latest/tutorials/intro-tutorial/index.html</u> Solving Equations: <u>https://docs.sympy.org/latest/guides/solving/index.html</u>
- 4. Computational Mathematics with SageMath, Paul Zimmermann, Alexandre Casamayou, <u>https://www.sagemath.org/sagebook/english.html</u>
- 5. SageMath Advice For Calculus, Tuan A. Le and Hieu D. Nguyen, https://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- 6. Sagemath Reference: <u>https://doc.sagemath.org/</u>

Programming Resources

- Python official website: <u>https://www.python.org</u> Documentation: <u>https://docs.python.org/</u>
- 2. Spyder official website and documentation, https://www.spyder-ide.org/
- 3. MIT Courseware, Getting Started: Python and IDLE, https://web.mit.edu/6.s189/www/handouts/GettingStarted.html
- 4. Jupyter Notebook, <u>https://jupyter.org/</u>
- 5. Google Colaboratory (colab), https://colab.google/
- Visual Studio Code: <u>https://code.visualstudio.com</u>, Documentation: <u>https://code.visualstudio.com/docs</u> VS Code for Web: <u>https://vscode.dev/</u>
- 7. Replit, <u>https://replit.com/</u>
- 8. Python Virtual Environments: <u>https://docs.python.org/3/tutorial/venv.html</u>
- Anaconda, Miniconda and Mamba. Anaconda: <u>https://docs.anaconda.com/free/anaconda/</u> Miniconda: <u>https://docs.anaconda.com/free/minicoda</u> Mamba: <u>https://mamba.readthedocs.io/en/latest/</u>
- 10. SageMathCloud at Cocalc: <u>https://cocalc.com</u> Documentation: <u>https://doc.cocalc.com/</u>

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	2	1	3	2	3	3	2	1	2
CO 2	3	3	2	2	3	2	3	3	2	1	2
CO 3	3	3	3	3	3	1	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	✓	\checkmark	√	~	✓
CO 2	√	√	\checkmark	~	\checkmark
CO 3	✓	✓	√	~	✓

ONLINE EQUIVALENT COURSES

(These courses are currently available on the government portal SWAYAM. If they are removed in the future, the board will update the course listings accordingly)

The course in brackets, including its course code, is equivalent to the online course specified against it.

1. (MAT8EJ401 Advanced Topology)

https://onlinecourses.nptel.ac.in/noc24_ma74/preview

An Introduction to Point•Set•Topology Part•II By Prof. Anant R. Shastri | IIT Bombay

2. (MAT8EJ402 PARTIAL DIFFERENTIAL EQUATIONS)

https://onlinecourses.nptel.ac.in/noc24_ma73/preview

Partial Differential Equations By Prof. Sivaji Ganesh | IIT Bombay

3. (MAT8EJ403 RINGS AND MODULES)

https://onlinecourses.nptel.ac.in/noc24_cs72/preview

Modern Algebra By Prof. Manindra Agrawal | IIT Kanpur

4. (MAT8EJ405 FOUNDATIONS OF MATHEMATICS)

https://onlinecourses.nptel.ac.in/noc24_ma42/preview

Set Theory and Mathematical Logic By Prof. Amit Kuber | IIT Kanpur

5. (MAT8EJ406 OPERATIONS RESEARCH)

https://onlinecourses.swayam2.ac.in/cec24_ma05/preview

Operations Research By Professor Bibhas C. Giri | Jadavpur University

6. (MAT1CJ101 Differential Calculus + MAT2CJ101 Integral Calculus)

https://onlinecourses.nptel.ac.in/noc24_ma47/preview

Calculus of One Real Variable By Prof. Joydeep Dutta | IIT Kanpur 7. (MAT3CJ201 MULTIVARIABLE CALCULUS)

https://onlinecourses.nptel.ac.in/noc24_ma52/preview

Calculus of Several Real Variables By Prof. Joydeep Dutta | IIT Kanpur

8. (MAT4CJ203 REAL ANALYSIS I)

https://onlinecourses.swayam2.ac.in/cec24_ma01/preview

Real Analysis By Prof. Surajit Borkotokey | Dibrugarh University

9. (MAT5CJ302 ABSTRACT ALGEBRA I)

https://onlinecourses.nptel.ac.in/noc24_ma50/preview

Introduction to Abstract Group Theory By Prof. Krishna Hanumanthu | Chennai Mathematical Institute

10. (MAT5CJ303 COMPLEX ANALYSIS I + MAT6CJ304 COMPLEX ANALYSIS II)

https://onlinecourses.nptel.ac.in/noc24_ma60/preview

Complex Analysis By Prof. Pranav Haridas | Kerala School of Mathematics

NOTIFICATION

It is hereby notified that the following members have been nominated to the Board of Studies in Mathematics of Providence Women's College (Autonomous) Kozhikode as per the sub section 68 H Amendment of Calicut University Act 5 of 1975. The nominated members shall hold the office for a period of three years from the date of this notification. Their appointments are ratified by the Governing Body meeting held on 22/05/2024.

	Name and Designation	Institution
1.	Aiswarya Paul Assistant Professor, Department of Mathematics. Chairman, Head of the Department.	Providence Women's College, Calicut.
2.	(i) Dr. Sunil MathewAssociate Professor,Department of Mathematics.External expert.	NIT, Calicut.
	(ii) Dr. Vani Lakshmi R Assistant Professor, Department of Data Science. External expert.	Prasanna School of Public Health, Manipal Academy of Higher Education.
3.	Dr. Aswin VS Associate Professor, Industry Expert.	School of Digital Sciences, Thiruvananthapuram.
4.	Dr. Vineesh KP Assistant Professor, Department of Mathematics. Member.	Sree Narayana Guru College, Chelannur, Kozhikode.
	Ms. Reshmi KM Assistant Professor, Department of Mathematics. Member.	Govt. Arts and Science College, Kozhikode.

PROVIDENCE WOMEN'S COLLEGE

B.Sc. STATISTICS HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS w.e.f. 2024 admission onwards

(PWC FYUGP Regulations 2024)

CONTENTS

1. Programme outcomes (PO)	5)
2. Programme specific outcomes (PSO)	<i>i</i>)
3. Minimum credit requirement of the different pathways in the three-year programme in PWC FYUGP	(6)
4. B.Sc. Statistics (Honours) programme course structure for pathway 1-3(7)
5. Credit distribution for pathways 1-3))
6. Distribution of major courses in Statistics for pathways 1-3 (11	l)
7. Elective courses in Statistics	3)
8. Distribution of minor courses in Statistics	4)
9. Single minor – 6 course in Statistics	5)
10. Distribution of minor courses in Actuarial Science	8)
11. Single minor – 6 courses in Actuarial Science	8)
12. Distribution of general foundation courses in Statistics	9)
13. Evaluation schemes	1
14. B.Sc. Statistics honours Syllabus	1
15. Minor courses in Statistics Syllabus	\$)
16. Minor courses in Actuarial Science Syllabus	7)
17. Foundation courses in Statistics Syllabus	7)

B.Sc. STATISTICS HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at PROVIDENCE WOMEN'S COLLEGE, a student would:

	Knowledge Acquisition:
PO1	Demonstrate a profound understanding of knowledge trends and their impact on the chosen
	discipline of study.
	Communication, Collaboration, Inclusiveness, and Leadership:
PO2	Become a team player who drives positive change through effective communication,
	collaborative acumen, transformative leadership, and a dedication to inclusivity.
	Professional Skills:
PO3	Demonstrate professional skills to navigate diverse career paths with confidence and
	adaptability.
	Digital Intelligence:
PO4	Demonstrate proficiency in varied digital and technological tools to understand and interact
	with the digital world, thus effectively processing complex information.
	Scientific Awareness and Critical Thinking:
PO5	Emerge as an innovative problem-solver and impactful mediator, applying scientific
	understanding and critical thinking to address challenges and advance sustainable solutions.
	Human Values, Professional Ethics, and Societal and Environmental Responsibility:
PO6	Become a responsible leader, characterized by an unwavering commitment to human values,
	ethical conduct, and a fervent dedication to the well-being of society and the environment.
	Research, Innovation, and Entrepreneurship:
PO7	Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships with
ru/	industry, academia, and communities to contribute enduring solutions for local, regional,
	and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the BSc Statistics (Honours) programme at PROVIDENCE WOMEN'S COLLEGE, a student would:

PSO1	Acquire comprehensive understanding of concepts, principles, and theories of Statistics.
PSO2	Apply fundamental concepts of descriptive and inferential Statistics- exploratory data analysis
PSO3	Master skills in using Statistical Software's to meet the challenges of Employability, Research and Development.
PSO4	Identify the potential area of applications of Statistical theories.
PSO5	Construct Statistical models for real world problems and obtain solutions
PSO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in Statistical Science

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN PWC FYUGP

Sl. No	Academic Pathway	Major Minor/ Other Disciplines Each course has 4 credits		Foundation Courses AEC: 4 MDC: 3 SEC: 3	Intern -ship	Total Credits	Example
				VAC: 3 Each course has 3 credits			
1	Single Major (A)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Statistics + six courses in different disciplines in different combinations
2	Major (A) with Multiple Disciplines (B, C)	68 (17 courses)	12 + 12 (3 + 3 = 6 courses)	39 (13 courses)	2	133	Major: Statistics+ Mathematics and Chemistry
3	Major (A) with Minor (B)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Statistics Minor: Mathematics
	Ex	it with UG E	Degree / Procee	ed to Fourth Ye	ar with 13	3 Credits	

B.Sc. STATISTICS (HONOURS) PROGRAMME

COURSE STRUCTURE FOR PATHWAYS 1-3

- 1. Single Major
- 3. Major with Minor

2. Major with Multiple Disciplines

Seme			Total	Hours	Credit	Marks		
ster	Course Code	Course Title		/ Week	s	Inter nal	Exter nal	Total
	STA1CJ101/ STA1MN100	Core Course 1 in Major Univariate Data Analysis	75	5	4	30	70	100
		Minor Course 1	60/75	4/5	4	30	70	100
		Minor Course 2	60/75	4/5	4	30	70	100
1		Ability Enhancement Course 1– English	60	4	3	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major	45	3	3	25	50	75
		Total		23/25	21			525
	STA2CJ101/ STA2MN100	Core Course 2 in Major Bivariate Data Analysis	75	5	4	30	70	100
		Minor Course 3	60/75	4/5	4	30	70	100
		Minor Course 4	60/75	4/5	4	30	70	100
2		Ability Enhancement Course 3– English	60	4	3	25	50	75
2		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 – Other than Major	45	3	3	25	50	75
		Total		23/ 25	21			525
	STA3CJ201	Core Course 3 in Major Mathematical Methods for Statistics I	60	4	4	30	70	100
	STA3CJ202/ STA3MN200	Core Course 4 in Major Probability and Random Variables	75	5	4	30	70	100
		Minor Course 5	60/75	4/5	4	30	70	100
3		Minor Course 6	60/75	4/5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
		Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/ 25	22			550

	STA4CJ201	Core Course 5 in Major Probability Distributions	75	5	4	30	70	100
	STA4CJ202	Core Course 6 in Major Bivariate Random Variables and Limit Theorems	75	5	4	30	70	100
4	STA4CJ203	Core Course 7 in Major Applied Statistics Time Series, Index Numbers & Official Statistics	75	5	4	30	70	100
		Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
		Skill Enhancement Course 1 – English	60	4	3	25	50	75
		Total		25	21			525
	STA5CJ301	Core Course 8 in Major Estimation	60	4	4	30	70	100
	STA5CJ302	Core Course 9 in Major Sampling Methods	75	5	4	30	70	100
5	STA5CJ303	Core Course 10 in Major Testing of Hypothesis	75	5	4	30	70	100
		Elective Course 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
	STA5FS101	Skill Enhancement Course 2 Statistical analysis using Python		3	3	25	50	75
		Total		25	23			575
		Core Course 11 in Major Linear Regression Analysis	75	5	4	30	70	100
	STA6CJ302/ STA8MN302	Core Course 12 in Major Design and Analysis of Experiments		5	4	30	70	100
6		Core Course 13 in Major Stochastic Processes	60	4	4	30	70	100
		Elective Course 3 in Major	60	4	4	30	70	100
		Elective Course 4 in Major	60	4	4	30	70	100
	STA6FS102	Skill Enhancement Course 3 Basic research methodology	45	3	3	25	50	75
	STA6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50

		Total		25	25			625		
		Total Credits for Three Years			133			3325		
	STA7CJ401	Core Course 14 in Major Advanced Analytical Tools	75	5	4	30	70	100		
	STA7CJ402	Core Course 15 in Major Probability Theory	75	5	4	30	70	100		
7	STA7CJ403	Core Course 16 in Major Distribution Theory	75	5	4	30	70	100		
/	STA7CJ404	Core Course 17 in Major Advanced Sampling Methods & Design of Experiments	75	5	4	30	70	100		
	STA7CJ405	Core Course 18 in Major Advanced Statistical Inference	75	5	4	30	70	100		
		Total		25	20			500		
	STA8CJ406/ STA8MN406	Core Course 19 in Major Applied Stochastic Processes and Time Series Analysis	75	5	4	30	70	100		
	STA8CJ407/ STA8MN407	Core Course 20 in Major Applied Multivariate Techniques	60	4	4	30	70	100		
	STA8CJ408/ STA8MN408	Core Course 21 in Major Generalized Linear Models	60	4	4	30	70	100		
	OR (instead of Core Courses 19-21 in Major)									
	STA8CJ449	Project (in Honours programme)	360*	13*	12	90	210	300		
8	STA8CJ499	Research Project (in Honours with Research programme)	360*	13*	12	90	210	300		
		Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100		
		Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100		
		Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100		
	OR (inste	ad of Elective Course 7 in Major, in the case o	irs with	Resear	ch Pro	gramn	ne)			
	STA8CJ489	Research Methodology	60	4	4	30	70	100		
		Total		25	24			600		
		Total Credits for Four Years			177			4425		

*The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

3	. Major with Minor		5	I	1				
Semester	Major Courses	Image: Constant of the second secon		Internship/ Project	Total				
1	4	4 + 4	3 + 3 + 3	-	21				
2	4	4 + 4	3 + 3 + 3	-	21				
3	4 + 4	4 + 4	3 + 3	-	22				
4	4 + 4 + 4	-	3 + 3 + 3	-	21				
5	4 + 4 + 4 + 4 + 4	-	3	-	23				
6	4 + 4 + 4 + 4 + 4	-	3	2	25				
Total for Three Years	68	24	39	2	133				
7	4 + 4 + 4 + 4 + 4	_	-	-	20				
8	4 + 4 + 4	4 + 4 + 4	-	12* / 12*	24				
* instead of three Major courses									
Total for Four Years	88 + 12 = 100	36	39	2	177				

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 3

1. Single Major

2. Major with Multiple Disciplines

DISTRIBUTION OF MAJOR COURSES IN STATISTICS FOR PATHWAYS 1-3

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	STA1CJ101/ STA1MN100	Core Course 1 in Major Univariate Data Analysis	5	4
	STAIMINIOU	Univariate Data Analysis		
2	STA2CJ101/ STA2MN100	Core Course 2 in Major Bivariate Data Analysis	5	4
	STA3CJ201	Core Course 3 in Major Mathematical Methods for Statistics I	4	4
3	STA3CJ202/ STA3MN200	Core Course 4 in Major Probability and Random Variables	5	4
	STA4CJ201	Core Course 5 in Major Probability Distributions	5	4
4	STA4CJ202	Core Course 6 in Major Bivariate Random Variables and Limit Theorems	5	4
	STA4CJ203	Core Course 7 in Major Applied Statistics Time Series, Index Numbers & Official Statistics	5	4
	STA5CJ301	Core Course 8 in Major Estimation	4	4
	STA5CJ302 Core Course 9 in Major Sampling Methods		5	4
5	STA5CJ303	Core Course 10 in Major Testing of Hypothesis	5	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4

		I			
	STA6CJ304/ STA8MN304	Core Course 11 in Major Linear Regression Analysis	5	4	
	STA6CJ305 /	Core Course 12 in Major	5	4	
6	STA8MN305	Design and Analysis of Experiments			
0	STA6CJ306 /	Core Course 13 in Major	4	4	
	STA8MN306	Stochastic Processes			
		Elective Course 3 in Major	4	4	
		Elective Course 4 in Major	4	4	
	STA6CJ349	Internship in Major	-	2	
]	Fotal for the Three Years		70	
	STA7CJ401	Core Course 14 in Major			
		5	4		
	STA7CJ402	Advanced Analytical Tools Core Course 15 in Major			
		5	4		
7	STA7CJ403	Probability Theory Core Course 16 in Major			
		Distribution Theory	5	4	
	STA7CJ404	Core Course 17 in Major			
		5	4		
		Advanced Sampling Methods & Design of Experiments			
	STA7CJ405	Core Course 18 in Major	F	4	
		Advanced Statistical Inference	5	4	
	STA8CJ406/	Core Course 19 in Major			
	STA8MN406	Applied Stochastic Processes and Time Series	5	4	
		Analysis			
	STA8CJ407/	Core Course 20 in Major	4	4	
	STA8MN407	Applied Multivariate Techniques	4	4	
	STA8CJ408/	Core Course 21 in Major			
	STA8MN408	Generalized Linear Models	4	4	
		OR (instead of Core Courses 19 – 21 in Major)			
	STA8CJ449	Project	13	12	
		(in Honours programme)		12	
	STA8CJ499	Research Project	13	12	
8		(in Honours with Research programme)		12	
σ		Elective Course 5 in Major	4	4	
		Elective Course 6 in Major	4	4	
		Elective Course 7 in Major	4	4	
	OR (instead	earch programme)			
	OK (Insteau	of Elective course 7 in Major, in Honours with Resea	aren progra		

Sl.	Course	Title	Seme	Total	Hrs/	Cre		6	
No.	Code		ster	Hrs	Week	dits	Inte	Exte	Total
							rnal	rnal	
1	STA5EJ301	Statistical Quality	5	60	4	4	30	70	100
		Control							
2	STA5EJ302	Optimization	5	60	4	4	30	70	100
		Techniques							
3	STA5EJ303	Biostatistics	5	60	4	4	30	70	100
4	STA5EJ304	Econometrics	5	60	4	4	30	70	100
5	STA5EJ305	Official Statistics	5	60	4	4	30	70	100
6	STA5EJ306	Longitudinal Data	5	60	4	4	30	70	100
		Analysis							
7	STA6EJ301	Simulation	6	60	4	4	30	70	100
		Techniques							
8	STA6EJ302	Reliability Theory	6	60	4	4	30	70	100
9	STA6EJ303	Life Time Data	6	60	4	4	30	70	100
		Analysis							
10	STA6EJ304	Demography	6	60	4	4	30	70	100
11	STA6EJ305	Actuarial Statistics	6	60	4	4	30	70	100
12	STA8EJ411	Statistical Methods for	8	60	4	4	30	70	100
		Machine Learning							
13	STA8EJ412	Operations Research	8	60	4	4	30	70	100
14	STA8EJ413	Queueing Models	8	60	4	4	30	70	100
15	STA8EJ414	Statistical Decision	8	60	4	4	30	70	100
		Theory							
16	STA8EJ415	Analysis of Clinical	8	60	4	4	30	70	100
		Trials							
17	STA8EJ416	Applied Algorithms	8	60	4	4	30	70	100
		and Big Data							
		Techniques							
18	STA8EJ417	Advanced Trends in	8	60	4	4	30	70	100
		Statistics							

ELECTIVE COURSES IN STATISTICS

114

DISTRIBUTION OF MINOR COURSES IN STATISTICS

The minor courses given below should not be offered to the students who have taken statistics as the major discipline. They should be offered to students from other major discipline only.

Sl.	Se	Course		Seme	Total	Hrs/	Cre	Marks				
No :	mes ter	Code		ster	Hrs	Week	dits	Inte	Exte	Total		
-								rnal	rnal			
		(Preferable for Mathematics, Physics, Chemistry and Biochemistry students)										
	1	STA1MN101	Descriptive Statistics for Data Science	1	75	5	4	30	70	100		
1	2	STA2MN101	Probability theory I	2	75	5	4	30	70	100		
	3	STA3MN201	Statistical inference using R	3	75	5	4	30	70	100		
				l								
		(Preferable for Computer Science and Electronics students)										
	1	STA1MN103	Introductory statistics with R	1	75	5	4	30	70	100		
2	2	STA2MN103	Regression and probability theory	2	75	5	4	30	70	100		
	3	STA3MN203	Random variables and CART	3	75	5	4	30	70	100		
						1	1					
			(Preferable f	or Psych	ology stu	udents)						
	1	STA1MN105	Descriptive statistics	1	75	5	4	30	70	100		
3	2	STA2MN105	Introduction to probability	2	75	5	4	30	70	100		
	3	STA3MN205	Inferential Statistics	3	75	5	4	30	70	100		

			(Preferable fo	or Life S	cience st	udents)				
4	1	STA1MN107	Basic statistics	1	75	5	4	30	70	100
	2	STA2MN107	Statistical inference I	2	75	5	4	30	70	100
	3	STA3MN207	Statistical inference II	3	75	5	4	30	70	100
		-			1			1	1	
			(Preferable for	Social S	Science s	tudents)				
_	1	STA1MN108	Statistics for critical thinking I	1	75	5	4	30	70	100
5	2	STA2MN108	Statistics for critical thinking II	2	75	5	4	30	70	100
	3	STA3MN208	Statistics for critical thinking III	3	75	5	4	30	70	100
					1	1				
			(Preferable f				4	20	70	100
	1	STA1MN109	Elementary statistics	1	75	5	4	30	70	100
6	2	STA2MN109	Theory of Probability	2	75	5	4	30	70	100
	3	STA3MN209	Statistical inference	3	75	5	4	30	70	100
					<u> </u>	1				
			(Preferable f					20		100
	1		Basic statistics and data visualization	1	75	5	4	30	70	100
7	2	STA2MN110	Data analysis foundations in statistics	2	75	5	4	30	70	100
	3	STA3MN210	Probability theory and sampling techniques	3	75	5	4	30	70	100
	·									
			(Preferable for Commerce a						ſ	
8	1	STA1MN111	Fundamentals of data analysis	1	75	5	4	30	70	100
	2	STA2MN111	Statistical modeling and sampling techniques	2	75	5	4	30	70	100

statistical distributions		
---------------------------	--	--

SINGLE MINOR - SIX COURSES IN STATISTICS

Sl.	Se	Course	Title	Seme	Total	Hrs/	Cre		Marks	
No :	mes ter	Code		ster	Hrs	Week	dits	Inte	Exte	Total
								rnal	rnal	
		(Pre	eferable for Mathematics, Phy	vsics, Ch	emistry	and Bioc	hemist	ry stude	ents)	
	1	STA1MN101	Descriptive Statistics for Data Science	1	75	5	4	30	70	100
		STA1MN102	Applied statistics using R	1	75	5	4	30	70	100
	2	STA2MN101	Probability theory I	2	75	5	4	30	70	100
1	2	STA2MN102	Probability theory II	2	75	5	4	30	70	100
	3	STA3MN201	Statistical inference using R	3	75	5	4	30	70	100
		STA3MN202	Statistical inference for Data Science	3	75	5	4	30	70	100
	<u> </u>				1		1			
			(Preferable for Compute	er Scienc	e and Ele	ectronics	studer	nts)		
	1	STA1MN103	Introductory statistics with R	1	75	5	4	30	70	100
		STA1MN104	Applied statistics	1	75	5	4	30	70	100
	2	STA2MN103	Regression and probability theory	2	75	5	4	30	70	100
2	-	STA2MN104	Regression using JASP software	2	75	5	4	30	70	100
	3	STA3MN203	Random variables and CART	3	75	5	4	30	70	100
	5	STA3MN204	Tests of hypothesis and SVM	3	75	5	4	30	70	100

			(Preferable for Psychology students)								
	1	STA1MN105	Descriptive statistics	1	75	5	4	30	70	100	
		STA1MN106	Introductory statistics with JASP	1	75	5	4	30	70	100	
3	2	STA2MN105	Introduction to probability	2	75	5	4	30	70	100	
		STA2MN106	Correlation and regression	2	75	5	4	30	70	100	
		STA3MN205	Inferential Statistics	3	75	5	4	30	70	100	
	3	STA3MN206	Tests of hypothesis with JASP software	3	75	5	4	30	70	100	

DISTRIBUTION OF MINOR COURSES IN ACTUARIAL SCIENCE

Sl.	Se	Course	Title	Seme	Total	Hrs/	Cre		Marks	
No :	mes ter	Code		ster	Hrs	Week	dits	Inte	Exte	Total
•								rnal	rnal	
(Preferable for Mathematics, Statistics, Commerce and Economics students)						nts)				
	1	ACT1MN101	Actuarial mathematics I	1	75	5	4	30	70	100
1	2	ACT2MN101	Actuarial mathematics II	2	75	5	4	30	70	100
	3	ACT3MN201	Risk modeling and survival analysis	3	75	5	4	30	70	100
	1				•					

SINGLE MINOR - SIX COURSES IN ACTUARIAL SCIENCE

Sl.	Se	Course	Title	Seme	Total	Hrs/	Cre		Marks	
No ·	mes ter	Code		ster	Hrs	Week	dits	Inte	Exte	Total
•								rnal	rnal	
		(Pi	referable for Mathematics, Sta	tistics, C	ommerc	e and Eco	onomic	s studer	nts)	
	1	ACT1MN101	Actuarial mathematics I	1	75	5	4	30	70	100
		ACT1MN102	Financial Mathematics	1	75	5	4	30	70	100
1	2	ACT2MN101	Actuarial mathematics II	2	75	5	4	30	70	100
	2	ACT2MN102	Actuarial economics	2	75	5	4	30	70	100
-	3	ACT3MN201	Risk modeling and survival analysis	3	75	5	4	30	70	100
		ACT3MN202	Life contingencies	3	75	5	4	30	70	100

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN STATISTICS

Sem	Course		Total	Hours/			Marks	
ester	Code	Course Title	Hour	Week	Credits	Inter nal	Exter nal	Total
1	STA1FM101 STA1FM102	Multi-Disciplinary Course 1 Quality Control Fundamentals of statistics	45	3	3	25	50	75
2	STA2FM103 STA2FM104	Multi-Disciplinary Course 2– Managerial Decision Making Statistical sampling and probability theory	45	3	3	25	50	75
5	STA5FS101	Skill Enhancement Course 2 Statistical analysis using Python	45	3	3	25	50	75
6	STA6FS102	Skill Enhancement Course 3 Basic research methodology	45	3	3	25	50	75

EVALUATION SCHEME

1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks is from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks is from internal evaluation and 50 marks, from external evaluation.

2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit practical.

• In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

• In 4-credit courses with 3-credit theory and 1-credit practical components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for practical. The practical component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Statistics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature of	of the Course	Internal Evaluat (about 30% c		External Exam	Total Marks
			Open-ended module / Practicum	On the other 4 modules	on 4 modules (Marks)	
1	4-credit course	only theory (5 modules)	10	20	70	100
2	4-credit course	Theory (4 modules) + Practical	20	10	70	100
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1	1.1. INTERNAL EVALUATION OF THEORY CONTONENT							
Sl.	Components of Internal		ernal Marks for	•				
No.	Evaluation of Theory	of a N	/lajor / Minor C	ourse of 4-cree	dits			
	Part of a Major / Minor Course	Theory	' Only	Theory + Practical				
		4 Theory Modules	Open-ended Module	4 Theory Modules	Practical			
1	Test paper/	10	4	5	-			
	Mid-semester Exam							
2	Seminar/ Viva/ Quiz	6	4	3	-			
3	Assignment	4	2	2	-			
		20	10	10	20^{*}			
	Total	30)	30				

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

⁶Refer the table in section 1.2 for the evaluation of practical component

1.2. EVALUATION OF PRACTICAUM COMPONENT

The evaluation of practicum component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester practicum examination and viva-voce, and the evaluation of practicum records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva- voce of practicum component shall be as given below:

Sl. No.	Evaluation of Practicum Component of in a Major / Minor Course	Marks for Practical	Weightage
1	Continuous evaluation of practicum/ exercise performed in practicum classes by the students	10	50%

2	End-semester examination and viva-voce to be	7	35%
	conducted by teacher-in-charge along with an		
	additional examiner arranged internally by the		
	Department Council		
3	Evaluation of the Practicum records submitted	3	15%
	for the end semester viva-voce examination by		
	the teacher-in-charge and additional examiner		
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the College based on 10-point grading system (refer section 5).

		Total No. of	No. of	Marks for	Ceiling
Duration	Туре		Questions to be	Each	of
		Questions	Answered	Question	Marks
	Short Answer	10	8-10	3	24
2 Hours	Paragraph/ Problem	8	6-8	6	36
	Essay	2	1	10	10
				Total Marks	70

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in a firm/industry / organization, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

• A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship.

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Statistics or allied Disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship. BSc. Statistics (Honours) Programme, Institute/ Industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one research institute, research laboratory and place of Statistical data anyalysis importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 4. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 5. The log book and the typed report must be submitted at the end of the Internship.
- 6. The Institution at which the Internship will be carried out should be priorapproved by the Department Council of the College where the student has enrolled for the UG (Honours) Programme.

2.2. EVALUATION OF INTERNSHIP

• The evaluation of Internship shall be done internally through Continuous Assessment mode by a committee internally constituted by the Department Council of the College where the student has enrolled for the UG (Honours) Programme.

- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Eval	uation of Internship	Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through	Acquisition of skill set	10	40%
2	interim presentations and reports by the committee	Interim Presentation and Viva-voce	5	
3	internally constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ S	5	10%	
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally	Presentation of the work	5	
7	constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-c internship supervisor, and the end semester viva–voc committee internally const Council	8	15%	
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

• In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.

• The Project can be done in the same institution/ any other higher educational institution (HEI)/ research Centre/ training Centre.

• The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.

• A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

• A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is

allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/

Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.

• In Honours with Research programme, the student has to do a mandatory Research

Project of 12-credits instead of three Core Courses in Major in semester 8.

- The approved research centres of PROVIDENCE WOMEN'S COLLEGE or any other HEI can offer the Honours with Research programme. The departments in the affiliated colleges under PROVIDENCE WOMEN'S COLLEGE, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty member with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.
- The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project

supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME AND HONOURS WITH RESEARCH PROGRAMME

1. Project can be in Statistics or allied disciplines.

- 2. Project should be done individually.
- 3. Project work can be of experimental/ theoretical/ computational in nature.
- 4. There should be minimum 300 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - ➤ Wide review of a topic.
 - Investigation on a problem in systematic way using appropriate techniques.
 - Systematic recording of the work.
 - > Reporting the results with interpretation in a standard documented form.
 - Presenting the results before the examiners.
- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain experimental conditions and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
- 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
- 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
- 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.

11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG (Honours) programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks is from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG (Honours) programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the Providence Women's College.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)	Weightage
Continuous evaluation of project work through interim presentations and reports by the committee internally constituted by the Department Council	90	30%
End-semester viva-voce examination to be conducted by the external examiner appointed by the college	150	50%
Evaluation of the day-to-day records and project report submitted for the end-semester viva–voce examination conducted by the external examiner	60	20%
Total Marks	300	

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours / Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva-Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours / Honours with Research) 12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

• All the General Foundation Courses (3-credits) in Statistics are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General Foundation Course in Statistics		nternal Marks of a General Foundation Course of 3-credits in Statistics		
	Foundation Course in Statistics	4 Theory Modules	Open-ended Module		
1	Test paper/ Mid-semester Exam	10	2		
2	Seminar/ Viva/ Quiz	6	2		
3	Assignment	4	1		
		20	5		
	Total	al 25			

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the College based on 10-point grading system (refer section 5).

COURSES						
Duration	Туре	Total No. of Questions	No. of Questions to be Answered	Marks for Each Question	Ceiling of Marks	
	Short Answer	10	8 - 10	2	16	
1.5 Hours	Paragraph/ Problem	5	4 – 5	6	24	
	Essay	2	1	10	10	

Total Marks

50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

Sl.	Percentage of Marks	Description	Letter	Grad	Range of	Class
No	(Internal & External Put	_	Grade	e	Grade Points	
	Together)			Point		
1	95% and above	Outstanding	0	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 - 9.49	with Distinction
3	75% to below 85%	Very Good	Α	8	7.50 - 8.49	
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above Average	В	6	5.50 - 6.49	First Class
6	45% to below 55%	Average	C	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50 - 4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0 – 3.49	Fail
9	Not attending the examination	Absent	Ab	0	0	Fail

LETTER GRADES AND GRADE POINTS

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree (Honours) or UG Degree (Honours with Research), as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) = Σi (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

SGPA =	Sum of the credit points of all the courses in a semester
	Total credits in that semester

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	3 x 10 = 30
Ι	Course 5	3	C	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

• The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in PWC FYUGP shall be calculated by the following formula.

CGPA for the four-year programme in PWC FYUGP shall be calculated by the following formula.

• The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.

• Based on the above letter grades, grade points, SGPA and CGPA, the College shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

* * * * * * *

B.Sc. STATISTICS HONOURS (MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS

PROVIDENCE WOMEN'S COLLEGE FOUR- YEAR UNDERGRADUATE PROGRAMME (PWC FYUGP) BSc STATISTICS MAJOR COURSES

SEMESTER I

Programme	B. Sc. Statistic	cs			
Course Code	STA1CJ101(H	P)/STA1MN1	00 (P)		
Course Title	Univariate Da	ata Analysis			
Type of Course	Major				
Semester	Ι				
Academic	100-199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites	HSE level Mathematics/Statistics courses				
Course	To make the student describe, visualize, distinguish,				
Summary	illustrate single variable data				
, and the second s	mustrate single variable data				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe types of data To understand the various types of data and emphasize the relevance of big data in statistical analysis.	U	С	Instructor-created exams / Quiz
CO2	Illustrate (numerical data) To understand and apply measures of central tendency to describe the centre of a data se	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-created exams
CO3	Visualize To analyse the spread or variability within a univariate data set using measures of dispersion	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-created

				exams		
CO4	Illustrate (software) To provide hands-on experience applying the concepts learned in the previous modules.	U	С	Instructor-created exams / Home Assignments		
CO5	To equip students with skills in effectively presenting univariate data using tables and diagrams.	Ap	Р	One Minute Reflection Writing assignments/ Instructor-created exams		
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Detailed Syllabus:

Module	Unit	Content	Hrs (45	Marks (70)
			+30)	()
Ι		Introduction to Statistics	10	10
	1	Understanding Types of Data- Categorical, Numerical Data (Discrete		
		and Continuous)		
	2	Time Series Data, Cross-Sectional Data, Nominal and Ordinal Data		
	3	Primary and Secondary data, Design a questionnaire.		
	4	Data Sources in the Digital Age, Challenges and Opportunities in		
		Analysing Modern Data		
	Sectio	ons from References:		
II		Measures of Central tendency	10	20
	5	Arithmetic Mean, Simple and Weighted Mean		
	6	Median, and Mode(Calculation and Interpretation).		
	7	Geometric Mean, Harmonic Mean (Calculation and Interpretation).		
	8	Comparison of Measures of Central Tendency- Scenarios for		
		Applying Mean, Median, and Mode- Robustness of Measures,		
		Partition values		
	Sectio	ons from References:		
III		Measures of Dispersion	15	25
	9	Absolute and relative measures of dispersion		
	10	Range, Quartile Deviation		
	11	Mean Deviation		
	12	Standard Deviation		
	13	Coefficient of Variation		
	14	Moments- Central and non-Central Moments,		
	15	Measures of Skewness based on Quartiles and Moments		
	16	Kurtosis based on Moments,		
	17	Box plot		
	Sectio	ons from References:		

IV	Introduction to R	10	15
	18 R as a calculator, R preliminaries,		
	19 Getting help, data inputting methods(direct and importing from other spread sheet applications like Excel),		
	20 Statistical software and a programming language,		
	21 Data accessing, and indexing, Graphics in R, built in functions,		
	22 Saving, Storing and Retrieving work.		
	Sections from References:		
V	Open Ended Module:	30	
	Practical Applications, Case Study and Group Assignments		
	1 Practical exercises Hands-on using Software R:		
	Graphical Presentation of Data, Measures of central tendency and		
	dispersion.		
	Case study using primary data in the form of Group Assignments and		
	Discussions.		
	Prepare record of at least 10 questions from Module III and IV using R		
	Package		
	Sections from References:		

Books and References:

Textbooks :

1. S.C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons

2. Michale J. Crawley, THE R BOOK, John Wiley & Sons, England (2009)

References

- 1. V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
- 2. Sudha G. Purohitet.al., Statistics Using R, Narosa Publishing House, , India(2008)
- 3. A.M. Mood, F.A. Graybill and D C Bose, Introduction to Theory of Statistics, McGraw Hill
- 4. John E Freund, Mathematical Statistics (6th edn), Pearson Edn, NewDelhi.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	3	1	2	-	-	2	-	2	-	-	-
CO 2	3	3	-	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	-	-
CO 4	3	2	-	1	-	-	3	-	2	2	-	-
СО	3	2	-	-	-	-	3	-	2	-	-	-

5												
CO 6	1	1	2	-	3	3	2	2	1	-	3	3

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

SEMESTER II

Programme	B. Sc. Statistic	cs							
Course Code	STA2CJ101(F	STA2CJ101(P)/STA2MN100(P)							
Course Title	Bivariate Dat	ta Analysis							
Type of Course	Major								
Semester	II								
Academic	100-199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
Pre-requisites	HSE level Ma	thematics/Sta	itistics courses	8					
Course	To make the student analyze Bi variate data and Examine								
Summary	agreement /		•						
Objective		0 ••• ••							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe and interpret bivariate data	U	С	Instructor-created exams / Quiz
CO2	Understand the concept of correlation and interpret their magnitude and direction	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-created exams
CO3	Perform simple linear regression analysis to model the relationship beteen variables	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-created exams
CO4	Identify patterns and trends in bivariate data	U	С	Instructor-created exams / Home Assignments
CO5	Apply effectively in real life situations and do analysis using R software and communicate the results.	Ap	Р	One Minute Reflection Writing assignments/ Instructor-created exams
	emember (R), Understand (U			
	ctual Knowledge(F) Concept vledge (M)	ual Knowled	ge (C) Procedu	ral Knowledge (P) Metacognitive

Detailed Syllabus:

Module Uni	Content	Hrs	Marks
		(45	(70)

Ι	Concept of Bivaraite Data	10	15
	1 Diversity Definition Section Discours		
6	1 Bivariate Data: Definition, Scatter Diagram.		
	2 Contingency tables for discrete data, joint, marginal.		
	3 Curve fitting: Principle of least squares		
	4 fitting of straight line, exponential and power curves using the		
	principle of least squares		
	Sections from References:		
Π	Correlation	10	20
_	5 Concept, types of Correlation,		
	6 Karl Pearson's Coefficient of Correlation for grouped and ungroupe	ed (
_	data and its properties.		
	7 Spearman's Rank Correlation		
	8 measures using Discordant and Concordant pairs		
	9 Point Bi serial correlation interpretation of correlation coefficient		
	Sections from References:		
Ш	Regression	15	20
	10 Concept of Regression		
	11 Distinction between Correlation and Regression		
	12 Linear and Non Linear Regression		
	13 Lines of Regression		
	14 Need of Two lines of Regression		
	15 Regression coefficients		
	16 Properties of Regression Coefficients		
	17 Angle of Regression lines and interpretation		
	Sections from References:		
IV	Partial and Multiple Correlation	10	15
	18 Concepts of Partial and Multiple Correlation Coefficients		
	(three variable cases only).		
	19Computation of Multiple and Partial Correlation Coefficients		
	20 Properties of Multiple and Partial Correlation Coefficients		
	21 Analysis of Categorical Data: Contingency table,		
	22 Independence & association of attributes.		
	Sections from References:		
V	Open Ended Module:	30	
-	Practical Applications, Case Study and Group Assignments		
	1 Practical exercises Hands-on using Software R: Graphical		
	Presentations, Correlation and regression	1	
	Case study using primary data in the form of Group Assignments an	a	
	Discussions. Prepare record of at least 10 questions from Module I, II, III and IV using R		
	Package		
	Sections from References:		
Books and	d References:	I	

2. S.C. Gupta and V.K. Kapoor., Fundamentals of Applied Statistics, Sultan Chand and Sons

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	2	3	2	-	-	-	-
CO 2	-	-	-	-	-	3	3	2	-	-	-	-
CO 3	-	-	-	-	-	2	2	3	-	-	-	-
CO 4	-	-	-	-	-	-	3	3	-	-	1	1
CO 5	-	2	-	3	2	-	2	-	1	-	2	-
CO 6	2	_	2	-	-	3	2	3	-	3	_	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			\checkmark

SEMESTER III

Programme	B. Sc. Statistics
Course Code	STA3CJ201
Course Title	Mathematical Methods for Statistics I

Type of Course	Major					
Semester	III					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	4	-	-	60	
Pre-requisites	HSE level Ma	thematics cou	urse			
Course	Make studer	nts aware of	fundament	al concepts	of	
Summary	Mathematical Analysis,					
Objective		ur i murj sis	,			

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Explain the concepts of Real line	U	С	Instructor-created exams / Quiz			
CO2	Determine limits of Sequence and series	Ар	Р	Practical Assignment / Observation of Practical Skills			
CO3	Understand Convergence and Divergence	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Explain Continuity and Uniform Continuity	U	С	Instructor-created exams / Home Assignments			
CO5	Derivative of functions	Ар	Р	One Minute Reflection Writing assignments			
CO6	visualize Theory of Integration	Ар	Р	Viva Voce			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	

Ι		Real Line	16	20
	1	The Order Properties of R		
	2	Absolute Value and the Real Line		
	3	The Completeness Property of R		
	4	Archimedean Property		
	5	The Existence of $\sqrt{2}$		
	6	The Density Theorem		
	7	Nested Intervals Property		
	8	Uncountability of R		
	Section	ns from References:		
II		Sequences and Series	12	15
	9	Sequence, Limit of a Sequence,		
	10	Limit Theorems, Monotone Convergence Theorem (statement only),		
		Subsequence,		
	11	Bolzano- Weierstrass Theorem		
	12	The Cauchy Criterion, Introduction to Infinite Series,		
	13	Convergence criteria, common convergence tests.		
	Section	ns from References:		
III	Function			20
	14	Limit of functions		
	15	On-sided Limits,		
	16	Continuous Functions,		
	17	Bolzano's Intermediate Value Theorem,		
	18	Uniform Continuity,		
	19	Monotone and Inverse Functions		
	Section	ns from References:		
IV			10	15
	20	Derivative		
	21	Chain Rule		
	22	The Mean Value Theorem		
	23	Riemann Integral, Riemann Integrable Functions,		
	24	Fundamental Theorem of Calculus		
	Section	ns from References:		
V	Open Ended Module:		12	
	1	Sets and Functions, Finite and Infinite Sets		
		Algebraic Properties of R, Rational and Irrational Numbers,		
	Section	ns from References:		
Books ar	d Refere	ences:	. 1	
		and Sherbert D. R. (2000). Introduction to Real Analysis, 3 rd edition, John Wiley & Sons		
1. Ba	artie R. G.	and sherbert D. R. (2000). Introduction to Real Analysis, 5 – edition, John Whey & Sons		

3. Royden, H. L. and Fitzpatrick, P. M. (2010). Real Analysis. Prentice Hall.

Programme	B. Sc. Statistics
Course Code	STA3CJ202(P)/STA3MN200 (P)

Course Title	Probability a	nd Random	Variables			
Type of Course	Major					
Semester	III					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	HSE level Ma	thematics/Sta	tistics courses	8		
Course	Make the students recall set theory, define, classify,					
Summary	illustrate probability theory. Discuss use of math.					
Objective	Expectation in variable properties					
			properties			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and comprehend the fundamental concepts of probability and apply basic probability rules.	U	С	Instructor-created exams / Quiz
CO2	Define random variables, compute their probabilities, and consequently develop probability and cumulative probability distributions.	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Recognize and interpret moments of a distribution through mathematical expectation	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Develop proficiency in handling probability problems using statistical software and analyzing probability distributions.	U	С	Instructor-created exams / Home Assignments
CO5 * - Re	Communicate the solutions to probability problems effectively and enhance the ability to present information clearly and concisely emember (R), Understand (U), Apply	Ap (Ap) Analyse	P (An) Evaluate (One Minute Reflection Writing assignments E). Create (C)
	ctual Knowledge(F) Conceptual Know			

Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		12	18	
	1	Permutations and Combinations		
	2	Random experiment, Sample space, Events,		
	3	Classical definition of probability		
	4	Statistical regularity		
	5	Statistical Definition of Probability		
	6	Field, Sigma field		
	7	Axiomatic definition of probability and simple properties		
	8	Addition theorem (two and three events)		
	Sectio	ons from References:		
II		Conditional probability	10	15
	9	Definition of Conditional probability		
	10	Multiplication theorem		
	11	Independence of events- Pair wise and Mutual		
	12	Bayes theorem and its applications.		
	Sectio	ons from References:		
III		13	20	
	13	Discrete and Continuous Random variables		
	14	Probability mass function (pmf) properties and examples		
	15	Probability density function (pdf)-properties and examples		
	16	Cumulative distribution function		
	17	Properties of Distribution Function		
	18	Plotting step function/Ladder function		
	19	Change (transformation) of variables		
	20	Derivative method		
	21	Distribution function method		
	Sectio	ons from References:		
IV		Mathematical Expectation	10	17
	22	Expected values of Random Variables		
	23	Raw and Central Moments (definition and relationships)		
	24	Moment generation function (MGF)		
	25	Properties of MGF		
	26	Characteristic function (definition and use only),		
	27	Moment measures of Skewness and kurtosis.		
	Sectio	ons from References:		
V		Open Ended Module: Practical Applications Probability and Distributions	30	
	1	Handling problems related to probability		

	Verification of function as pmf/pdf,
	Evaluation of moments, MGF and characteristic function (R /
	Mathematica-wolframcloud /sage)
	Case Study
	Observing a random phenomenon, construction of empirical
	probability distribution.
Sec	tions from References:
	ks and References
	1. S.C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, Sultan
	Chand and Sons 2. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): Introduction to the
	Theory of Statistics, 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co.
	Ltd.
	3. Christian Heumann, Michael Schomaker and Shalabh (2016):
	Introduction to Statistics and Data Analysis with Exercises, Solutions
	and Applications in R., Springer International Publishing Switzerland
	4. John E Freund (2014): Mathematical Statistics, Pearson Edn, New
	Delhi
5.	Rohatgi V. K. and Saleh, A.K. Md. E. (2009): An Introduction to
	Probability and Statistics. 2ndEdn. (Reprint) John Wiley and Sons.

SEMESTER IV

Programme	B. Sc. Statistic	cs						
Course Code	STA4CJ201(F	STA4CJ201(P)						
Course Title	Probability D	Probability Distributions						
Type of Course	Major							
Semester	IV							
Academic	200-299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours			
		per week	per week	per week				
	4	3	-	2	75			
Pre-requisites	HSE level Ma	thematics/Sta	tistics courses	8				
Course Summary Objective	To understand random variables, their probability distributions (discrete and continuous cases separately). To analyse their characterization & properties of the distribution. To gain proficiency in transformation of random variables. To analyse their characterization & properties of the real data set.							

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply probability concepts to model.	U	С	Instructor-created exams / Quiz
CO2	Analyze random phenomena Analyze the corresponding distribution and its characterization.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	Gain thorough idea about theoretical and practical aspects of Probability distribution	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Apply transformation of random variables to obtain new distributions.	U	С	Instructor-created exams / Home Assignments
CO5	Uses of moments, cumulates, and characteristic functions.	Ар	Р	One Minute Reflection Writing assignments
CO6	Analyze the distributional properties of data using moments, skewness, and kurtosis.	Ар	Р	Viva Voce
	emember (R), Understand (U), Apply (Ap ctual Knowledge(F) Conceptual Knowled	•		

Knowledge (M)

Detailed Syllabus:

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		Standard Distributions Discrete	10	16
	1	Degenerate distribution		
	2	Bernoulli distribution (definition).		
	3	Binomial distribution (definition, properties and application).		
	4	Poisson distribution (definition, properties and application).		
	I Standard Distributions Discrete 1 Degenerate distribution 2 Bernoulli distribution (definition). 3 Binomial distribution (definition, properties and application). 4 Poisson distribution (definition, properties and application). 5 Relationship between Binomial and Poisson Distributions 5 Relationship between Binomial and Poisson Distributions 5 Relationship between Binomial and Poisson Distributions 6 Discrete Uniform distribution (definition and basic properties). 7 Geometric distribution (definition and basic properties). 8 Lack of memory property of Geometric Distribution 9 Negative Binomial distribution (definition and basic properties). 10 Hyper-geometric distribution (definition and basic properties). Sections from References: III 11 Standard distributions Continuous 9 Rectangular (definition, mean, variance and mgf) 10 Exponential (definition, mean, variance and mgf) 11 Memoryless property of Exponential distribution 12 Gamma (definition, mean, variance and mgf) 13 Beta (defin			
	Sectio	ons from References:		
Π		Standard Distributions Discrete	10	16
	6	Discrete Uniform distribution (definition and basic properties).		
	7	Geometric distribution (definition and basic properties).		
	8	Lack of memory property of Geometric Distribution		
	9	Negative Binomial distribution (definition and basic properties).		
	10	Hyper-geometric distribution (definition and basic properties).		
	Sectio	ons from References:		
III		Standard distributions Continuous	10	18
	9	Rectangular (definition, mean, variance and mgf)		
	10	Exponential (definition, mean, variance and mgf)		
	11	Memoryless property of Exponential distribution		
	12	Gamma (definition, mean, variance and mgf)		
	13	Beta (definition, mean, variance and mgf)		
	14	Relationship between Gamma, Beta first and second distributions		
	Sectio	ons from References:		
IV		Normal distribution	15	20
	15	Definition		
	16	Derivation of Mean and Variance		
	17	Derivation of Median and Mode Mean Deviation		
	18	Derivation of MGF		
	19	Derivation of General Central Moment		
	20	Standard Normal Distribution		
	21	Normal distribution- additive property		
	22	Area properties of Normal Distribution		
	24			
	25	Quartile Deviation		
	26	Lognormal, Pareto Distributions (definition only).		
	Sectio	ons from References:		
V		Open Ended Module:	30	
		Practical Applications		
1	1	Fitting of standard distributions		

	Random number generation using software			
	Sections from References:			
Books	and References:			
1.	S.C. Gupta and V.K. Kapoor : Fundamentals of Mathematical Statistics, Sultan Chand and sons			
2.	V.K. Rohatgi: An introduction to Probability theory and Mathematical Statistics, Wiley Eastern.			
3.	Mood A.M., Graybill. F.A and Boes D.C. : Introduction to Theory of Statistics McGraw Hill			
4.	Johnson, N.L., Kemp, A.W., and Kotz, S (2005): Univariate Discrete Distributions, 5th edition, Wiley Interscience, John Wiley & Sons			
5.	Johnson, N.L., Kotz, S., and Balakrishnan, N. (2002): Continuous Univariate Distributions, Vol. 1, John Wiley			
6.	Johnson, N.L., Kotz, S., and Balakrishnan, N. (2002): Continuous Univariate Distributions, Vol. 2, John Wiley			
7.	Hogg, R. V., Craig, A., and Mckean, J.W. (2019): Introduction to Mathematical STATistics, 8th edition, Pearson			
8.	John E Freund : Mathematical Statistics (Sixth Edition), Pearson Education (India), New Delhi.			

Programme	B. Sc. Statistics
Course Code	STA4CJ202(P)

•

Course Title	Bivariate Ra	ndom Variab	oles and Limi	t Theorems		
Type of Course	Major					
Semester	IV					
Academic	200-299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	HSE level Ma	thematics/Sta	tistics courses	8		
Course	Make students to aware bivariate distributions and			and		
Summary	understanding BVN. Apply LLN for computing					
Objective	asymptotic probability			Ð		
	asymptotic	probability				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Calculate Marginal & Conditional Probability	U	С	Instructor-created exams / Quiz
CO2	Examine Independence of two Random Variables	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Examine properties of Bivariate Normal Distribution	Ар	Р	Seminar Presentation / Group Tutorial Work
CO4	Compute upper and lower bound of Probability	U	С	Instructor-created exams / Home Assignments
CO5	Discriminate sequences of Random Variables satisfying Law of Large Numbers	Ap	Р	One Minute Reflection Writing assignments
CO6	Asymptotic behavior of Random Variables	Ap	Р	Viva Voce
# - Fa Know	emember (R), Understand (U), Apply (A ctual Knowledge(F) Conceptual Knowle ledge (M)			
Detail	led Syllabus:			

Module	Unit	Content	Hrs	Marks
			(45	(70)

		+30)	
Ι	Bivariate Random Variable	10	18
	1 Joint probability mass function		
	2 Joint Probability density function		
	3 Marginal Probability functions		
	4 Conditional Probability functions		
	5 Joint Probability Distribution function		
	6 Properties of Joint Probability Distribution function		
	7 Independence of Random Variables.		
	Sections from References:		
Π	Bivariate Expectation	11	18
	8 Mathematical expectation of Bivariate Random Variables,		
	9 Addition theorem of Expectation		
	10 Multiplication theorem of Expectation,		
	11 Covariance, Cauchy-Schwartz Inequality		
	12 Conditional Expectation and Conditional Variance		
	Sections from References:		
III	Bivariate Normal Distribution (BVN)	10	14
111	13 Probability density function of BVN, properties of BVN	10	14
	13 100ability density function of BVN 14 Marginal Probability density function of BVN		
	14 Marginal Hobability density function of BVN 15 Conditional Probability density function of BVN		
	16 Standard bivariate normal distribution		
	Sections from References:		
IV	Limit Theorems	14	20
1 V	17 Convergence in probability	14	20
	17 Convergence in probability 18 Convergence in distribution		
	19 Chebyshev's Inequality		
	19 Chebyshev's inequality 20 Weak Law of Large Numbers (iid case)		
	20 Weak Law of Large Numbers (nd case) 21 Bernoulli's Law of Large Numbers.		
	22 Central Limit Theorem (Lindberg levy-iid case),		
	 23 Applications of CLT 24 Computation of sample size using Chebeshev's Inequality and CLT 		
	Sections from References:		
V		20	
v	Open Ended Module: Practical Applications	30	
	1 Hands-on in R:		
	joint probability law, marginal and conditional probability functions,		
	conditional expectation and variance,		
	Chebyshev's inequality,		
	WLLN, BVN		
	Sections from References:		
	ad References:	L	

S. C. Gupta and V. K. Kapoor. Fundamentals of Mathematical Statistics. Sultan Ch
 Samuel Kotz, N. Balakrishnan, Norman L. Johnson. Continuous Multivariate

Distributions: Models and Applications. Wiley Series in Probability and Statistics

Programme	B. Sc. Statistic	cs			
Course Code	STA4CJ203(P)				
Course Title	Applied Statis	tics Time Ser	ies, Index Nu	mbers & offic	ial statistics
Type of Course	Major				
Semester	IV				
Academic	200-299	200-299			
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites	HSE level Ma	thematics/Sta	itistics courses	8	
Course	Make students to apply statistical models in time series				
Summary	data. Importance of various indices and vital rates.				
Objective	1				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describing TS components forces affecting data.	U	С	Instructor-created exams / Quiz			
CO2	Interpreting and computing trend and SI	Ар	Р	Practical Assignment / Observation of Practical Skills			
CO3	Relate IN for economic policy formulation	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Computation of various IN	U	С	Instructor-created exams / Home Assignments			
CO5	Summarise Fertility mortality rates	Ар	Р	One Minute Reflection Writing assignments			
CO6	Construct Life tables	Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		Time Series	10	20
	1	Time series definition and Components of time series.		
	2	Additive and Multiplicative models		
	3	Measurement of secular trend		
		Free Hand/Graphical method		
	4	Method of Semi Averages		
	5	Method of moving averages		
	6	Method of least squares (linear, quadratic and exponential).		
	Sectio	ons from References:		
II		Measurement of Seasonal Variation	10	15
	7	Simple average method.		
	8	Ratio to trend Method		
	9	Ratio to moving average		
	10	Method-Link relative method		
	Sectio	ns from References:		
III		Index Numbers	14	20
	11	Classification of Index Numbers		
	12	Methods of constructing Index Numbers		
	13	Unweighted Index Numbers, Weighted Index Numbers		
	14	Laspeyre's, Paasche's, Marshal-Edgeworth, Fisher's, Dorbish		
		Bowleys, Kellys)-		
	15	Quantity Index Numbers-Fixed base and chain base Index. Numbers		
	16	Different tests of a good Index numbers: - Unit test, Time Reversal		
		Test-Factor Reversal Test- Circular test.		
	17	Fishers Ideal Index Number		
	18	Cost of Living Index Numbers-Consumer Price Index Numbers-		
	19	Family Budget enquiry		
	Sectio	ns from References:		
IV		Vital Statistics	11	15
	20	Sources of Vital Statistics (SRS, CRS),		
	21	Fertility rate- CBR, ASFR, TFR, GFR,		
	22	Mortality rate- CDR, ASDR, SDR, IMR,		
	23	Population growth- NRR and GRR (definitions only).		
	24	Construction of simple life tables		
	Sectio	ns from References:		
V		Open Ended Module:	30	
		Practical Applications, Case Study		
	1	Visit of Government Organizations NSSO, DES		
		Case study using secondary data available from government		
		publications of Module I, II, III & IV		
		Presentation of collected data.		
	Sectio	ns from References:		

- 1. SC Gupta and VK Kapoor: Fundamentals of Applied Statistics. Sulthan Chand and sons, New Delhi.
- 2. Parimal Mukhopadhyay: Applied Statistics. Books and Allied (P) Ltd.
- 3. Box GE and Jenkins G M, Time series Analysis, Holden day

SEMESTER V

B. Sc. Statistic	cs				
STA5CJ301	STA5CJ301				
Estimation					
Major					
V					
300-399					
Credit	Lecture	Tutorial	Practical	Total Hours	
	per week	per week	per week		
4	4	-	-	60	
Make stude	nts to under	stand stand	ard sampling	g distr.	
-					
	mates				
	STA5CJ301 Estimation Major V 300-399 Credit 4 Make studen Calculate po	EstimationMajorV300-399CreditLecture per week4444	STA5CJ301 Estimation Major V V 300-399 Credit Lecture per week Tutorial per week 4 4 - Make students to understand standa Calculate point estimate and its pro Standate point	STA5CJ301 Estimation Major V V 300-399 Credit Lecture per week Tutorial per week Practical per week 4 4 - - Make students to understand standard sampling Calculate point estimate and its properties constraints Standard sampling	

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	construct various sampling distribution To understand sampling distributions and its applications	U	С	Instructor-created exams / Quiz
CO2	interpret point estimation and its properties, interval estimation The student will be able to know various methods of estimation and applying them in practical cases.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	solve parameters using various methods of estimation	Ар	Р	Seminar Presentation / Group Tutorial Work
CO4	construct confidence intervals The students understand the concept of interval estimation and its applications	U	С	Instructor-created exams / Home Assignments
CO5	apply using software	Ар	Р	One Minute

				Reflection Writing assignments				
CO6	The student will be able to know point estimation and apply it in real life situations.	Ap	Р	Viva Voce				
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Module	Unit	Content	Hrs (48 +12)	Marks (70)
Ι		Sampling Distributions	10	20
	1	Definitions of parameter, statistic and standard error		
	2	Exact sampling distribution		
		Chi square distribution (derivations of distributions not required).		
	3	Mean, Variance, MGF		
	4	Mode, Additive property		
	5	Students t distribution (derivations of distributions not required)		
	6	Mean, Variance, Moments		
	7	Snedecor's F distribution: (derivations of distributions not required)		
	8	mean, variance, mode		
	9	Relationship between z, t, F and Chi square distributions.		
	10	Sampling distributions, - distribution of sample mean and variance.		
	Sectio	ons from References:		
Π		Point Estimation	10	20
	11	Estimator, Estimate Properties of good Estimator Unbiasedness,		
		Sufficiency, Consistency and Efficiency		
	12	Factorization theorem		
	13	Complete Statistic		
	14	Minimum Variance Unbiased Estimator (MVUE)		
		Cramer-Rao inequality(statement only)		
	15	Completeness		
		Rao-Blackwell theorem(statement only),		
	16	Lehman Scheffe theorem (statement only),		
	17	Smple problems. MVB Estimators and their applications		
	Sectio	ons from References:		
III		Methods of Estimation	20	15
	18	Method of Moments,		
	19	Method of Maximum Likelihood Estimation		
	20	Application of order statistics in estimation		
	Sectio	ons from References:		
IV		Interval Estimation	8	15

	21	Concept of Confidence Interval				
	22	Confidence Intervals for mean of Normal population Large & small				
		sample				
	23	Confidence Intervals for Proportion				
	24	Confidence intervals for Variance of Normal population				
	25	Confidence Interval for the difference of means and proportion				
	Sectio	ons from References:				
V		Open Ended Module:	12			
	1	Understanding concepts and properties from modules 1 to 4 using				
		softwares				
	Section	ons from References:				
Books an	d Refe	rences:				
1. Goo	n, A.M	. Gupta, M.K., and Das Gupta, B. (1980): An outline of statistical theory,	Vol.I, 6	5th		
revised e	d. Wor	ld Press limited, Calcutta.				
2. Gup	Gupta, S.C. and Kapoor, V.K. (2014): Fundamentals of Mathematical Statistics, Sultan Chand &					
Sons.	ons.					
1. Roh	. Rohatgi, V.K. (1984) An introduction to probability theory and mathematical statistics, Wiley					
Eastern.	Eastern.					
2. Wilk	Vilks, S.S. (1962): Mathematical statistics - John Wiley & Sons.					

Programme	B. Sc. Statisti	cs			
Course Code	STA5CJ302(I	2)			
Course Title	Sampling Mo	ethods			
Type of Course	Major				
Semester	V				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites					
Course	Make student	s aware of sta	tistical survey.	s types of sar	npling
Summary	methods of sampling and comparing them based on efficiency of				
Objective	estimates	estimates			
_					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Explain need and necessity of sampling	U	С	Instructor-created exams / Quiz			
CO2	Distinguish between methods of sampling	Ap	Р	Practical Assignment / Observation of Practical Skills			
CO3	Construct sampling based on nature of population	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Examine the efficiency of estimation	U	С	Instructor-created exams / Home Assignments			
CO5	Construct random samples	Ар	Р	One Minute Reflection Writing assignments			
CO6		Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		Statistical Surveys	10	15
	1	Census and Sample Surveys		
	2	Advantages of Sample survey over Census		
	3	Basic concepts in sampling & Types of sampling		
	4	Concepts of Probability Proportional to Size and Random Sampling		
	5	Principal steps in Sample Survey.		
	6	Sampling and non-Sampling errors		
	Sectio	ons from References:		
II		Simple random sampling	12	20
	7	Simple Random Sampling (SRS)		
		Simple Random Sampling With Replacement. (SRSWR)		
		Simple Random Sampling Without Replacement (SRSWOR)		
	8	Merits and demerits of Simple Random Sampling (SRS).		
	9	Methods of selecting SRS (Lottery method and Random Number method).		
	10	Estimation of Mean		
	11	Variance of estimated mean		
	12	Estimate of estimated variance.		
	13	Unbiased estimate of Population Mean Square		
	Sectio	ons from References:		
III		Stratified random sampling	15	20
	14	Need for stratification		
	15	Estimation of Mean and variance of estimated mean		
	16	Proportion and Optimum allocation:		
	17	Allocation of sample size under Proportional Allocation and variance of estimated mean		
	18	Allocation of sample size under Optimum Allocation and variance of estimated mean		
	19	Comparison of Stratified sampling over SRS		
	Sectio	ons from References:		
IV			8	15
	20	Systematic sampling:		
	21	Estimation of mean and variance.		
	22	Advantages of systematic sampling over SRS and stratified sampling.		
	23	Comparison of systematic sampling over SRS and stratified sampling.		
	24	Cluster sampling: Clusters with equal sizes		
	25	Estimation of the population mean and total,		
	26	Comparison with simple random sampling		
X 7	Sectio	ons from References:	20	
V		Open Ended Module: Practical Applications	30	
	1	Selection of sample and determination of sample size. Estimation of		

		mean and variance under SRSWR Estimation of mean and variance under SRSWOR Estimation of mean and variance under Stratified sampling using real life problems.				
	Sectio	ons from References:				
Books and References:						
1 1	1 Murthy M N (1067), Someling theory and Matheda Statistical Publisher Society, Coloutto					

- 1. Murthy M.N (1967): Sampling theory and Methods, Statistical Publisher Society, Calcutta.
- 2. Des Raj (2000): sample Survey Theory, Narosa publishing house.

.

- 3. Sampath S. (2000): Sampling theory and Methods. Narosa Publishing House.
- 4. Sukhatme B.V (1984): Sample Survey methods and its Applications, Indian Society of Agricultural Statistics.

5. S.C Gupta and V.K Kapoor: Fundamentals of Applied Statistics. Sultan Chand & Sons.

Programme	B. Sc. Statistic	es				
Course Code	STA5CJ303(F	STA5CJ303(P)				
Course Title	Testing of Hy	Testing of Hypothesis				
Type of Course	Major					
Semester	V	V				
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites						
Course	Objective mal	ke students av	vare of statisti	cal hypothese	s, framing of	
Summary						
Objective	proper null and alternate hypothesis, selection of tests based					
	conditions.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe the basic concepts and terminologies of testing of hypothesis.	U	С	Instructor-created exams / Quiz			
CO2	Understand the theory behind the statistical test construction	Ap	Р	Practical Assignment / Observation of Practical Skills			
CO3	Understand some specific statistical tests and their application	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Describe the situations where parametric tests cannot be used.	U	С	Instructor-created exams / Home Assignments			
CO5	Understand the non-parametric alternatives of parametric tests.	Ар	Р	One Minute Reflection Writing assignments			
CO6		Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs (45 +30)	Marks (70)		
Ι		Statistical Hypothesis	9	15		
	1	Statistical Hypothesis definition				
	2	Null and Alternative hypothesis				
	3	Simple and Composite hypothesis				
	4	Parametric and Non parametric test				
	5	Type I and Type-II errors				
	6	Critical Region				
	7	Level of significance & Size of the test				
	8	Power of the test and p- value.				
	Sectio	ons from References:				
II		Tests of hypothesis	9	15		
	9	Most powerful test				
	10	Uniformly Most Powerful test				
	11	Neyman- Pearson Lemma (statement and proof of sufficiency part only)				
	12	Application of NP Lemma to construct uniformly most powerful test,				
	13	Unbiased test (definition only)				
	14	Likelihood ratio test, properties of likelihood ratio tests (without proof				
	Sections from References:					
III		Parametric Tests	17	20		
	15	Large sample test concerning mean				
	16	Large sample test for equality of means,				
	17	Large sample test for proportions,				
	18	Large sample test for equality of proportions.				
	19	Small sample tests,				
	20	Independent t-test, paired t-test,				
	21	Test for the significance of population variance.				
	22	Concept of ANOVA				
TT 7	Sectio	ons from References:	10			
IV	22	Non parametric Tests	10	20		
	23 24	Introduction and Concept				
		Test for randomness based on total number of runs,				
	25	Empirical distribution function, One Sample Tests: Kolmogrov – Smirnov test,				
	26	Sign test, Signed rank test (Wilcoxon)				
	27	Mann-Whitney U test. Kruskal-Wallis test.				
	28	Chi-square test of goodness of fit				
	29	Chi-square test for independence of attributes				
	Sectio	ons from References:				
V		Open Ended Module: Practical Applications	30			
	1	All statistical tests should be done to students with simple example				

using R or Python.						
Sections from References:						
Books and References:						
Gupta, S.C. and Kapoor, V.K. (2014): Fundamentals of Mathematical Statistics, Sulta	n Chan	d &				
Sons.						
Christian Heumann, Michael Schomaker, Shalabh., Introduction to Statistics and Data Anal	lvsis. S	pringer				
Publications, 2016	. j 516, 2	p8				
Goon, A.M., Gupta, M.K. and Dasgupta, B. (2002): Fundamentals of Statistics, Vol. I, 8th	n Edn. '	Гhe				
World Press, Kolkata.						
Rohatgi, V. K. and Saleh, A.K. Md. E. (2009): An Introduction to Probability and Statistic	es. 2nd	Edn				
(Reprint) John Wiley and Sons	200 . 2110	Lun				
Casella, G. and Berger R.L. (2002). : Statistical Inference, 2nd Edn. Thomson Learning						
Gibbons, J. D. and Chakraborty, S (2003): Nonparametric Statistical Inference. 4th Edition. Marcel						
Dekker, CRC.	11. 171aiv					

SEMSTER VI

Programme	B. Sc. Statistic	B. Sc. Statistics				
Course Code	STA6CJ301(P)					
Course Title	Linear Regre	ession Analys	is			
Type of Course	Major					
Semester	VI					
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites						
Course	Objective make students to describe and assess the strength of					
Summary	relationships between variables, to explain them using math model,					
Objective	check adequa	cy of model				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Student will be able to understand the context of regression analysis	U	С	Instructor-created exams / Quiz				
CO2	Capable for fitting a linear regression model to the given data	Ap	Р	Practical Assignment / Observation of Practical Skills				
CO3	Able to scrutinize the fitted model using the model adequacy checking	Ap	Р	Seminar Presentation / Group Tutorial Work				
CO4	Capable for forecasting the future values using the fitted model	U	С	Instructor-created exams / Home Assignments				
CO5	Able to understand which type of regression model (linear or non-linear) is suitable	Ар	Р	One Minute Reflection Writing assignments				
CO6		Ар	Р	Viva Voce				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Module				
Ι		Simple Regression	10	16
	1	Regression Model building: Scatter Diagram,		
	2	Regressor, Response, Error, uses of Regression.		
	3	Simple Linear Regression model,.		
	4	Assumptions, least square and maximum likelihood estimation of the parameters of the model.		
	5	Properties of least square estimators,		
	6	Hypothesis testing on slope and intercept of the model		
	7	Coefficient of Determination		
	Sectio	ons from References:		
II		Multiple Regression	10	16
	8	Multiple Decreasion model accumptions		
	0	Multiple Regression model, assumptions		
	9	least square and maximum likelihood estimation of the parameters of the model,		
	10	testing significance of regression coefficients, test on individual		
		regression coefficient.		
	11	R^2 and adjusted R^2 .		
	Sectio	ons from References:		
III			17	25
	12	Model adequacy checking		
	13	Residuals		
	14	Methods for scaling residuals,.		
	15	Residual plots,		
	16	PRESS statistic.		
	17	Detection and treatment of outliers		
	Sectio	ons from References:		
IV			8	13
	18	Transformation and weighting to correct model inadequacy-		
		variance stabilizing transformations		
	19	Transformations to linearize the model.		
	20	Concept of Box-Cox transformation		
	21	Concept of multicollinearity,		
	22	Sources of multicollinearity, Variance Inflation Factor		
	Sectio	ons from References:		
V		Open Ended Module: Practical Applications	30	
	1	Concept of non-linear regression, application to machine learning. Practical example of fitting a regression model using statistical software.		

	Sections from References:				
Books	and References:				
1.	Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis	s. Wiley.			
2.	2. D. D Joshi (1987). Linear Estimation and Design of Experiments. Wiley				
3.	3. Darlington, R. B. (1990). Linear Regression Analysis: Assumptions and Applications. Sage Publications.				
4.	Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis. Wiley				
5.	Weisberg, S. (2014). Applied Linear Regression. Wiley.				
6.	Yan, X., & Chen, M. (2007). Linear Regression Analysis: Theory and Computing. World Scientific				

Programme	B. Sc. Statistic	cs				
Course Code	STA6CJ302(H	STA6CJ302(P)				
Course Title	Design and A	Analysis of Ex	periments			
Type of Course	Major					
Semester	VI					
Academic	300-399					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites						
Course	Objective make students aware of designing, planning conducting					
Summary	analysing interpreting controlled tests, analysing. Differentiating the					
Objective	variation from	n various sour	ces		-	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Identify various causes of variation	U	C	Instructor-created exams / Quiz			
CO2	Describe models to express the resulting observation based effects and errors	Ар	Р	Practical Assignment / Observation of Practical Skills			
CO3	Discuss the fundamental principles of experiments	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Summarize the total variation into sum of fixed and random causes	U	С	Instructor-created exams / Home Assignments			
CO5		Ар	Р	One Minute Reflection Writing assignments			
CO6		Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit Content Theory of Linear Estimation			Marks (70)	
Ι		Theory of Linear Estimation	10	15	
	1	Estimability of linear parametric functions.			
	2	Method of least squares			
	3	Best Linear Unbiased Estimator (BLUE)			
	4	Gauss -Markov theorem			
	5	Linear hypothesis, Estimation of error variance.			
	Sectio	ons from References:			
Π		Analysis of variance	10	15	
	6	Definitions of Fixed effect model and random effect models			
	7	Definition of analysis of Variance,			
	8	Assumptions and Limitations of ANOVA			
	9	One way ANOVA with a single observation per cell			
	10	Two-way ANOVA with a single observation per cell			
	Sectio	ons from References:			
III		Analysis of covariance	17	20	
	11	Model of Analysis of covariance			
	12	Analysis of covariance with a single observation per cell			
	13	Experimental Designs			
	14	Terminology Unit, Material Treatment and Experimental error.			
	15	Principles of design of Experiment			
	16	Randomization			
	17	Replication			
	18	Local Control			
	Sectio	ons from References:			
IV		Basic Designs	8	20	
	19	Completely randomized design (CRD)			
	20	Randomized Block Design (RBD)			
	21	Latin Square Design (LSD).			
	22	Missing plot technique,			
	23	Comparison of Efficiency, Model Adequacy Checking			
	Sectio	ons from References:			
V		Open Ended Module: Practical Applications	30		
	1	Designing Experiments, Hands on Using R,			
	-	Practical Interpretation of Results.			
		Practical problems of ANOVA			
	Sectio	ons from References:			
Books an			I	<u>. </u>	
		& V.K. Kapoor: Fundamentals of Applied Statistics, Sultan Chand &	Sons		
	-	N. Giri: Design of Experiments, New Age International	~~~		
		Montgomery: Design and Analysis of Experiments. Wiley and Sons			

3. Douglas C. Montgomery: Design and Analysis of Experiments, Wiley and Sons

4. John Lawson: Design, and Analysis of Experiments with R, Chapman and Hall

Programme	B. Sc. Statistic	cs			
Course Code	STA6CJ303	STA6CJ303			
Course Title	Stochastic Pr	ocesses			
Type of Course	Major				
Semester	VI				
Academic	300-399				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	4	4	-	-	60
Pre-requisites					
Course	Objective make students aware of random process, behaviour				
Summary	stationary non stationary discrete continuous indexed process				
Objective	transition prol	babilities mar	kovian behav	iour	

•

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand the basic probability concepts including conditional probability, generating functions and Laplace transform	U	С	Instructor-created exams / Quiz			
CO2	Student will define and understand the concept of stochastic processes	Ap	Р	Practical Assignment / Observation of Practical Skills			
CO3	CO3 Student will be able to know and identify different types of stochastic process based on state space and time space.	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Students will analyse and model systems using discrete-time Markov chains, applying concepts such as transition probabilities, stationary distributions, and limiting behaviour	U	С	Instructor-created exams / Home Assignments			
CO5	Develop proficiency in modelling systems with Poisson processes, recognizing their properties and applications across various domains	Ap	Р	One Minute Reflection Writing assignments			
CO6		Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs (48 +12)	Marks (70)
Ι			10	15
	1	Introduction to Stochastic Processes(SP)		
	2	Definition of state space and time space		
	3	Classification of SP according to state space and time space,.		
	4	Process with independent increment		
	5	Process with stationary increment		
	Sectio	ons from References:		
II			10	20
	6	Markov property		
	7	Markov Chain		
	8	Discrete time Markov Chain(MC),		
	9	Transition probability matrix,		
	10	MC as graph.		
	11	Higher transition probabilities,		
	12	Chapman- Kolmogorov Equation.		
	13	One dimensional random walk (concept only)		
		ons from References:		
III			20	20
	14	First passage probabilities		_
	15	PGF,		
	16	Different types of states, classification of states (Recurrent, transient, ergodic)		
	17	Periodicity, mean ergodic theorem (statement only)		
	18	Class property, stationary distribution, limiting distributions,		
	19	Gambler's ruin problem (concept and construction of tpm only).		
		ons from References:		
IV	Beetie		8	15
1,	20	Continuous time MC,	•	
	20	Chapman-Kolmogorov equation (statement only),		
	21	Poisson Process		
	22	Inter-arrival time.		
	23	Relationship connecting Poisson Process and distributions		
	LL	(exponential, binomial, uniform and geometric)		
	Sectio	ons from References:		
V		Open Ended Module:	12	
·	1	Practical problems relating to previous modules.		
	Sectio	ons from References:		
Books an			<u> </u>	<u> </u>
		014) Stochastic Processes. Third Edition, New Age International		
		2003) Introduction to Stochastic Processes, Narosa, New-Delhi.		
		013) Introduction to Stochastic Processes, Tourosa, Tew Donn.	7	

3. Cinlar E. (2013) Introduction to Stochastic Processes, Dover Publications, NewYork

4. Feller W. (1968) Introduction to Probability Theory and its Applications, Vols. I & II, John Wiley,

New York.

5. Karlin S. and Taylor H.M. (1975) A First Course in Stochastic Processes, Second edition, Academic Press, New-York.

6. Ross S.M. (2014) Introduction to Probability models, Eleventh edition, Academic Press

VII SEMESTER

Programme	B. Sc. STATI	STICS			
Course Code	STA 7 CJ 401	(P)			
Course Title	ADVANCED	ANALYTIC	AL TOOLS		
Type of Course	Major				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practicum	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites	Basic knowled	dge of Real ar	nalysis and M	atrix theory.	
Course	The main objective of this course to understand Reimann-Stieltjes				
Summary	integral, Unife	integral, Uniform convergence, vector space Eigen values and Eigen			
	vectors.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Evaluate the Riemann-Stieltjes integral and verify the conditions for the existence of the integrals.	An	С	Instructor-created exams		
CO2	Demonstrate an understanding of limits and continuity of various functions	U	F	Practical Assignment		
CO3	Develop skills in generalizing the concepts in univariate calculus to multivariate setup	Ap	С	Seminar Presentation		
CO4	Demonstrate proficiency in understanding and applying vector space concepts	U	F	Instructor-created exams / Home Assignments		
CO5	Demonstrate proficiency in applying vector space and matrix concepts	U	F	Writing assignments		
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Module	Unit			
Ι	Riem	ann – Stieltjes Integral	10	15
	1	Definition, Linear properties- Integration by parts - Change of variable		
	2	Reduction to a Riemann integral		
		Step functions as integrators-Reduction to a finite sum		
	4	Monotonically increasing integrators- Riemanns conditions-Comparison theorems- Functions of bounded variations		
		(concepts only)		
	5	Necessary & Sufficient conditions for the existence of Riemann Stieltjes integral		
	6	Mean-value theorems		
II		ences and Series of Functions	13	20
11	7	Point wise convergence of sequence of functions - Examples of	15	20
	/	sequences of real valued functions		
	8	Definition of Uniform convergence - Uniform convergence and continuity		
	9	Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions		
	10	Uniform convergence and Riemann-Stieltjes Integration - Uniform convergence and differentiation		
	11	Multivariable Functions- Limits and continuity of multivariable functions – Derivatives - directional derivatives		
	12	Total derivative in terms of partial derivatives		
	13	Taylor's theorem-Inverse and implicit functions.		
III		ora of Vectors	10	15
	14	Vector spaces - definition and examples		
	15	Subspaces - Linear independence - Basis and dimension- Linear		
		equations		
	16	Vector spaces with an inner product: Properties		
	17	Gram-Schmidt orthogonalization.		
IV	<u> </u>	ora of matrices	12	20
	18	Theory of matrices and determinants - Matrix operations-Elementary		
		matrices and diagonal reduction of a matrix- Determinants-		
		Transformations		
	19	Generalized inverse of a matrix		
	20	Matrix representations of vector spaces, bases, etc.		
	21	Idempotent matrices. Special products of matrices		
	22	Eigene values and reduction of matrices: Classification and		
		transformations of quadratic forms. Roots of determinant equations.		
		Canonical reduction of matrices.		
V	Open	Ended Module:	30	
		Hands-on-activities using Python/R. Open book problem solving exercises		

Text Books

1. **Khuri, A.T. (1993).** Advanced Calculus with Applications in Statistics. John Wiley &Sons, New York.

(Chapter7).

- 2. Apostol, T.M. (1974). Mathematical Analysis- Second Edition. Narosa Publications, New Delhi.
- Rao, C.R. (2002). Linear Statistical Inference & Its Applications- Second Edition. John Wiley & Sons, New York.
- Rao, A.R. & Bhimasankaram, P. (1992). Linear Algebra. Hindustan Book Agency, New Delhi.
- 5. Rao, A.R. and Bhimsankaram, P. (1992). Linear Algebra. Tata McGraw Hill, New Delhi.
- 6. Lewis, D.W. (1996). Matrix Theory. Allied Publishers, Bangalore.
- 7. Graybill, F. A. (1983). Matrices with Applications in Statistics. John Wiley & Sons, New York.

References:

- 1. Widder, D.A. (1996). Advanced Calculus, Second Edition, Prentice Hall, Inc., New Delhi.
- 2. Malik, S.C. & Arora, S. (2006). Mathematical Analysis- Second Edition. New Age Internati International, New Delhi.
- 3. Rudin, W. (1976). Principles of Mathematical Analysis- Third Edition. McGraw Hill, New York
- 4. Biswas, S. (1997). A text book of Linear Algebra. New Age International, New Delhi.
- Rao, C.R. (2002). Linear Statistical Inference and Its Applications- Second Edition. John Wiley & Sons, New York.

Programme	B. Sc. STATI	STICS			
Course Code	STA 7 CJ 402	2 (P)			
Course Title	PROBABILI	ΓY THEORY			
Type of Course	Major				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practicum	Total Hours
		per week	per week	per week	
	4	3	-	3	75
Pre-requisites	Basic Probability theory, Concept of convergence				
Course	Understanding expectation and various celebrated theorems in				
Summary	classical prob	ability theory	•		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Recall sequence of sets and its convergence.	R	F	Instructor-created exams		
CO2	Explain the concept of field, sigma field, Borel sigma field and monotone class.	U	С	Practical Assignment		
CO3	Describe various types of measures and explain its properties.	R	С	Seminar Presentation		
CO4	Explain decomposition of distribution function, characteristic function and its properties.	Ap	Р	Instructor-created exams / Home Assignments		
CO5	Explain the monotone convergence Theorem, Fatou's Theorem and Lebesgue dominated convergence Theorem.	Ap	Р	Writing assignments		
CO6	Explain the concept of convergence in probability, Convergence almost surely, Convergence in distribution, Convergence in r th mean and their inter-relations.	U	F	Group Tutorial Work		
CO7	Illustrate the convergence of distribution functions, Helly-Bray Lemma and Helly – Bray theorem, and Levy continuity theorem.	An	Р	Instructor-created exams		
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Module	Unit	Content	Hrs	Mar
			(45	ks (70)
I			+30) 10	(70) 20
I	1	Definition of minimal sigma field, generated sigma field and induced	10	20
	1	sigma field		
	2	Random variables, Sigma fields induced by random variables, Vector		
		random variables, limits of sequence of random variables.		
	3	Concept of measure space, finite measure, sigma finite measure,		
		complete measure, counting measure and signed measure (Definition		
		and examples only).		
	4	Probability space, General Probability space.		
т	5	Induced probability space.	10	15
II		Deserve side of list its for disc. Distribution for the s	12	15
	6	Decomposition of distribution functions, Distribution function of vector random variables, Correspondence theorem.		
	7	Expectation and moments, Properties of expectations.		
	8	Moments and inequalities		
	9	Characteristic functions, Properties, Inversion theorem		
	10	Characteristic functions and moments, Bochner's theorem (No proof		
		required)		
	11	Independence of classes of events; Independence of random variables		
	12	Kolmogorov 0-1 law; Borel 0-1 law		
III			12	20
	13	Monotone convergence Theorem.		
	14	Fatou's Theorem		
	15	Lebesgue dominated convergence Theorem		
	16	Lebesgue-Stieltjes integral and its reduction to Riemann-Stieltjes		
	17	integral and Riemann integral. Statement and applications of Lebesgue decomposition and		
	17	Radon-Nykodym theorem.		
IV		······································	11	15
	18	Convergence in probability, Convergence almost surely		
	19	Convergence in distribution, Convergence in rth mean – their		
		inter-relations- examples and counter examples.		
	20	Weak convergence		
	21	Helly-Bray Lemma and Helly – Bray theorem		
	22	Levy continuity theorem.		
V	Open	Ended	30	
		Sequences of sets, limit supremum, limit infimum and limit of sets.		
		Monotone sequence of sets. Fields, Sigma fields, Borel sigma field and		
		monotone class. Hands on activities, using Python/P. Open book problem solving		
		Hands-on-activities using Python/R. Open book problem solving exercises		
		CACICIDED		

Text Books

- 1. B.R Bhat (1999). Modern Probability Theory, Wiley Eastern
- 2. Laha & Rohatgi (1979). Probability theory, Wiley New York
- 3. De Barra, G. (2000). Measure Theory and Integration, New Age International (P) Ltd, New Delhi.

References

1. Ash R. B (2000). Probability and Measure Theory, Second edition. Academic Press.

2. Billingsley P (1985). Probability and Measure, Second edition, John Wiley and Sons, NewYork.

Programme	B. Sc. STATISTIC	S			
Course Code	STA7 CJ 403 (P)	~			
Course Title	DISTRIBUTION	THOERY			
Type of Course	Major				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practicaum	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	1. Basic knowled	ge of various	s univariate a	and bivariate	
	distributions.				
	2. Matrix theory -	– Eigen Valu	ues & Eigen	vectors.	
Course	The main objective	e of this cou	irse are to ui	nderstand the	concepts of
Summary	multivariate probability distributions. Study essential properties of				
	multivariate distributions and apply customized probability				
	distributions in the	relevant con	ntext.		_

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
1.	Distinguish different distributions and illustrate their role in modelling count data.	U	F	Seminar Presentation / Group Tutorial Work
2.	Describe the properties and applications of multivariate normal distribution.	U	С	Instructor-created exams
3.	Estimate the ML Estimates of the mean vector and dispersion matrix of multivariate normal.	An	Р	Instructor-created exams
4.	Evaluate marginal and conditional distribution from multivariate normal distribution	An	Р	Instructor-created exams / Home Assignments
5.	Describe the genesis of Wishart distribution with its properties.	U	С	Home Assignment
6.	Explain distribution function of random vectors, order statistics and their distributions.	Ар	С	Instructor-created exams / Home Assignments
7.	Compare Hotelling T ² and	U	F	Instructor-created

	Mahalanobis D ² statistic and			exams		
	able to apply them in testing					
	problems.					
* - R	Remember (R), Understand (U),	Apply (Ap), Ana	lyse (An), Evaluate	(E), Create (C)		
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Kno	Knowledge (M)					

Module	Unit	Content	Hrs (45+30)	Marks (70)
Ι	Open	-End	30	20
	1	Overview of univariate & bivariate distributions and their		
		properties.		
		Sampling Distributions- Central and non-central (t, F and χ^2)		
		Order statistics – their distributions and properties- Joint, marginal		
		and conditional distribution of order statistics		
		The distribution of sample range and sample median.		
т	N/14	Problems using R/Python variate Normal Distribution	12	20
Π			12	20
	1	Definition and properties of multivariate normal density function		
	2	Distribution of a linear combination of the components of a normal random vector.		
	3	Maximum Likelihood estimation of the mean vector and dispersion matrix.		
	4	The distribution of sample mean vector inference concerning the		
		mean vector when the dispersion matrix is known for single and		
		two populations.		
III	Gene	ralized Variance	9	15
	5	Wishart Distribution		
	6	Properties of Wishart distribution		
	7	Test for covariance matrix		
	8	Test for equality of covariance matrices		
	9	Test for independence of sets of variables.		
IV		ratic forms and their distributions	14	15
	10	Jacobian of matrix transformation of Y=AXB; Y=AXA'; X=TT'		
	11	Independence of a linear form and quadratic form		
	12	Distributions of quadratic form of a multivariate vector		
	13	Cochran's theorem		
	14	Partial and multiple correlation coefficients		
	15	Partial regression coefficients	10	
V		d D ² distributions	10	
	16	Hotelling T^2 distribution and its applications		
	17	Generalized T^2 statistic and its distribution		
	18	Uses of T^2 statistic		
	19	Optimum properties of T^2 statistic		
	20	Mahalanobis D^2 statistic and its distribution		
	21	Relation between T^2 and D^2		
	22	Test based on T ² statistic		L

Text Book

- 1. Anderson T W (2010) : An Introduction to Multivariate Statistical Analysis, Wiley Eastern Ltd.
- 2. Johnson, R A and Wichern D W (2003) : Applied Multivariate Statistical Analysis, Prentice-Hall of India Private Ltd., New Delhi.

Reference

- 1. **Jhonson, Kotz and Balakrishna (1991)**: Continuous univariate distributions, Vol-1 2nd Ed., John Wiley and Sons
- 2. Johnson, Kemp and Kotz (1992) : Univariate Discrete distributions, 2nd Ed, John Wiley and Sons
- 3. Kotz, Balakrishnan, Johnson (2004): Continuous Multivariate Distributions, Vol 1, 2nd Ed. John Wiley & Sons
- 4. Mukhopadhyay P (1996) : Mathematical Statistics, New Central Book Agency (P) Ltd. Calcutta.
- 5. Srivastava, M, C G Khatri (1979) : Introduction to Multivariate Statistics, Elsevier Science Ltd.

Programme	B. Sc. STATI	STICS			
Course Code	STA 7 CJ 404 (P)				
Course Title	ADVANCED	ADVANCED SAMPLING METHODS AND DESIGN OF			
	EXPERIMEN	ITS			
Type of Course	Major				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practicum	Total Hours
		per week	per week	per week	
	4	3	-	2	75
Pre-requisites	Knowledge about sampling procedures and various sampling				
	methods, linear estimation and analysis of variance				
Course	Understand PPS sampling, ratio and regression sampling methods.				
Summary	Identify vario	us factorial de	esign experim	nents.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Estimate the population parameters concerning the study variables under auxiliary information (Ratio and regression methods).	An	С	Instructor-created exams
CO2	Discuss probability proportional to size (PPS) sampling strategies.	U	F	Home Assignments
CO3	Explain the concepts of ordered and unordered estimators and its properties.	Ар	С	Instructor-created exams
CO4	Discuss the multi stage and multiphase sampling.	U	F	Seminar Presentation
CO5	Apply incomplete block designs and balanced incomplete block designs.	Ар	С	Practical Assignment
CO6	Explain factorial experiments, total confounding and partial confounding.	Ар	C	Group Tutorial Work
CO7	Differentiate between strip plot and split plot designs.	An	Р	Instructor-created exams
# - Fa	emember (R), Understand (U), Ap actual Knowledge(F) Conceptual 2 wledge (M)			

Module	Unit	Unit Content			
I		Open-Ended	+30)		
I		Census and Sampling-Basic concepts, probability sampling and non-probability sampling, simple random sampling with and without replacement, Systematic sampling- linear and circular systematic sampling, Stratification and stratified random sampling, Complete	50		
		Block Designs.			
TT	Class 4	Problems using R/Python	10	20	
II		er, Ratio and Regression Sampling	12	20	
	$\frac{1}{2}$	Cluster sampling with equal and unequal clusters Estimation of mean and variance, relative efficiency, optimum cluster size, varying probability cluster sampling			
	3	Ratio method of estimation-estimation of ratio, mean and total.			
	4	Bias and relative bias of ratio estimator. Mean square error of ratio estimator. Unbiased ratio type estimator			
	5	Regression methods of estimation			
	6	Comparison of ratio and regression estimators with simple mean per unit method. Ratio and regression method of estimation in stratified population			
III	Vary	ing probability sampling	10	15	
	7	pps sampling with and without replacements			
	8	Des- Raj ordered estimators-Murthy's unordered estimator			
	9	Horvitz-Thompson estimators, Yates and Grundy forms of variance and its estimators			
	10	Zen-Midzuno scheme of sampling, π PS sampling			
	11	Multi stage and multiphase sampling			
IV	Incon	nplete Block Designs	11	20	
	12	Balanced Incomplete Block designs			
	13	Construction of BIB Designs, Analysis with recovery of inter-block information and intra-block information			
	14	Partially balanced incomplete block designs			
	15	Analysis of partially balanced incomplete block designs with two associate classes			
	16	Youden square design			
	17	Lattice designs			
\mathbf{V}		orial Designs	12	15	
	18	Basic definitions and principles - Analysis of 2 ⁿ factorial experiments		[
	19	Total confounding of 2^n designs in 2^n blocks. Partial confounding in 2^n blocks			
	20	3 ⁿ factorial designs			
	21	Fractional factorial designs			
	22	Concepts of Split plot design and strip plot design			

Text Books

- 1. Cochran W.G. (1992): Sampling Techniques, Wiley Eastern, New York.
- D. Singh and F.S. Chowdhary (1986): Theory and Analysis of Sample Survey Design, Wiley Eastern (New Age International), New Delhi.
- 3. Montgomery D C (2001). Design and Analysis of Experiments, John Wiley.
- 4. Das M N and Giri N C (1979). Design and Analysis of Experiments, second edition, Wiley.

References

1.**P.V.Sukhatme et.al. (1984)**: Sampling Theory of Surveys with Applications. IOWA State University Press, USA.

2. Des Raj (1976): Sampling Theory. McGraw Hill

3. **Mukhopadhyay. P. (1999)**. Theory and Methods of Survey Sampling. Prentice-Hall India, New-Delhi.

4. Chakrabarti, M.C. (1964). Design of experiments, ISI, Calcutta.

5. Hinkleman and Kempthrone C (1994). Design and Analysis of Experiments Volume I, John Wiley.

Programme	B. Sc. STATISTICS					
Course Code	STA 7 CJ 405	STA 7 CJ 405 (P)				
Course Title	ADVANCED	STATISTIC	AL INFEREN	NCE		
Type of Course	Major					
Semester	VII					
Academic	400-499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	Basic knowledge of statistical estimation & testing of hypothesis					
Course	Understand UMVUE and related theorems, UMP tests & SPRT					
Summary						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Describe the method of finding sufficient statistics, minimum variance unbiased estimators, consistent estimators and consistent and asymptotically normal estimators	U	F	Instructor-created exams			
CO2	Relate sufficient statistic and ancillary statistic using Basu's thorem	Ар	C	Instructor-created exams			
CO3	Determine UMVUE using complete sufficient statistic using Rao- Blackwell, and Lehmann-Scheffe theorems	Ap	С	Seminar Presentation			
CO4	Explain the concept of interval estimation- SELCI, Bayesian and Fiducial Intervals	U	F	Observation of Practical Skills			
CO5	Construct most powerful tests using Neyman-Pearson lemma, one-sided and two-sided UMP tests and UMP unbiased tests	С	М	Group Tutorial Work			
CO6	Describe the concept of α -similar tests and construct such tests	U	F	Practical Assignment			
CO7	Develop SPRT for different problems	С	Р	Instructor-created exams			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C), Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module				
Ι		Open-Ended	30	
		Point Estimation. Desirable properties of a good estimator, unbiasedness, efficiency, Methods of Estimation - method of maximum likelihood, Bayesian estimation method. Testing of Hypotheses; concept of testing hypotheses, simple and composite hypotheses, null and alternative hypotheses, type I and type II errors, critical region, level of significance, power of test. Most powerful tests uniformly most powerful test, Neyman Pearson Lemma Problems using R/Python		
Π	Suff	icient statistics and minimum variance unbiased estimators	12	15
	1	Sufficient statistics, Factorization theorem for sufficiency, Joint sufficient statistics		
	2	Exponential family, Pitman family, Minimal sufficient statistics (MSS). Criteria to find the MSS, Ancillary statistics, Complete statistics		
	3	Basu's theorem		
	4	Unbiasedness, Best Linear Unbiased estimator(BLUE), Minimum variance unbiased estimator(MVUE)		
	5	Rao-Blackwell theorem		
	6	Lehman-Scheffe theorem		
	7	Necessary and sufficient condition for MVUE, Fisher Information, Cramer Rao inequality and its applications		
III	Consi	istent asymptotically normal estimators and Interval Estimation	12	20
	8	Consistent estimator, Invariance property of consistent estimator		
	9	Method of moments-method of percentiles to determine consistent estimators, choosing between Consistent estimators		
	10	CAN estimators		
	11	Definition of Interval estimation, Shortest expected length confidence interval-large sample confidence intervals-unbiased confidence intervals-examples		
	12	Bayesian and Fiducial intervals		
IV		P tests	11	20
	13	One-sided UMP tests, two- sided UMP tests and UMP unbiased tests		
	14	UMP tests for multi-parameter case: UMP unbiased test		
	15	α -similar tests and α -similar tests with Neyman structure, construction of α -similar tests with Neyman structure		
	16	Principle of invariance in testing of hypotheses, locally most powerful tests		
	17	Likelihood ratio tests		
	18	Bayesian tests		
V	Seque	ential Tests	10	15
	19	Some fundamental ideas of sequential sampling – Sequential Probability Ratio Test (SPRT)		
	20	Important properties, termination of SPRT – the fundamental identity		

	of SPRT	
21	Operating Characteristic (OC) function and Average Sample Number	
	(ASN) of SPRT	
22	Developing SPRT for different problems	

Text Books

1. Kale,B.K. and Muraleedharan K.(2015) Parametric Inference : An Introduction, Alpha Science Intl Ltd.

2. George Casella and Roger L Berger (2002). Statistical inference, Second Edition, Duxbury, Australia.

3. Manojkumar Srivastava and Namita Srivastava(2009). Statistical Inference: Testing of

Hypothesis, Eastern Economy Edition, PHI Learning Pvt. Ltd., New Delhi.

4. **Rohatgi, V.K(1976)**. An introduction to Probability Theory and Mathematical Statistics, John Wiley and sons, New York.

References

1. Lehmann, E.L(1983). Theory of point estimation, John Wiley and sons, New York.

2. Rohatgi, V.K (1984). Statistical Inference, John Wiley and sons, New York.

3. **Rao, C.R (2002)**. Linear Statistical Inference and its applications, Second Edition, JohnWiley and sons, New York.

4. Lehman, E.L. and Romano, Joseph P.(2005). Testing Statistical Hypotheses. Third Edition, Springer, New- York.

SEMESTER VIII

Programme	B. Sc. STATISTIC	S			
Course Code	STA 8 CJ 406 (P)				
Course Title	APPLIED STOCH	ASTIC PRC	OCESSES AI	ND TIME SEI	RIES
	ANALYSIS				
Type of Course	Major				
Semester	VII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practicum	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge of Markov chain & general aspects of time series				
Course	Understand queue	e, renewal	process a	nd Brownia	n process.
Summary	Thorough knowledge about auto-correlation and autoregressive				
	moving average.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
1.	Discuss the basic characteristic of a queuing system and acquire skills in analyzing queuing models	U	F	Seminar Presentation / Group Tutorial Work		
2.	Analyze a network of queues	An	Р	Instructor-created exams		
3.	Describe the concept of renewal process and Brownian motion	U	F	Instructor-created exams		
4.	Describe the basics of time series data, its auto-covariance, auto-correlation and autoregressive moving average	U	F	Instructor-created exams / Home Assignments		
5.	Learn to validate a model using residual analysis	An	Р	Home Assignment		
# - F	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι	Conti	inuous time Markov chains and Queueing theory.	14	20
	1	Continuous Time Markov Chains		
	2	Pure birth process, Yule furry process, Pure death process, Birth and Death Processes, The transition probability function, Limiting probabilities		
	3	Introduction to queueing theory, Steady state probabilities.		
	4	Exponential Models: A single server Exponential queueing system, A single server Exponential queueing system having finite capacity, Birth and Death queueing models		
	5	Network of queues: Open systems, Closed systems		
	6	Non Markovian queueing models: M/G/1 and G/M/1		
II	Rene	wal process and Brownian motion	9	15
	7	Renewal processes, renewal function and renewal density, renewal equation, stopping time		
	8	Wald's equation, limit theorems and their applications.		
	9	Brownian motion-Definition, limiting form of random walk, examples.		
	10	White noise, Gaussian process		
	11	Strictly stationary and weakly stationary processes (Definition and examples)		
	12	Branching process (Concept only)		
III	Time	series and stationary process	12	20
	13	Time series as a discrete parameter stochastic process		
	14	Auto – Covariance, Auto- Correlation		
	15	Autoregressive, Moving Average, Autoregressive Moving Average and Autoregressive Integrated Moving Average Models		
	16	Choice of AR / MA periods		
	17	Introduction to non-linear time Series: ARCH and GARCH models		
IV	Estim	nation of ARMA models, ,.	10	15
	18	Yule – Walker estimation for AR Processes		
	19	Maximum likelihood and least squares estimation for ARMA Processes		
	20	Discussion (without proof) of estimation of mean, Auto-covariance and auto-correlation function under large samples theory		
	21	Residual analysis and diagnostic checking		
	22	Forecasting using ARIMA models		
V	Open	Ended	30	
	-	Problems, examples and analysis of dataset using software		

Text Books

1. Ross, S.M. (2007). Introduction to Probability Models. IXth Edition, Academic Press.

2. Medhi, J. (1996). Stochastic Processes. Second Editions. New Age International

3. Box G.E.P and Jenkins G.M. (1994). Time Series Analysis, Forecasting and Control.

Holden-Day

4. BrockwellP.J.and Davis R.A. (2006). Time Series: Theory and Methods, Springer – Verlag.

5. Abraham B and Ledolter J.C. (1983). Statistical Methods for Forecasting, Wiley

6. Robert H Shumway and Davis S Stoffer(2016). Time series analysis and its applications with R examples. Springer.

References

1. Karlin, S. and Taylor, H.M. (1975). A First Course in Stochastic Processes, Second Edition, Academic Press.

2. Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice Hall. New Jersey.

3. Basu, A.K. (2003). Introduction to Stochastic Processes. Narosa, New-Delhi

4. Anderson T.W (1971). The Statistical Analysis of Time Series, Wiley.

5. Fuller W.A. (1978). Introduction to Statistical Time Series, John Wiley

6. **William W. S. Wei (2006)**. Time Series Analysis: Univariate and Multivariate Methods. Pearson. Addison Wesley.

Programme	B. Sc. STATISTIC	S			
Course Code	STA 8 CJ 407				
Course Title	APPLIED MULTI	VARIATE	FECHNIQUI	ES	
Type of Course	Major				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	0	ge of Multivariate Normal distribution.			
	2. Programming s	skill using R.			
Course	The main objective	e of this cour	se are to :		
Summary	1. Inculcate dee	p knowledge o	n various multiv	variate techniqu	es.
	2. Develop clear idea on when and where to use dependence and				
	interdependence multivariate methods.				
	•			analysis using ified spectrum o	-

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
1.	Analysing Multivariate data using reduction techniques like Principal Component Analysis, Factor Analysis and Canonical correlation.	An	P	Seminar Presentation /
2.	Formulate multivariate hypothesis tests and drawing appropriate conclusions	С	М	Instructor-created exams
3.	Discriminate multivariate normal population.	Е	С	Group Tutorial Work
4.	Identify data reduction techniques	U	С	Home Assignments
5.	Analyse multivariate data using statistical software's.	An	Р	Practical Skill
# - F	Remember (R), Understand (U Factual Knowledge(F) Concept wledge (M)			

Module	Unit	Content	Hrs (60)	Marks (70)
Ι	Principle C	16	20	
	1	Principle component		
	2	Maximum likelihood estimates of the principal components and their variance		
	3	Extraction of Principal Components and their variances		
	4	Factor Analysis – Mathematical model –Estimation of Factor Loading		
	5	Canonical correlation – Estimation of canonical correlation and variates		
	6	Structural equation models.		
II	Classificat	ion Problems	15	20
	7	Classification problems		
	8	Classification into one of two population (known and unknown dispersion matrix)		
	9	Classification in to one of several populations		
	10	Multivariate analysis of variance (MANOVA) – One way and two way classification		
	11	Tests independence of sets of variables		
	12	Equality of dispersion matrices and Sphericity test.		
III	Discrimina	ant Analysis	9	15
	13	Discriminant Analysis		
	14	Likelihood ratio method		
	15	Bayes and min-max procedure		
	16	Discrimination between two multivariate normal population with common dispersion		
	17	Sample discriminate function		
	18	Estimation – Fisher's method for discriminating among several populations.		
IV	Cluster An		8	15
	19	Cluster Analysis		
	20	Proximity measures		
	21	Hierarchical clustering techniques : single, complete and average linkage algorithms.		
	22	Non-hierarchical clustering techniques : K means method.		1
V	Open –End		12	
	A	egarding Module I to IV using Statistical software		

Text Book

- 1. Anderson T W (2010) : An Introduction to Multivariate Statistical Analysis, Wiley Eastern Ltd.
- 2. Johnson, R A and Wichern D W (2003) : Applied Multivariate Statistical Analysis, Prentice-Hall of India Private Ltd., New Delhi.

Reference

- Morrison F (2003) : Multivariate Statistical Methods, Brooks/Cole, 4th Revised edn., McGraw Hill Book Company
- 2. Seber G A (2004): Multivariate Observations, John Wiley.
- 3. **Denis, D J (2021)** : Applied Univariate, Bivariate and Multivariate Statistics : Understanding Statistics for Social and Natural Scientists, With Application in SPSS and R,John Wiley & Sons.

Programme	B. Sc. STATISTIC	S			
Course Code	STA 8 CJ 408				
Course Title	GENERALIZED I	LINEAR MC	DELS		
Type of Course	Major				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Elementary ideas about linear estimation.				
Course	Understand about generalized linear models.				
Summary					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
1.	Identify the general theory of GLM	U	С	Seminar Presentation		
2.	Describe the use of binary and multinomial Understand and logistic models and apply them for various data sets	R	F	Instructor-created exams		
3.	Explain the concepts related to count data GLM and apply them for various count data sets.	Ар	С	Group Tutorial Work		
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Kno	wledge (M)					

Module	Unit	Content		Marks (70)
Ι	Componer	nts of a generalized linear model (GLM)	10	15
	1	1 Random component		
	2	2 linear predictor, link function		
	3	3 Quantitative/qualitative explanatory variables and interpreting effects		
	4	Model matrices and model vector spaces		
	5	Identifiability and estimability		
II	Generalize	ed linear models	12	20
	6	Model fitting and inference		
	7	Exponential dispersion family distributions		
	8	Likelihood and asymptotic distributions		

	9	Likelihood-ratio/Wald/Score methods of inference		
	10	Parameters, deviance, model comparison, and model checking		
	11	Goodness of fit		
III	Binary log	istic models, nominal responses	10	15
	12	Baseline-category logit models		
	13	13 Ordinal responses: cumulative logit and probit models		
	14	14 Probit and complementary log–log models,		
	15	Multinomial response models		
IV	Models for	count data	16	20
	16	Poisson GLMs for counts and rates		
	17	Poisson/multinomial models for contingency tables		
	18	Negative Binomial GLMS		
	19	Models for zero-inflated data		
	20	Quasi-likelihood methods		
	21	Variance inflation for over dispersed Poisson and Binomial GLMs		
	22	Beta-Binomial models and Quasi-likelihood alternatives		
	23	Quasi-likelihood and model misspecification		
V	Open –En	ded	12	
	Model buil	ding and validation in practical situations using R software		

Reference

1. Agresti, A. (2015). Foundations of Linear and Generalized Linear Models, Wiley

2. Dobson, A. J. (2002). An Introduction to Generalized Linear Models, 2nd Ed. Chapman & Hall

3. Jiang, J. (2007). Linear and Generalized Linear Mixed Models and their Applications, Springer

4. Jong, P. and Heller, G. Z. (2008) Generalized Linear Models for Insurance Data, Cambridge University Press.

5. Lindsey, J. K. (1997). Applying Generalized Linear Models, Springer

6. McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, Chapman & Hall

7. McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear and Mixed Models, Wiley

8. Stroup, W. W. (2013). Generalized Linear Mixed Models, Modern Concepts, Methods and Applications, CRC Press

Programme	B. Sc. STATISTIC	S			
Course Code	STA 8 CJ 489				
Course Title	RESEARCH MET	HODOLOG	Y		
Type of Course	Major				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Basic knowledge o	f typesetting	& publishin	g	
Course To understand the concept of Research, presentation & Publication			ublication.		
Summary					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
1.	Identify the Concept of Research in Statistics, Selection of Topics, Perform Literature Review	U	F	Seminar Presentation		
2.	Express Scientific Word Processing with LaTeX and MS-Word	U	F	Instructor-created exams		
3.	Develop Simulation.	Ap	С	Group Tutorial Work		
4.	Compute Computer Oriented Numerical Methods	Ар	С	Home Assignments		
5.	Describe Plagiarism	U	F	Practical Assignment		
6.	Write Thesis	Ар	Р	Observation of Practical Skills		
# - F	 * - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 					

Module	Unit	Content	Hrs (60)	Marks (70)
Ι	Intro	duction to Research Methodology in Statistics	15	20
	1	Meaning of Research, Objectives of Research		
	2	Types of Research- Descriptive Vs. Analytical, Applied Vs Fundamental, Quantitative Vs Qualitative, Conceptual Vs Empirical		
	3	Concept of Research in Statistics-Importance and Need for Research Ethics		
	4	Selection of Topic for Research-Research schedules, Review of		
		Literature and its Use in Designing a Research Work-		

	5	Mode of Literature Survey-Books and Monographs, Journals,		
		Conference Proceedings, Abstracting and Indexing Journals,		
		E-Journals/Books and CD-ROMS-Reports etc.		
	6	Thesis Writing		
	7	Computer Application in Scientific Research-www-Searching		
		Scientific Articles		
	8	Statistical Data Base		
II	Scien	tific Word Processing with LaTeX and MS-Word	15	20
	9	Article, Thesis Report and Slides Making		
	10	Power Point Features, Slide Preparation		
	11	Statistical Programming with R: Simple Manipulations Using		
		Numbers and Vectors-Objects & Their Attributes		
	12	Arrays and Matrices-Lists and Data Frames-Grouping, Loops and		
		Conditions		
	13	User Defined Functions		
	14	Probability Distributions and Statistical Models in R		
III	Simu	lation	10	15
	15	Concepts and Advantages of Simulation		
	16	Event Type Simulation		
	17	Random Variable Generation-U(0,1), Exponential, Gamma and		
		Normal Random Variables		
	18	Monte Carlo Integration		
	19	The MCMC Principle		
	20	Algorithms and its Variants, Bootstrap Methods		
IV	-	puter Oriented Numerical Methods	8	15
	21	Algorithms for Solving Algebraic and Transcendental Equations		
	22	Numerical Integration		
	23	Matrix operations		
V		n –Ended	12	
		the problems from Module I to Module IV using software and		
I	under	stand how to check Plagiarism		

References

1. Anderson, J., Durston, B.H., Pooole, M. (1970) . Thesis and Assignment Writing. Wiley Eastern. Ltd., New Delhi.4

2. Beveridge, B. (1979). The Art of Scientific Investigation. W.E. Norton & Co., New York.

3. **Braun, J., Duncan, W. and Murdock, J. (2008)**. A First Course in Statistical Programming with R. Cambridge University Press, London.

4. Chambers, J. (2008). Software for Data Analysis: Programming with R. Springer, New York.

5. Crewley, M.J. (2007) The R-.Book. John Wiley, New York.

6. Dalgaard, P.(2008). Introductory Statistics with R. Springer Science, New York.

7. Kothari, C. (2005). Research Methodology. New Age International. Publishers, New York.

8. Lamport, L. (1999). LATEX: A Document Preparation System. Addison, Wesley, 2nd edition, New York

9. Panneerselvam. (2006). Research Methodology. Prentice-Hall of India. Pvt., New Delhi.

10. Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer Science, New York.

11. Venkataraman, M.K. (1998) Numerical Methods in Science and Engineering. The National Publishing Company, Chennai.

12. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., (2002). An Introduction to Research Methodology, RBSA publishers.

MAJOR ELECTIVES

SEMESTER V

Programme	B. Sc. Statistics	B. Sc. Statistics					
Course Code	STA5EJ301	STA5EJ301					
Course Title	Statistical Qual	Statistical Quality Control					
Type of Course	Major Elective	Major Elective					
Semester	V						
Academic Level	300-399	300-399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	To make stude	nts aware of V	arious Quality	or standards i	in Industrial		
Summary	Production, De	•	olling and Mai	ntaining Quali	ty and Total		
Objective	Quality Manag	Quality Management					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding notion of Quality of products	U	С	Instructor-cre ated exams / Quiz
CO2	Assessing various meaning of Quality	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Explain causes of variation and Statistical Control	Ар	Р	Seminar Presentation / Group Tutorial Work
CO4	Construction of Control Charts and OC curves	U	С	Instructor-cre ated exams / Home

				Assignments				
CO5	Distinguish Process and Product Control	Ар	Р	One Minute				
				Reflection				
				Writing				
				assignments				
CO6	Assessing Process and Product Control	Ар	Р	Viva Voce				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Know	vledge (M)			_				

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Control Charts theory	10	15
	1 General theory of Control Charts.			
	2	Setting Control Limits.		
	3	Importance of 3-sigma limits		
	4	Statistical basis of Control Limits		
	5	Need of two control charts for variables		
	6	Assessing Statistical Control using Charts		
	7	Control Charts for Variables and Attributes		
	Sectio	ons from References:		
II	Control Charts Construction			20
	8	Mean Chart Theory and Construction		
	9	Dispersion (Range, Standard Deviation Chart) Chart. Theory and Construction		
	10	Proportion defective Chart Theory and Construction		
	11	Number of Defective Chart Theory and Construction		
	12	Number of Defects Chart Theory and Construction.		
	Sectio	ons from References:		
III		Product Control	14	20
	13	Sampling Inspection Plans (Acceptance Sampling Plans)		

	14	Single Sampling Plan		
	15	Double Sampling Plan, ,		
	16	Sequential Sampling Plan		
	17	Incoming and Outgoing Quality		
	18	AQL, RQL, LTPD, AOQ, AOQL		
	19	Errors in Sampling Inspection Plans		
	20	Power function and OC function.		
	21	Producer' and Consumers Risk		
	Section	ons from References:		
IV		Characterising Sampling Plans	10	15
	22	Constructing OC Curve of Single Sampling Plan using Hyper Geometric distribution		
	23	Constructing OC Curve of Single Sampling Plan using Binomial distribution		
	24	Constructing OC Curve of Single Sampling Plan using Poisson distribution		
	25	Constructing OC Curve of Double Sampling Plan		
	26	ASN, ATI		
	Section	ons from References:		
V		Open Ended Module:	12	
	1	Preliminaries of Quality Control Definition of Quality. Need of total quality Management and its uses. Causes of Variation, assessing within and between sample variation using Statistical Measures. Concept of Statistical Quality Control, Process Control and Product Control		

- 1. Introduction to Statistical Quality Control, 8th Edition Douglas C Montgomery
- 2. Statistical Quality Control M Mahajan Dhanpat Rai 2nd Edition
- **3. Fundamentals of Applied Statistics S C Gupta and V K Kapoor** Sultan Chand & Sons

Programme	B. Sc. Statistic	B. Sc. Statistics					
Course Code	STA5EJ302	STA5EJ302					
Course Title	Optimization	Optimization Techniques					
Type of Course	Major Electiv	Major Elective					
Semester	V	V					
Academic Level	300-399	300-399					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	4	-	-	60		
Pre-requisites							
Course Summary Objective		Make students to formulate, solve and implement feasible solutions of complex Industrial, Trade, Commercial problems					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding Basics of Operations Research.	U	С	Instructor-cre ated exams / Quiz
CO2	Distinguishing Solution, Feasible Solution, Basic Solution and Basic Feasible Solutions	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	Mathematical Formulation Real life problems	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Mastering Simplex Algorithm	U	С	Instructor-cre ated exams / Home Assignments
CO5	Apply LPP in Transportation and Assignment Problems	Ар	Р	One Minute Reflection Writing assignments
CO6	Analyse decision making under conflict Game theory	Ар	Р	Viva Voce
* - Re	emember (R), Understand (U), Apply (Ap), A	Analyse (An), I	Evaluate (E), C	reate (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Liner Programming Problem	14	20
	1	Graphical Solution of LPP.		
	2	Feasible Solution, Basic Feasible Solution of LPP		
	3	Simplex Algorithm without Artificial Variables.		
	4	Artificial Variable technique		
	5	Big M method		
	6	Two Phase method		
	Sectio	ons from References:		
II		Application of LPP	10	15
	7	Duality Primal and Dual LPP		
	8	Economic Interpretation of Dual		
	9	Dual Simplex Method Solution of primal using Dual.		
	10	Transportation and Assignment Problems as special case of LPP.		
	11	Balanced Transportation Problem, Balanced Assignment Problem		
	12	Initial Basic Feasible Solution using NWCR		
	13	Initial Basic Feasible Solution using LCCM		
	Sectio	ons from References:		
III	Solving TP & AP			20
	14	Solution of Transportation Problem using Vogel's Approximation Method		
	15	Optimization using MODI Method		
	16	Hungarian Method of Solving Assignment Problem		

	Sectio	ons from References:		
IV		Game Theory		
	17 Decision making under Conflict			
	18	Pay off Matrix.		
	19	MinMax MaxMin Criterions		
	20	Pure and Mixed Strategy		
	21	Value of Game and Saddle Point		
	22	Principle of Dominance, solving 2x2 games.		
	23	Graphical solution of 2xn and nx2 games		
	Sectio	ons from References:		
V	Open Ended Module:			15
	1	Origin, Development of OR. Nature & Scope of OR, Uses &		
		Limitations of OR. Linear Programming Problem, Mathematical		
		Formulation, General, Standard form of LPP.		
	Sectio	ons from References:		
ooks a	nd Refei	rences:	I	
	-	ns Research, Swaroop, Kanti, P. K. Gupta and Man Mohan. 2007. 13th Edi Itan Chand and Sons	tion. New	
		ns Research, J K Sharma, Laxmi Publications		
3. (Operatio	ns Research V K Kapoor Sulthan Chand and Sons		

Programme	B. Sc. Statistics	8						
Course Code	STA5EJ303	TA5EJ303						
Course Title	Biostatistics	Biostatistics						
Type of Course	Major Elective	Major Elective						
Semester	V	V						
Academic Level	300-399							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours			
		week	per week	per week				
	4	4	-	-	60			
Pre-requisites		1			•			
Course	The student wi	ll describe the r	need and ethic	s of clinical tria	als and designs			
Summary	for various pha	for various phases of clinical trials.						
Objective								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	The student will explain Principles of Biostatistical study designs	U	С	Instructor-cre ated exams / Quiz
CO2	The student will explain measures of morbidity.	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	The student will describe the concepts of survival time functions of important parametric models.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	The student will explain types of censoring and estimation of parameters using censored data.	U	С	Instructor-cre ated exams / Home Assignments
CO5	The student will explain the non-parametric methods for estimating survival function and variance of the estimator using Kaplan –Meier methods.	Ар	Р	One Minute Reflection Writing assignments
CO6	The student will describe the basic biological concepts in genetics.	Ар	Р	Viva Voce

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Know	Knowledge (M)							

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Introduction	14	20
	1	Examples of statistical problems in Biomedical Research		
	2	Types of Biological data		
	3	Principles of Biostatistical design of medical studies		
	4	study designs- observational study, experimental study-comparative experiment, cross over experiment		
	5	prospective and retrospective study		
	6	case-control and longitudinal study		
	7	Measuring the occurrence of disease, Measures of morbidity - prevalence and incidence rate, association between prevalence and incidence, uses of prevalence and incidence.		
	Sectio	ons from References:		
II		Survival analysis	12	20
	8	Introduction to survival analysis, concepts and definitions		
	9	Survival function		
	10	probability density function		
	11	hazard function		
	12	inter relationships,		
	13	Survival distributions- exponential distribution, Weibull distribution and lognormal distribution.		
	Sectio	ons from References:		
III		Types of censoring	10	15

	14	Concepts of censoring and truncation		
	15	Type I, Type II and progressive or random censoring with biological examples,		
	16	Estimation of mean survival time and variance of the estimator for type I and type II censored data with numerical examples (for exponential distribution).		
	17	Non-parametric methods for estimating survival function and variance of the estimator- Kaplan –Meier methods.		
	Section	ons from References:		
IV			12	15
	18	Basic biological concepts in genetics Mendel's law, Hardy- Weinberg equilibrium		
	19	Random mating, natural selection, mutation, genetic drift,		
	20	Detection and estimation of linkage in heredity		
	21	Planning and design of clinical trials, Phase I, II, and III trials.		
	22	Ethics behind randomized studies involving human subjects; randomized dose-response studies (concept only)		
	Section	ons from References:		
V		Open Ended Module:	12	
	1	Practical problems based on module I to IV using statistical software.		
	Section	ons from References:		·
Books a	nd Refe	rences:		

Altman, D G. (2006): Practical Statistics for Medical Research, London: Chapman and Hall.

Cox, D.R. and Oakes, D. (1984): Analysis of Survival Data, Chapman and Hall.

Daniel, W.W.(2006): Biostatistics: A Foundation for Analysis in the Health sciences, John Wiley & sons. Inc.

Dunn, G. and Everitt B. (1995): Clinical Biostatistics: An Introduction to Evidence-based Medicine. Edward Arnold.

Friedman, L.M., Furburg, C. and DeMets, D.L. (1998): Fundamentals of Clinical Trials, Springer Verlag.

Gross, A. J. and Clark V.A. (1975): Survival Distribution; Reliability Applications inBiomedical Sciences, John Wiley & Sons.

Lee, Elisa, T. (1992): Statistical Methods for Survival Data Analysis, John Wiley & Sons.

Li, C.C. (1976): First Course of Population Genetics, Boxwood Press.

Fisher, L.D. and Belle, G.V. (1993): Biostatistics: A Methodology for the Health Science, John Wiley & Sons Inc.

Lawless, J.F.(2003): Statistical Methods for Lifetime (Second Edition), John Wiley & Sons.

Rosner B. (2006): Fundamentals of Biostatistics, Edition 6.

Programme	B. Sc. Statistics	5				
Course Code	STA5EJ304					
Course Title	Econometrics	Econometrics				
Type of Course	Major Elective	9				
Semester	V	V				
Academic Level	300-399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours	
		week	per week	per week		
	4	4	-	-	60	
Pre-requisites						
Course	After completin	ng the course st	tudents should	be able to inter	rpret regression	
Summary	results as well	as to understa	nd the assumption	ptions underly	ing theordinary	
Objective least squares estimator, and judge in an educated manner whether			er whether they			
	hold in a given	problem.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	will be able to estimate and interpret linear regression models and be able to distinguish between economic and statistical importance.	U	С	Instructor-cre ated exams / Quiz
CO2	They should be able to use a statistical/econometric computer package to estimate an econometric model	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	To understand the scope and application of econometrics to real world problems.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	To know econometric problems and their solutions	U	С	Instructor-cre ated exams / Home Assignments
CO5	Student also will be exposed to simple statistical packages and their use in econometric work	Ap	Р	One Minute Reflection Writing

				assignments
CO6		Ар	Р	Viva Voce
* - Re	emember (R), Understand (U), Apply (Ap), A	analyse (An), I	Evaluate (E), Ci	reate (C)
# - Fa	ctual Knowledge(F) Conceptual Knowledge	(C) Procedural	Knowledge (P)	Metacognitive
Know	vledge (M)			

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Introduction	10	15
	1	Purpose and scope of econometrics		
	2	Econometric model		
	3	Model building and role of econometrics.		
	4	General linear model (GLM).		
	5	Estimation under linear restrictions and properties of estimators		
	Sectio	ons from References:		
II		Heteroscedasticity	12	20
	6	Econometric problems		
	7	Heteroscedasticity		
	8	Tests for heteroscedasticity,		
	9	Consequences of heteroscedasticity and solutions		
	Sectio	ons from References:		
III		Autocorrelation	12	15
	10	Autocorrelation concept		
	11	Consequences of auto correlated disturbances,		
	12	Detection of Autocorrelation		
	13	Tests of autocorrelation.		
	14	Distributed lag models		
	15	Estimation of parameters		
	Sectio	ons from References:		

IV	Multiple regression			20		
	16	Concept of Multiple regression				
	17	Multiple regression analysis.				
	18	Multi collinearity: Introduction and concepts,				
	19	Detection of multi collinearity,				
	20	Consequences multi collinearity				
	21	Sources multi collinearity				
	22	Tests and estimation of multi collinearity				
	Secti	ons from References:				
V		12				
	1	Practical Problems related to OLS/ CLR using softwares. Introduction to various Economic functions (Demand , Supply, Utility, Cost , Revenue etc.)				
	Secti	ons from References:				
Books a	nd Refe	prences:				
1. Guj	arathi, l	D. and Sangeetha, S.(2007). Basic Econometrics, Mc Graw Hill				
2. Joh	nston, J	.(2009) Econometric Methods, 4th edition, Mc Graw Hill				
3. Jud Wiley	ge, G. J	, Grifiths, W. E & et al.(1985). Theory and Practice of Econometrics, 2nd	edition,	, John		
4. Intr	oductor	y Econometrics, a modern approach, 5th edition, Jeffrey M. Wooldridg				
-	Maddala C.C. and Labiri K. (2000). Lateradaction to Economication 44 Wilcow & Comp					

5. Maddala, G.S. and Lahiri, K. (2009): Introduction to Econometrics, 4th Wiley & Sons

Programme	B. Sc. Statistics	3			
Course Code	STA5EJ305				
Course Title	Official Statistic	CS			
Type of Course	Major Elective	9			
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	4	-	-	60
Pre-requisites					
Course	Aware students	the role of the	subject Statist	tics in Nationa	l Policy
Summary	Formulation, P	Formulation, Planning and framing of various policies by the			
Objective	Governments				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the roles and responsibilities of various central and state organizations.	U	С	Instructor-cre ated exams / Quiz
CO2	Explain the methods of data collection and dissemination in the official setup	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Explain the population growth in developed and developing countries	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Explain Statistics related to Industries, foreign trade, balance of payment, cost of living, inflation, educational and other social statistics	U	С	Instructor-cre ated exams / Home Assignments
CO5	Explain the National income estimation by various approaches.	Ар	Р	One Minute Reflection Writing assignments
CO6	Describe Lorenz curve, Gini Coefficient and Theil's measure of income inequality			
CO7	Practical: Use R built in functions to solve	Ар	Р	Viva Voce

	numerical problems associated with topics covered in various modules			
	emember (R), Understand (U), Apply (Ap), A	-		
	ctual Knowledge(F) Conceptual Knowledge (vledge (M)	(C) Procedural	I Knowledge (P)) Metacognitive

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Introduction	12	20
	1	Introduction to Indian and International Statistical systems.		
	2	Methods of collection of official statistics.		
	3	Role, function and activities of Central and State Statistical organizations.		
	4	Organization of large-scale sample surveys. Role of Ministry of Statistics & Program Implementation (MoSPI),		
	5	Central Statistical Office (CSO), National Sample Survey Office (NSSO), and National Statistical Commission.		
	6	Government of India's Principal publications containing data on the topics such as population, industry and finance.		
	7	Scope and Contents of population census of India.		
	Sectio	ons from References:		
II			12	20
	8	Population growth in developed and developing countries.		
	9	Evaluation of performance of family welfare programmes.		
	10	Projections of labour force and man power.		
	11	Statistics related to Industries, foreign trade, balance of payment		
	12	Statistics related to cost of living, inflation, educational and other social statistics		
	Sectio	ons from References:		
III			12	15
	13	Economic development		

	14	Growth in per capita income and distributive justice indices of		
		development,		
	15	Human Development Index.		
	16	National income estimation- Product approach		
	17	National income estimation Income approach		
	18	National income estimation Expenditure approach		
IV		Measuring inequality in incomes	12	15
	19	Measuring inequality in incomes: Lorenz curve,		
	20	Gini Coefficient,		
	21	Theil's measure.		
	22	Poverty measurements: Different issues,		
	23	measures of incidence and intensity		
	Secti	ons from References:		
V		Open Ended Module:	12	
	1	Prepare a report based on Wealth – Income distribution disparities		
	Secti	ons from References:		
Books a	nd Refe	prences:		
1. Gui	de to O	fficial Statistics (CSO) 1999		
2. Stat	istical S	System in India (CSO) 1995		

- 3. Principles and Accommodation of National Population Census, UNEDCO.
- 4. Monthly Statistics of Foreign Trade in India, DGCIS, Calcutta and other Govt. Publications.
- 5. Keyfitz, N (1977): Applied Mathematical Demography- Springer Verlag.
- 6. Sen, A(1977): Poverty and Inequality.
- 7. Chubey, P.K (1995): Poverty Measurement, New Age International.

Programme	B. Sc. Statistics						
Course Code	STA5EJ306						
Course Title	Longitudinal Da	Longitudinal Data Analysis					
Type of Course	Major Elective	Major Elective					
Semester	V	V					
Academic Level	300-399	300-399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	Learn both how	v to clean long	itudinal data as	s well as the ma	ain statistical		
Summary	models used to	analyse it. The	e course will c	over three fun	damental		
Objective	frameworks for structural equat	• •	0		odelling,		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the basic concepts of Linear Model in longitudinal data analysis	U	С	Instructor-cre ated exams / Quiz
CO2	Analyze numerical methods to solve the problems in Linear Model	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	Explain the basic concepts of Generalized Linear Model	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Illustrate and study on missing data mechanism in longitudinal data analysis	U	С	Instructor-cre ated exams / Home Assignments
CO5	Analyze longitudinal data using any statistical software	Ap	Р	One Minute Reflection Writing assignments
CO6		Ар	Р	Viva Voce

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Introduction:	12	20
	1	longitudinal studies. Design considerations		
	2	Bias, Efficiency, Sample size calculations.		
	3	Exploring longitudinal data: graphical representation of longitudinal data,		
	4	fitting smooth curves to longitudinal data,		
	5	Exploring correlation structure.		
	6	General linear models for longitudinal data		
	Sectio	ons from References:		
II		Estimation and Analysis	12	15
	7	Weighted least-squares estimation,		
	8	Maximum likelihood estimation. Model-fitting: formulation, estimation, inference.		
	9	Analysis of Variance methods: preliminaries,		
	10	time-by-time ANOVA		
	11	derived variables, repeated measures		
	Sectio	ons from References:		
III		Generalized Linear Model	14	20
	12	Generalized Linear Model for Longitudinal Data:		
	13	Marginal models, for binary, ordinal, and count data:		
	14	Random effects models for binary data:		
	15	Random effects models for ordinal data		
	16	Random effects models for count data		

	17	Transition models		
	18	Likelihood-based models for categorical data		
	Secti	ons from References:		
IV			10	15
	19	Dropouts and missing data		
	20	Classification missing data mechanism; Intermittent missing values and dropouts		
	21	Simple solutions and their limitations		
	22	last observation carried forward, complete case analysis		
	Secti	ons from References:		
V		Open Ended Module:	12	
	1	Formatting and cleaning of longitudinal data (either in long or wide format and their interchangeability), Repeated measures and General linear model fitting, Model fitting for binary ordinal and count data (R, JAMOVI, Mathematica, Stata, SAS)		
	Secti	ons from References:		
Books a	nd Refe	rences:		l
		agerty, P., Liang, K.Y and Zeger. S.L (2003). Analysis of Longitudinal Da University Press, London.	ita- Seco	ond
	zmaurico New Je	e,M., Laird,M. and Ware, H. Applied Longitudinal Analysis- Second Editi ersey.	on. Joh	n Wile
2. Cro Press, L		I.J. and Hand, D.J. (1990). Analysis of Repeated Measures. Chapman and	Hall/C	RC
3. Har Press, L		d Crowder, M. (1996). Practical Longitudinal Data Analysis. Chapman ar	nd Hall/	CRC
. Lin	dsey, J.	K. (1993) Models for Repeated Measurements. Oxford University Press, I	London	
		A, and Rubin, O.B. (2019). Statistical Analysis with Missing Data- Third H New York.	Edition.	John
	0	, P. and Nelder, J.A (1989). Generalized Linear Models- Second Edition. (s, London.	Chapma	an and
	C 1 1038			

7. Weiss, R.E. (2005). Modeling Longitudinal Data. Springer, New York

•

SEMESTER VI

Programme	B. Sc. Statistics						
Course Code	STA6EJ301						
Course Title	Simulation Tec	hniques					
Type of Course	Major Elective	Major Elective					
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	Statistical Met	thods to model	and analyse a	variety of Ran	dom		
Summary	Phenomena	Phenomena					
Objective							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Generate pseudo-random numbers using different methods.	U	С	Instructor-cre ated exams / Quiz
CO2	Use resampling methods on real datasets.	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Apply Markov Chain Monte Carlo methods and density estimation	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Develop programs for simulation purposes.	U	С	Instructor-cre ated exams / Home Assignments
CO5	Apply simulation skills in real-world scenarios	Ap	Р	One Minute Reflection Writing assignments

CO6	Ар	Р	Viva Voce			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowledge (M)						

Image: statistical value of the simulated data (48 1 Introduction to random number generation. 10 1 Introduction to random number generation. 10 2 Methods for generating random variables - Inverse transform method 1 3 Composition method, Transformation method 1 4 Acceptance-Rejection method. 1 5 Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017) 1 Sections from References: II 12 1 6 Simulation for the multivariate normal distribution 1 7 Simple estimation based on simulated data 1 8 Monte Carlo integration and variance reduction techniques 1 9 Use of antithetic and control variables 1 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) 1 III 11 Introduction to resampling, 12 12 11 Introduction to resampling, 1 12 Sampling distribution and other features of a statistic 1 <t< th=""><th>Module</th><th>Unit</th><th>Content</th><th>Hrs</th><th>Marks</th></t<>	Module	Unit	Content	Hrs	Marks		
III01Introduction to random number generation.1102Methods for generating random variables - Inverse transform method113Composition method, Transformation method114Acceptance-Rejection method.115Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017)1II $\frac{6}{2}$ Simulation for the multivariate normal distribution17Simple estimation based on simulated data18Monte Carlo integration and variance reduction techniques19Use of antithetic and control variables110Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022))1IIIIntroduction to resampling, 12121211Introduction to resampling, 12121112Sampling distribution and other features of a statistic1				(48	(70)		
I Introduction to random number generation. Image: Introduction to random number generation. Image: I				+12)			
2 Methods for generating random variables - Inverse transform method 3 Composition method, Transformation method 4 Acceptance-Rejection method. 5 Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017) Sections from References: 12 6 Simulation for the multivariate normal distribution 7 Simple estimation based on simulated data 8 Monte Carlo integration and variance reduction techniques 9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: III Introduction to resampling, 12 11 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic	Ι	+	<u> </u>	10	15		
method method method 3 Composition method, Transformation method method 4 Acceptance-Rejection method. method 5 Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017) method Sections from References: 12 6 Simulation for the multivariate normal distribution 7 Simple estimation based on simulated data 8 Monte Carlo integration and variance reduction techniques 9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: 12 12 12 12 12 12 12 12 12 12 12 12 13 Permutation and other features of a statistic <td <="" colspan="2" td=""><td></td><td>1</td><td>Introduction to random number generation.</td><td></td><td></td></td>	<td></td> <td>1</td> <td>Introduction to random number generation.</td> <td></td> <td></td>			1	Introduction to random number generation.		
4 Acceptance-Rejection method. 1 5 Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017) 1 II 6 Simulation for the multivariate normal distribution 1 7 Simple estimation based on simulated data 1 8 Monte Carlo integration and variance reduction techniques 1 9 Use of antithetic and control variables 1 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) 1 Sections from References: III 12 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) III 12 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		2					
5 Generating from common statistical distributions Discrete and Continuous. (Rizzo (2019) and Rubinstein (2017) Sections from References: II 12 6 Simulation for the multivariate normal distribution 7 Simple estimation based on simulated data 8 Monte Carlo integration and variance reduction techniques 9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: III 11 Introduction to resampling, 12 11 11 Introduction and other features of a statistic 13 Permutation and Randomization tests,		3	Composition method, Transformation method				
Continuous. (Rizzo (2019) and Rubinstein (2017) I Sections from References: 12 6 Simulation for the multivariate normal distribution I 7 Simple estimation based on simulated data I 8 Monte Carlo integration and variance reduction techniques I 9 Use of antithetic and control variables I 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) I III 11 Introduction to resampling, I 12 Sampling distribution and other features of a statistic I 13 Permutation and Randomization tests, I		4	Acceptance-Rejection method.	-			
II II 12 6 Simulation for the multivariate normal distribution 1 7 Simple estimation based on simulated data 1 8 Monte Carlo integration and variance reduction techniques 1 9 Use of antithetic and control variables 1 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) 1 III Sections from References: 12 11 Introduction to resampling, 1 12 Sampling distribution and other features of a statistic 1 13 Permutation and Randomization tests, 1		5	-				
6 Simulation for the multivariate normal distribution Image: constraint of the multivariate normal distribution 7 Simple estimation based on simulated data Image: constraint of the simulated data 8 Monte Carlo integration and variance reduction techniques Image: constraint of the simulated data by goodness of fit tests. 9 Use of antithetic and control variables Image: constraint of the simulated data by goodness of fit tests. 10 Statistical validation of the simulated data by goodness of fit tests. Image: constraint of the simulated data by goodness of fit tests. 10 Statistical validation of the simulated data by goodness of fit tests. Image: constraint of the simulated data by goodness of fit tests. 10 Statistical validation of the simulated data by goodness of fit tests. Image: constraint of tests of test		Sectio	ons from References:				
7 Simple estimation based on simulated data 8 Monte Carlo integration and variance reduction techniques 9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) III III Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,	Π			12	20		
8 Monte Carlo integration and variance reduction techniques 9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) III III 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		6	Simulation for the multivariate normal distribution				
9 Use of antithetic and control variables 10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: 12 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		7	Simple estimation based on simulated data				
10 Statistical validation of the simulated data by goodness of fit tests. (Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: 12 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		8	Monte Carlo integration and variance reduction techniques				
(Rizzo (2019), Rubinstein (2017) and Ross (2022)) Sections from References: III 11 Introduction to resampling, 12 11 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		9	Use of antithetic and control variables				
III I2 11 Introduction to resampling, 12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,		10					
11Introduction to resampling,12Sampling distribution and other features of a statistic13Permutation and Randomization tests,		Sectio	ons from References:				
12 Sampling distribution and other features of a statistic 13 Permutation and Randomization tests,	Ш	<u>+</u>		12	15		
13 Permutation and Randomization tests,		11	Introduction to resampling,				
		12	Sampling distribution and other features of a statistic				
14 Theory for Jackknife, Variance estimation-consistency,		13	Permutation and Randomization tests,				
		14	Theory for Jackknife, Variance estimation-consistency,				

	15	Jackknife in sample surveys,		
	16	Theory for the bootstrap and its consistency, Distribution and variance estimators (Shao & Tu (2012), Rizzo (2019))		
	Section	ons from References:		
IV			14	20
	17	Markov Chain Monte Carlo methods:		
	18	The Metropolis–Hasting's algorithm		
	19	Gibbs sampling.		
	20	EM algorithm.		
	21	Smoothing with kernels		
	22	density estimation (McLachlan & Krishnan (1997), Rubinstein (2017), Robert & Casella (2004) and Rizzo (2019		
	Section	ons from References:		
V		Open Ended Module:	12	
	1	Generate random numbers using statistical software for different distributions with its estimation and model fitting. Apply resampling methods for real life data.		
	Section	ons from References:		

Books and References:

1. Rizzo, M. L. (2019). Statistical Computing with R, second edition. Boca Raton, FL: Chapman & Hall/CRC Press

References

- 2. McLachlan, G.J. and Krishnan, T. (1997): The EM Algorithms and Extensions, Wiley.
- 3. Robert, C.P. & Casella, G. (2004) Monte Carlo Statistical Methods, 2ndEdn., Springer.
- 4. Ross, S. M. (2022). Simulation. Academic Press.
- 5. Rubinstein, R.Y. (2017). Simulation and the Monte Carlo Methods, Wiley.
- 6. Shao, J., & Tu, D. (2012). The jackknife and bootstrap. Springer Science & Business Media.

Programme	B. Sc. Statistics						
Course Code	STA6EJ302	STA6EJ302					
Course Title	Reliability Theo	Reliability Theory					
Type of Course	Major Elective	Major Elective					
Semester	VI	VI					
Academic Level	300-399	300-399					
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	Determine the	reliability of sy	ystems based o	on defined/dete	ermined		
Summary	reliability of the	reliability of the system elements and defined block diagram for the					
Objective	reliability of th	e observed sys	tem.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the structural properties of coherent systems.	U	С	Instructor-cre ated exams / Quiz
CO2	Determine the reliability of a system.	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Discuss the different parametric distributions in reliability	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	04 Discuss the lifetime of a system based on ageing properties U C			Instructor-cre ated exams / Home Assignments
CO5	Discuss different censoring schemes.	Ар	Р	One Minute Reflection Writing assignments
CO6		Ap	Р	Viva Voce
	emember (R), Understand (U), Apply (Ap), A ctual Knowledge(F) Conceptual Knowledge	-		

Knowledge (M)

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
		<u> </u>	10	15
	1	System of components		
	2	series and parallel structure with examples		
	3	dual structure function		
	4	coherent structure		
	5	preservation of coherent system in terms of paths and cuts		
	6	representation of bridge structure		
	7	relative importance of components		
Ι	8	modules of coherent systems		
	Sectio	ons from References:		
			10	15
	9	Reliability of a system of independent components		
	10	Some basic properties of system reliability		
Π	11	Computing exact system reliability		
	12	Inclusion exclusion method		
	13	Reliability importance of components		
	Sectio	ons from References:		
III			16	20
	14	Reliability function, hazard function,		
	15	Residual life time, mean residual life function, one-one correspondence of these functions.		
	16	Common life distributions, exponential, weibull, gamma, pareto, lognormal and their characteristics.		
	17	Type –I, Type-II and random censoring schemes.		

	18	Likelihood functions based on these sampling schemes.		
	Section			
IV			12	20
	19	IFR, IFRA, DMRL, NBU, NBUE classes and their duals.		
	20	Exponential distribution and its aging property		
	21	Aging properties of common life distributions		
	22	Classes under formation of coherent structures.		
	Sectio	ons from References:		
V		12		
	1	Estimation and testing based on these schemes for various parametric models.		
	Section	ons from References:		

Books and References:

Text Books

- 1. **Barlow R.E. and Proschan F.(1985).** Statistical Theory of Reliability and Life Testing; Ho Rinehart and Winston.
- 2. Lawless, J.F. (2003). Statistical Models and Methods for Lifetime (Second Edition), John Wiley Sons Inc., New Jersey.

References

- 3. **Bain L.J. and Engelhardt (1991).** Statistical Analysis of Reliability and Life Testing Mode Marcel Dekker.
- 4. Aven, T. and Jensen, U. (1999). Stochastic Models in Reliability, Springer-Verlag, New York, Inc.
- 5. Nelson, W (1982). Applied Life Data analysis; John Wiley.
- 6. Zacks, S. (1992). Introduction to Reliability Analysis: Probability Models and Statistics Method New York: Springer-Verlag.

Programme	amme B. Sc. Statistics						
Course Code	STA6EJ303						
Course Title	Life Time Data Analysis						
Type of Course	Major Elective						
Semester	VI						
Academic Level	Academic Level 300-399						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	The student has a thorough knowledge of the basic theory of stochastic						
Summary	modelling and statistical analysis of survival data, including graphical						
Objective	techniques. This includes both parametric and non-parametric analysis of						
	censored survival data and data for recurrent events, as well as related						
	regression mod	els					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic concepts and ideas of survival analysis.	U	C	Instructor-cre ated exams / Quiz
CO2	Examine the properties and methods for standard survival time distributions	Ар	Р	Practical Assignment / Observation of Practical Skills
CO3	Estimate survival functions using parametric and non-parametric methods.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Apply and interpret semi-parametric and parametric regression models for survival data.	U	С	Instructor-cre ated exams / Home Assignments
CO5	To apply the concepts learned in the previous modules to a real-life data set.	Ар	Р	One Minute Reflection Writing assignments

CO6	Ар	Р	Viva Voce		
* - Remember (R), Understand (U), Apply (Ap), A	nalyse (An), I	Evaluate (E), Ci	reate (C)		
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Knowledge (M)					

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι			10	15
	1	Basic Quantities and Models- Survival Function, Hazard function, Mean residual life function		
	2	Common Parametric models for survival data.		
	3	Log location scale models,		
	4	Mixture models.		
	Sectio	ons from References:		
П			10	15
	5	Right censoring		
	6	Left censoring		
	7	Interval censoring		
	8	Truncation		
	9	Likelihood construction for censored and truncated data.		
	Sectio	ons from References:		
III			18	20
	10	Nonparametric Estimation of Basic Quantities		
	11	Estimators of the Survival Functions for Right-Censored Data		
	12	Estimators of Cumulative Hazard Functions for Right-Censored Data		
	13	Point-wise Confidence Intervals for the Survival Function		
	14	Life Table		
	15	Estimation of Survival in the Cohort Life Table.		
	16	Hypothesis testing- One sample tests		

	Section	ons from References:		
	Beeth			l
IV			10	20
	18	Semiparametric Proportional Hazards Regression with Fixed Covariates		
	19	Model Building Using the Proportional Hazards Model		
	20	Graphical Checks of the Proportional Hazards Assumption,		
	21	Additive hazards regression models.		
	22	Regression Diagnostics		
	Section	ons from References:		
V		Open Ended Module:	12	
	1	Practical exercises on lifetime data using the statistical software R: Fitting the Parametric models for survival data.		
	Section	ons from References:		
ooks a	und Refe	rences:	1	

truncated data, Second Edition, Springer-Verlag, New York.

 Lawless J.F (2003) Statistical Models and Methods for Lifetime Data, Second Editon, John Wiley & Sons, Relevant Sections of the Chapters 9.

3. Kalbfleisch J.D and Prentice, R.L. (2002) The Statistical Analysis of Failure Time Data, Second Edition, John Wiley & Sons Inc.

4. Deshpande, J.V. and Purohit, S. G. (2006). Lifetime Data: Statistical Models and Methods. World Scientific.

Programme	B. Sc. Statistic	S			
Course Code	STA6EJ304				
Course Title	Demography				
Type of Course	Major Electiv	e			
Semester	VI				
Academic Level	300-399				
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours
		week	per week	per week	
	4	4	-	-	60
Pre-requisites					
Course	On completion	of the course,	the students sh	all be able to I	Understand
Summary	basics of Statis	stical Techniqu	es used in pop	ulation data ar	nalysis.
Objective					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand various sources of demographic data	U	C	Instructor-cre ated exams / Quiz			
CO2	Understand life tables and their main features	Ap	Р	Practical Assignment / Observation of Practical Skills			
CO3	Calculate and interpret mortality and fertility measures	Ap	Р	Seminar Presentation / Group Tutorial Work			
CO4	Analyze internal migration and its measurement, exploring migration models	U	С	Instructor-cre ated exams / Home Assignments			
CO5	Apply demographic concepts and measures practically using data analysis tools like R or Excel.	Ap	Р	One Minute Reflection Writing assignments			
CO6		Ар	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		<u> </u>	10	15
	1	Sources of demographic data		
	2	Census and Registration		
	3	Ad-hoc surveys, Hospital records		
	4	Demographic profiles of the Indian Census.		
	Sectio	ons from References:		
II			10	15
	5	Complete life table and its main features		
	6	Uses of life table. Makehams and Gompertz curves.		
	7	National life tables. UN model life tables.		
	8	Abridged life tables. Stable and stationary populations.		
	Sectio	ons from References:		
III			16	20
	9	Measurement of Mortality: Crude death rate		
	10	Standardized death rates		
	11	Age-specific death rates		
	12	Infant Mortality rate		
	13	Death rate by cause		
	14	Measurement of Fertility: Crude birth rate		
	15	General fertility rate		
	16	Age specific birth rate		
	17	Total fertility rate		
	Sectio	ons from References:		
IV			12	20

	18	Gross reproduction rate, Net reproduction rate		
	19	Internal migration and its measurement, migration models		
	20	Concept of international migration		
	21	Net migration. International and postcensal estimates		
	22	Decennial population census in India		
	Sectio	ons from References:		
V		Open Ended Module:	12	
	1	Hands-on in R or Excel: Mortality and fertility measures.		
	Sectio	ons from References:		
Books an	d Refe	rences:	I	L
1 0		at a d V V V v v v Frankright d a d a d a d a d a d a d a d a d a d	1 10	

- 1. S. C. Gupta and V. K. Kapoor. Fundamentals of Applied Statistics. Sultan Chand and Sons.
- 2. Benjamin B, Health and Vital Statistics, Allen and Unwin

Programme	B. Sc. Statistics	B. Sc. Statistics					
Course Code	STA6EJ305	STA6EJ305					
Course Title	Actuarial Statis	Actuarial Statistics					
Type of Course	Major Elective)					
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	4	4	-	-	60		
Pre-requisites							
Course	To learn the life	e tables used in	n insurance pro	oducts.			
Summary Objective	To learn the concept of interest, different life insurance products, life annuities, net premiums.						
	To motivate students to prepare for exams required for employment in the actuarial science profession.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Discuss future life time distributions and their probabilities.	U	C	Instructor-cre ated exams / Quiz
CO2	Know the concept of life table.	Ap	Р	Practical Assignment / Observation of Practical Skills
CO3	Apply different kinds of interest rates expressed in different time periods.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Understand the basics life assurance and life annuity contracts.	U	С	Instructor-cre ated exams / Home Assignments
CO5	Understand the utility theory, insurance products and life tables.	Ар	Р	One Minute Reflection

	Understand the concept of interest.			Writing assignments			
CO6	 : Understand the concept of life insurance and the existing insurance products of different insurance company. Know life annuities, net premium and net premium reserves 	Ap	Р	Viva Voce			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs	Marks
			(48	(70)
			+12)	
Ι		Future life time distribution	10	15
	1	Future life time random variables,		
	2	Force of mortality, Laws of mortality		
	3	De Moivre's law, Gompertz's Law (Definition only)		
	4	Makeham's Law, Weibull's Law (Definition only)		
	5	Probabilities of survival and death, Curtate Future life time		
	Sectio	ons from References:		
II		Life Tables	12	20
	6	Construction of a life table		
	7	Assumptions for fractional ages		
	8	Uniform distribution of deaths		
	9	Balducci assumption,		
	10	Constant force of mortality assumption		
	11	Select and ultimate life tables		
	Sectio	ons from References:		
III		Rates of interests and Annuities	16	20

	12	Compound interest and discount factor		
	13	Nominal rate of interest		
	14	Force of interest		
	15	Accumulated value		
	16	Annuities		
	17	Annuities certain- Immediate and due		
	18	monthly annuity certain		
	19	Continuous annuity certain		
	20	Deferred annuity		
	Secti	ons from References:		
IV		Life insurance and annuity contracts	10	15
	21	Continuous Life insurance contracts		
	22	Term life assurance, Endowment		
	23	Whole life, Continuous Life annuities- whole lie annuity		
	24	n-year temporary life annuity,		
	25	n- year certain and life annuity		
	Secti	ons from References:		
V		Open Ended Module:	12	
	1			
	Secti	ons from References:		
Rooks a	nd Refe	erences:		

Textbook:

1. Shailaja R. Deshmukh- Actuarial Statistics-an introduction using R, Universities Press.

Reference:

1. Rotar, V.I. (2015). Actuarial Models – The mathematics of Insurance – Second Edition. CRC Press, New York.

2. Promislow, S.D. (2015). Fundamentals of Actuarial Mathematics- Third Edition. John Wiley & Sons, New York.

3. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A.& Nesbitt, C.J. (1997). Actuarial Mathematics, Society of Actuaries.

SEMESTER VIII

Programme	B. Sc. STATISTIC	B. Sc. STATISTICS				
Course Code	STA8 EJ 411					
Course Title	STATISTICAL M	ETHODS FO	OR MACHIN	NE LEARNIN	IG	
Type of Course	Major Elective					
Semester	VIII					
Academic	400-499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Basic knowledge in Statistics and programming skills in Python					
Course	Understanding Machine learning using Statistics					
Summary						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
1.	Describe the application of statistical concepts and methods in machine Learning	U	F	Seminar Presentation /			
2.	Apply various popular machine learning methods to practical situations	Ар	С	Instructor-created exams			
3.	Apply the model assessment methods in machine learning techniques	Ар	Р	Group Tutorial Work			
4.	Connect computing software into machine learning problems	An	Р	Home Assignments			
5.	Explain basic concepts of Neural Networks in machine learning	U	F	Practical Skill			
# - F	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Module	Unit					
Ι	Statistical	Learning	10			
	1	Variable types; Predictors, Features, Responses, Quantitative variables, Categorical variables, Ordered categorical variables				
	2 Approaches to prediction; Least squares and nearest neighbors					
	3	Supervised and Unsupervised learning				
	4	Regression and classification problems				
	5	Assessing model accuracy, Mean square error, The bias-variance trade off				
	6	Comparison of linear regression with K-Nearest Neighbors(KNN) regression				
II	Classificati		14			
	7	Classification; concepts and its appropriateness in the case of qualitative responses				
	8	Th logistic model				
	9	Linear Discriminant Analysis (LDA) with only one predictor				
	10	Confusion matrix				
	11	Comparison of logistic regression and LDA methods				
	12	Cross validation; Leave-one-out cross validation, K-Fold cross validation				
	13	Decision trees, Regression trees, Classification trees				
	14	Bagging, Random Forests, Boosting.				
III	Support V	ector Machines and Clustering	10			
	15	Maximal margin classifier				
	16	Support vector classifier				
	17	Support vector machines				
	18	K-means clustering				
	19	Hierarchical clustering				
IV	Neural Net		14			
	20	Neural Networks; The Basic Architecture of Neural networks				
	21	The perceptron, Activation and Loss functions				
	22	Multi-Layer Neural Networks				
V	Open –End		12			
	Apply macl Python.	hine learning to real-life projects using software packages in R or (Based on reference books)				

Text Book

1. Hastie, T., Tibshirani, R. and Friedman, J. (2017).

The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition. Springer, New York

2. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer, New York

3. Charu C. Aggarwal (2018). Neural Networks and Deep Learning: A Textbook, Springer

Reference

- 1. Burger, S. V. (2018). Introduction to Machine Learning with R, O'Reilly Media, Inc.
- 2. <u>Avila</u>. J, <u>Hauck</u>. T. (2017). Scikit-learn Cookbook: Over 80 Recipes for Machine Learning in Python. Packt Publishing, UK

Programme	B. Sc. STATISTIC	S			
Course Code	STA8 EJ 412				
Course Title	OPERATIONS RE	SEARCH			
Type of Course	Major Elective				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Good idea about Linear Programming Problems				
Course	Understand advanced models of Linear Programming Problems and				
Summary	Non-Linear Progra	mming Prob	olems.		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
1.	Express theoretical knowledge of Simplex method for solving Linear Programming Problems and Expertise with Revised Simplex method and Dual Simplex method.	U	F	Seminar Presentation /
2.	Develop and solve Integer Programming Models.	Ар	С	Instructor-created exams
3.	Identify Classical Optimization techniques and Non- linear Programming techniques.	U	F	Group Tutorial Work
4.	Formulate Network models like PERT and CPM to improve decision making and develop critical thinking objective analysis of decision making.	Ар	С	Home Assignments
5.	Develop and solve Inventory Models and acquire skills in analyzing Queuing Models.	Ар	С	Practical Skill
6.	Estimate the allocation of resources to demand points in the best possible way using various techniques and minimize the cost or time of completion of jobs.	An	Р	Observation of Practical Skills

* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (60)	Marks (70)
Ι	Theory of	Simplex Method & Revised Simplex Method	12	20
	1	Canonical and Standard form of LP problem		
	2	Canonical and Standard form of LP problem- Reduction of		
		Feasible solution to Basic Feasible solution		
	3	Improving a Basic Feasible Solution-Alternative optimal solutions		
	4	Unbounded Solutions-Unrestricted variables-degeneracy and its Resolution		
	5	Standard forms for Revised Simplex Method- Computational Procedure		
	6	Comparison of Simplex method and Revised Simplex method		
	7	Dual Simplex Method		
II	Integer Li	inear Programming & Classical Optimization Methods	12	20
	8	Types of Integer Programming Problems-Gomory's all Cutting Plane Method		
	9	Gomory's Mixed Integer Cutting Plane Method		
	10	Branch and Bound Method		
	11	Applications of Zero-One Integer Programming		
	12	Unconstrained Optimization- Optimizing single variable and Multivariable functions		
	13	Constrained Multi Variable Optimization with equality and Inequality constraints		
	14	Lagrange Multipliers Methods		
	15	Kuhn-Tucker Necessary and Sufficient Conditions.		
III		ar Programming Methods, Quadratic Programming & Programming	12	15
	16	The General Non-Linear Programming Problem- Graphical Solution Method		
	17	Quadratic Programming -Kuhn-Tucker Conditions- Wolfe's Modified Simplex Method		
	18	Dynamic Programming - Terminology - Optimal Decision Policy-General Algorithm-		
	19	Dynamic Programming Approach for solving LPP		
IV	Project M	anagement PERT and CPM, Inventory Control Models	12	15
	20	Basic difference between PERT and CPM-Critical Path Analysis		
	21	Estimation of Project completion time- Project Time cost Trade off -Project Crashing -Resource allocation		
	22	Deterministic Inventory Models- EOQ Inventory Models without shortages and with Shortages-		

	23	Probabilistic Models-Newspaper Boy Problem.		
V	Open –Ended		12	
	Sequencing Problem, Replacement and Maintenance Models Simulation			
	Techniques			

Reference

1. Mital. K. V. and Mohan. C. (1996). Optimization Methods in OperationsResearch

and Systems Analysis Third Edition, New Age International (Pvt) Ltd., New Delhi.

2. **Taha. H.A. (2007).** Operations Research – An Introduction-Eighth Edn. Pearson Printice Hall, new Jersey.

3. Sharma J.K. (2003). Operations Research-Theory and Applications, Macmillan

Indian Ltd., New Delhi

4. Man Mohan, Kanti Swarup and Gupta (1999). Operations Research, Sulthan Chand & Sons, New Delhi.

Programme	B. Sc. STATISTIC	B. Sc. STATISTICS						
Course Code	STA 8 EJ 413	STA 8 EJ 413						
Course Title	QUEUEING MOD	DELS						
Type of Course	Major Elective							
Semester	VIII							
Academic	400-499							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	4	-	-	60			
Pre-requisites	Basic knowledge of Markov Chain & Stochastic process							
Course	Detail analysis of Queueing Models							
Summary								

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
1.	Identify basic concepts of queueing theory	U	F	Seminar Presentation			
2.	Analyze behaviors of queueing models	An	Р	Instructor-created exams			
3.	Explain on queueing Networks	Ар	F	Group Tutorial Work			
4.	Apply queueing models	Ар	F	Home Assignments			
5.	Evaluate performance measures	An	Р	Practical Skill			
6.	6. Create significance and C M Group Tutorial Work applications of queueing theory						
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)						
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Kno	wledge (M)						

Module	Unit	Content		Marks (70)
Ι	Queueing '	Theory	(60) 12	20
	1	Introduction to queueing theory, Cost Equations, Steady-State Probabilities		
	2	Characteristics of queueing processes, Measures of effectiveness		
	3	Markovian queueing models		
	4	steady state solutions of the M/M/I model, waiting time distributions		
	5	Little's formula, queues with unlimited service, finite source		
		queues		
II	Transient	Behavior	12	15

	6	Transient behavior of M/M/1 queues			
	7	Transient behavior of $M/M/\infty$			
	8	Busy period analysis for M/M/1 and M/M/c models			
	9	Advanced Markovian models			
	10 Bulk input $M^{[X]}/M/1$ model, Bulk service $M/M^{[Y]}/1$ model				
	11 Erlangian models, M/Ek/1 and Ek/M/1				
	12	A brief discussion of priority queues			
III	Queueing	Networks	12	20	
	13	Queueing networks-series queues			
	14	Open Jackson networks			
	15	Closed Jackson network			
	16	Cyclic queues			
	17	Extension of Jackson networks			
	18	Non Jackson networks			
IV	General (Queueing Models	12	15	
	19	Models with general arrival pattern, The M/G/1 queueing model			
	20	The Pollaczek-khintchine formula, Departure point steady state			
		systems size probabilities, ergodic theory			
	21	Special cases M/Ek/1 and M/D/1, waiting times, busy period			
		analysis, general input and exponential service models,			
	22	Arrival point steady state system size probabilities			
V	Open –Er	nded	12		
	Problems	regarding Module I to Module IV			

Reference

1. Gross, D. and Harris, C.M.(1985). Fundamentals of Queuing Theory, 2nd Edition, John Wiley

and Sons, new York.

2. Kleinrock L (1975). Queuing Systems, Vol. I & Vol 2, John Wiley and Sons, New York.

3. Ross, S.M. (2007). Introduction to Probability Models. 9th Edition, Academic Press, New York.

4. Bose, S.K. (2002). An Introduction to Queuing Systems, Kluwer Academic/Plenum Publishers, New York.

Programme	B. Sc. STATISTIC	B. Sc. STATISTICS				
Course Code	STA 8 EJ 414	STA 8 EJ 414				
Course Title	STATISTICAL DE	ECISION TH	IEORY			
Type of Course	Major Elective					
Semester	VIII					
Academic	400-499					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	4	-	-	60	
Pre-requisites	Statistical testing hypothesis, Priori & Posterior probability					
Course	To understand different decision rule using statistics and Bayesian					
Summary	analysis .					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
1.	Explain different loss functions and decision Principle	Ap	С	Seminar Presentation			
2.	Describe the use of prior information in decision making.	R	F	Instructor-created exams			
3.	Calculate Posterior distribution and check the admissibility of Bayes rules	Ap	С	Group Tutorial Work			
4.	Develop general techniques for solving games	Ар	С	Home Assignments			
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)						
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Kno	wledge (M)						

Module	Unit	Content	Hrs (60)	Marks (70)
Ι	Statis	tical decision Problem	12	15
	1	Decision rule		
	2	Loss-randomized decision rule		
	3	Decision Principle - sufficient statistic and convexity		
	4 Utility and			
	5	Loss-loss functions		
	6	Standard loss functions vector valued loss functions		

II	Prior	· information	12	20
	7	subjective determination of prior density		
	8	Non-informative priors		
	9	Maximum entropy priors he marginal distribution to determine the		
		prior		
	10	the ML-II approach to prior selection		
	11	Conjugate priors		
III	The p	posterior distribution	12	20
	12	Bayesian inference		
	13	Bayesian decision theory		
	14	Empirical Bayes analysis		
	15	Hierarchical Bayes analysis		
	16	Bayesian robustness Admissibility of Bayes rules		
IV	Gam	e theory	12	15
	17	Basic concepts		
	18	General techniques for solving games		
	19	Games with finite state of nature		
	20	the supporting and separating hyper plane theorems		
	21	The minimax theorem		
	22	Statistical games		
V	Oper	–Ended	12	
	Probl	ems regarding Module I to Module IV		

Text Book

Berger, O.J. (1985). Statistical Decision Theory and Bayesian Analysis – Second Edition. Springer, New York. Reference

1. **Ferguson, T.S. (1967)**. Mathematical Statistics-A Decision Theoretic Approach. Academic Press, New York.

2. Lehman, E.L. (1998). Theory of Point Estimation-Second Edition. John Wiley, New York.

Programme	B. Sc. STATISTIC	S			
Course Code	STA 8 EJ 415				
Course Title	ANALYSIS OF CI	LINICAL TH	RIALS		
Type of Course	Major Elective				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Different sampling techniques and design of experiments				
Course	To understand different methods to analyze medical data				
Summary					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
1.	Appraise the basic concepts of clinical trials	E	Р	Seminar Presentation			
2.	Plan and develop the design of clinical trials	An	С	Instructor-created exams			
3.	Determine the sample size in clinical trials	Ар	С	Group Tutorial Work			
4.	Conduct bioassays and assimilate the concepts of meta-analysis in clinical Trials	Ар	С	Home Assignments			
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)						
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Kno	wledge (M)						

Module	Unit	Content	Hrs	Marks
			(60)	(70)
Ι	Basic	s of Clinical Trials	12	20
	1	Introduction to clinical trials		
	2	The need and ethics of clinical trials, bias and random error in clinical studies		
	3	Protocols, conduct of clinical trials, over view of Phase I-IV trials		
	4	Data management-data definitions, standard operating Procedure		
	5	Informed consent form, case report forms, database design		
	6	Data collection systems for good clinical practice		
II	Desig	n of Clinical Trials	12	15

	7	Design of clinical trials		
	8	Different phases, Comparative and controlled trials, Random		
		allocation, Randomization, response adaptive methods and restricted		
		randomization		
	9	Methods of Blinding, Parallel group designs, Crossover designs,		
		Symmetric designs, Adaptive designs, Group sequential designs		
	10 Zelen's designs, design of bioequivalence trials			
	11	Outcome measures		
III	Samp	ble Size Determination and Testing	12	20
	12	Sample size determination in one and two sample cases		
	13	Comparative trials, activity studies, testing and other purposes		
	14	Unequal sample sizes and case of anova		
	15	Surrogate endpoints-selection and design of trials with		
		surrogate endpoints		
	16	analysis of surrogate end point data		
	17	Reporting and Analysis		
	18	Interpretation of result, multi-center trials		
IV	Meta	-Analysis	12	15
	19	Meta-analysis in clinical trials-concept and goals, fixed and		
		random effect approaches		
	20	Bioassay: Direct and indirect assays		
	21	Quantal and quantitative assays		
	22	Parallel line and slope ratio assays, Design of bioassays		
V		n –Ended	12	
	Probl	ems regarding Module I to Module IV		

Text Book

1. **Friedman, L. M., Furburg, C. D. Demets, L. (1998).** Fundamentals of Clinical Trials, Springer Verlag.

2. Jennison and Turnbull, B.W. (1999). Group Sequential Methods with Applications to Clinical Trials, CRC Press.

3. Kulinskaya, E, Morgeathaler, S and Staudte R G (2008). Meta-analysis, Wiley.

Reference

1. Fleiss, J. L. (1989). The Design and Analysis of Clinical Experiments, Wiley.

2. Marubeni, E. and M. G. Valsecchi (1994). Analyzing Survival Data from Clinical

Trials and Observational Studies, Wiley and Sons.

3. Piantadosi S. (1997). Clinical Trials: A Methodological Perspective. Wiley.

4. **W Rosenberger, J MLachin (2002).** Randomization in Clinical Trials Theory and Practice, Wiley

Programme	B. Sc. STATISTIC	B. Sc. STATISTICS			
Course Code	STA 8 EJ 416				
Course Title	APPLIED ALGOR	RITHMS AN	D BIG DAT	'A TECHNIQ	UES
Type of Course	Major Elective				
Semester	VIII				
Academic	400-499				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	4	-	-	60
Pre-requisites	Statistical Machine Learning				
Course	To understand how handle big data using EM algorithm, supervisory				
Summary	and unsupervisory	learning			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
1.	Explain the concept of EM clustering algorithms.	U	F	Seminar Presentation			
2.	Understand the classification techniques and the concept of support vector machines	U	F	Instructor-created exams			
3.	Explain the basic concepts related to big data	Ар	С	Group Tutorial Work			
4.	Illustrate the multidimensional scaling techniques in unsupervised learning	Ар	С	Home Assignments			
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)						
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Kno	wledge (M)						

Module	Unit	Content	Hrs (60)	Marks (70)	
Ι	EM A	Algorithm	12	20	
	1	Two-Component Mixture Model			
	2	Gaussian Models			
	3	The EM Algorithm in General			
	4	EM as a Maximization–Maximization Procedure			
II	Suppo	ort Vector Machines	10	15	
	5	Maximal Margin Classifier			
	6	6 Support Vector Classifiers			
	7	Support Vector Machines			

	8	SVMs with More than Two Class- One- Versus-One Classification		
		and One-Versus-All Classification		
Ш	Big D	Data	10	15
	9	Definition, Characteristics		
	10	Data Analytics		
	11	General Categories of Data Analytics		
	12	Structured, Unstructured and Semi Structured Data		
	13	Met data		
	14	Big Data Analytics Life Cycle.		
IV	Multi-Dimensional Scaling			20
	15	Definition, Perceptual Map		
	16	Decision Frame- work for Perceptual Mapping,		
	17	Non-metric versus Metric methods		
	18	Similarities Data,		
	19	Preferences Data		
	20	Aggregate and Disaggregate Analysis		
	21	De-compositional and Compositional approaches		
	22	Interpreting the MDS results		
V	Open	–Ended	12	
	Practi	ical Problems from Module I to Module IV using software's		

Text Books/ References

1. Hastie, T., Tibshirani, R. and Friedman, J. (2017). The Elements of Statistical Learning,

Data Mining, Inference and Prediction, 2nd edition. Springer, New York.

2. James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. Springer, New York.

3. Erl, T. and Khattak, W. (2016). Big Data Fundamentals Concepts, Drivers & Techniques. Prentice Hall.

4. Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E.(2009). Multivariate Data Analysis, 7thedition. Prentice Hall, New York.

Programme	B. Sc. STATISTIC	B. Sc. STATISTICS					
Course Code	STA 8 EJ 417	STA 8 EJ 417					
Course Title	ADVANCED TRE	ENDS IN ST	ATISTICS				
Type of Course	Major Elective						
Semester	VIII						
Academic	400-499						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	4	-	-	60		
Pre-requisites	Thorough knowled	ge of probab	oility distribu	tions			
Course	To understand Johnson's system of distributions, Burr family of						
Summary	distributions, Infinite divisibility, U-Statistics & Stochastic						
	ordering.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
1.	Discuss the Johnson's S _B system, Johnson's system S _u and Burr family of distributions.	U	F	Seminar Presentation				
2.	Identify the general theory of infinite divisibility and its applications	U	F	Instructor-created exams				
3.	Explain the concept and properties of U-statistics, and their role in non-parametric modelling	An	Р	Group Tutorial Work				
4.	Describe various types stochastic order relations between random variables in univariate setup.	U	С	Home Assignments				
* - R	* - Remember (R), Understand (U), Apply (Ap), Analyze (An), Evaluate (E), Create (C)							
# - F	Factual Knowledge(F) Conceptu	al Knowledge (C) Procedural Knowl	ledge (P) Metacognitive				
Kno	wledge (M)							

Module	Unit	Content	Hrs (60)	Marks (70)
Ι	Distr	12	15	
	1	Systems of distributions		
	2	Johnson's S _B system		
	3	Johnson's S _u system		

	4	Burr distributions							
	5	Infinite divisibility of probability distributions- (i) the non-negative							
		integers							
	6	Infinitely divisible distribution on (ii) the non-negative real's							
II	U-Sta	atistics	12	20					
	7	Basic description of U-statistics							
	8	Variance and other moments of a U- statistic							
	9	Projection of a U-statistic on the basic observations							
	10	Almost sure behavior of U-statistics							
	11	Asymptotic distribution theory of U-statistics							
	12	Non-parametric density estimation							
III	Univa	ariate stochastic orders	12	20					
	13	Usual stochastic order							
	14	Hazard rate order							
	15	Likelihood ratio order							
	16	Convolution order							
	17	Mean residual life orders							
IV	Univ	ariate variability orders	12	15					
	18	Convex order, dispersive order,							
	19	Excess wealth order & peakedness order							
	20	Monotone convex and monotone concave orders							
	21	Transform orders: convex, star orders							
	22	Super additive orders							
V	Open	–Ended	12						
	Practi	ical applications of the concepts discussed in Module I to Module IV							

References

1. Laha, R.G. and Rotatgi, V.K. (1979). Probability Theory. Wiley, New York.

2. Serfling, R.J.(1980). Approximation Theorems of Mathematical Statistics (Chapter-5). John Wiley and Sons, Canada.

3. **Steutel, F.W. and van Harn, K. (2004)**. Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker Inc., New York.

4. Shaked, M. and Shanthikumar, J. G. (Eds.). (2007). Stochastic Orders. Springer, New York.

MINOR COURSES IN STATISICS

SYLLABUS

PROVIDENCE WOMEN'S COLLEGE

Four Year UG Program Syllabus - Minor

Programme	BSc Statistics						
Course Code	STA1MN101 (P)						
Course Title	Descriptive Statisti	cs for Data S	Science				
Type of Course	Minor						
Semester	Ι						
Academic	100 – 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic knowledge of	f data, variab	oles, charts a	nd graphs, Ba	sic		
	computer skills						
Course	This course aims to equip students with a holistic understanding of						
Summary	different data types				ke informed		
	decisions and draw	meaningful	conclusions	from data.			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe different types of data	U	F	Instructor-creat ed exams / Quiz
CO2	Compare and differentiate various types of data	U	С	Instructor-creat ed exams / Home Assignments
CO3	Visualize different types of data and analyze data to help entrepreneurial decisions using critical thinking skills.	R	Р	Seminar Presentation / Group Tutorial Work
CO4	Summarize various descriptive measures of data and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Define basic terms in probability	R	F	One Minute

				Reflection Writing assignments					
CO6	Solving uncertainty with sample data with spread sheet	Ap	Р	Viva-Voce/Prac tical Assignment/Ins tructor-created exams					
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι		Introduction to Statistics	8	10
	1	Basic terms and types of Variables	2	
	2	Collection of data- Primary and secondary data,	2	
	3	Methods of collecting primary data	2	
	4	Sources of Secondary data	2	
	Unit 1 Unit 2 Unit 3	ns from References: : 1.2&1.3 [Ref 3] : 2.2 [Ref 2] : 2.3 [Ref 2] : 2.5 [Ref 2]		
II		ORGANIZING AND GRAPHING DATA	9	15
	5	Frequency Distribution	2	
	6	Cumulative Frequency distribution	2	
	7	Diagrammatic Representations	3	
	8	Graphical Representation of data	2	
	Unit 5 Unit 6 Unit 7 Unit 8	ns from References: : 3.3 [Ref 2] : 3.5 [Ref 2] : 4.3(4.3.2 to 4.3.7) - [Ref 2] : 4.4(4.4.3 to 4.4.5)- [Ref 2]		
III		UMERICAL DESCRIPTIVE MEASURES	12	25
	9	Measures of central tendency	1	
	10	Arithmetic Mean	2	
	11	Median and Mode	2	
	12	Geometric mean and Harmonic Mean	2	
	13	Partition values	1	

	14		3	
		Measures of dispersion		
	15	Skewness and Kurtosis (Concept only)	1	
		ns from References:		
		: 2.4 [Ref 1]		
		0: 2.5 [Ref 1]		
		1: 2.6, 2.7 [Ref 1] 2: 2.8, 2.9 [Ref 1]		
		3: 2.11 [Ref 1]		
		4: 2.13 [Ref 1]		
		5: 2.16, 2.17 [Ref 1]		
IV		PROBABILITY	16	20
	16		2	
		Random Experiment, Sample Space, Events (Basic terminology), Three Conceptual		
		Approaches to Probability		
	17		2	
	1/	Addition theorem (for two and three events) and	-	
	10	simple problems	2	
	18	Conditional probability	3	
	19	Multiplication theorem of probability	2	
	20	Independent events and its Multiplication Theorem	2	
	21	Pairwise and mutual independence (Concept and	2	
		Problems)		
	22	Baye's theorem	3	
		ns from References:		
		6: 3.3, 3.4, 3.5, 3.6 & 3.8 [Ref 1]		
		7: 3.9 [Ref 1]		
		8: 3.10[Ref 1]		
		9: 3.11 [Ref 1]		
		0: 3.12, 3.13& 3.14 [Ref 1] 1: 3.15[Ref 1]		
		2: 4.2 [Ref 1]		
v	2 mit 2.	PRACTICUM	30	
E th te	he giv eache	actice problems in spreadsheet from any 5 units of yen list and one additional problem decided by the r-in-charge, related to the content of the course.		
	Other units listed here may be used as demonstrations of the concepts taught in the course.			
	1 Types of data			
	2	Introduction to spreadsheet		
	3	Frequency distributions for organizing and summarizing data		
	4	Histograms		
	5	Graphs that enlighten and graphs that deceive		

	6	Measures of central tendency				
	7	Measures of dispersion				
	8	Measures of Relative Standing and Boxplots				
	Section	ns from References:				
	Unit 1	: 1.2 Ref [5]				
	Unit 2: 1.4 Ref [5]					
	Unit 3	: 2.1 Ref [5]				
	Unit 4	: 2.2 Ref [5]				
	Unit 5	: 2.3 Ref [5]				
	Unit 6: 3.1 Ref [5]					
	Unit 7: 3.2 Ref [5]					
	Unit 8	: 3.3 Ref [5]				

Books and References:

- 1. Gupta, S. C. and Kapoor, V. K. (2020). Fundamentals of MathematicalStatistics, 12thedition, Sulthan Chand, New Delhi
- 2. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House.
- 3. Prem S. Mann (2016), Introductory Statistics 9 th Edition, Wiley
- 4. Neil A. Weiss, Introductory Statistics, 9th Edition, Addison Wesley Pearson Learning (2011)
- 5. Mario F Triola, Elementary Statistics using Excel, (2018), 6th edition.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	3	1	2	-	-	2	-	2	-	-	-
CO 2	3	3	_	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	1	-
CO 4	3	2	-	1	-	-	3	-	2	2	-	-
CO 5	3	2	-	-	-	-	3	-	2	-	-	-
CO 6	1	1	2	-	3	3	2	2	1	-	3	3

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA2MN101 (P)				
Course Title	Probability theory	[
Type of Course	Minor				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Students should ha	ave a strong	foundation	in algebra ar	nd calculus,
	including functio	ns, differe	ntiation, a	nd integrati	on. Basic
	knowledge about d	escriptive St	tatistics	-	
Course	Students will acqui	re a compre	hensive unde	erstanding of	key
Summary	statistical concep	ots; randor	n variable,	standard	theoretical
	distributions and sa	mpling distr	ibutions.		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define random variables and distinguish different types of random variables	R	С	Instructor-crea ted exams / Quiz
CO2	Identify discrete and continuous probability function and analyze data to help entrepreneurial decisions using critical thinking skills.	R	С	Practical Assignment / Instructor-creat ed exams
CO3	Describe standard theoretical distributions	R	F	Seminar Presentation / Group Tutorial Work/Instructor -created exams
CO4	Discuss various tools for association between the bivariate variables.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Distinguish between a population distribution and a sampling distribution and critically evaluate ethical implications of statistical methods aligning with human values.	U	F	One Minute Reflection Writing assignments, Instructor-creat ed exams
CO6	Explain the calculation of correlation	U	Р	Viva

	coefficent using spread sheet.			Voce/Instructor				
				-created exams				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Kno	wledge (M)							

Module	Unit s	Content	Hrs (45 +30)	Marks (70)
	D	DISCRETE RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS	12	15
	1	Random Variables- Discrete	1	
	2	Probability mass function, properties and problems	1	
	3	Cumulative distribution function and its properties	1	
	4	Mathematical expectation of a random variable, function of a random variable and properties of expectation	1	
	5	Properties of variance	1	
	6	Covariance	2	
I	7	Moments (definition only), Moment Generating Function (Definition, Simple problems and Properties (without proof))	1	
	8	Binomial Distribution (Mean, variance, m.g.f.,Simple Problems)	2	
	9	Poisson Distribution (Mean, variance, m.g.f.,Simple Problems)	2	
	Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8	ns from References: : 5.1 & 5.3 [Ref 1] : 5.3.1 [Ref 1] : 5.2, 5.2.1,5.3.2[Ref 1] : 6.1,6.2,6.3,6.4 [Ref 1] : 6.3 [Ref 1] : 6.6 [Ref 1] : 7.1,7.1.2 [Ref 1] : 8.4, 8.4.1 [Ref 1] : 8.5, 8.5.2 [Ref 1]		
П	CO	NTINUOUS RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS	12	20
	10	Probability density function, properties and problems	2	

	11	Rectangular distribution (Mean and Variance)	2	
	12	Exponential distribution (Mean and Variance)	2	
	13	Normal Distribution (Moments, Moment Generating Function, Additive Property ,Area property and their problems)	6	
	Unit 1 Unit 1 Unit 1	ns from References: 0: 5.4, 5.4.1, 5.4.2 [Ref 1] 1: 9.3.1 [Ref 1] 2: 9.8, 9.8.1[Ref 1] 3: 9.2, 9.2.5, 9.2.7, 9.2.8, 9.2.11[Ref 1]		
	DE	SCRIPTIVE METHODS IN CORRELATION AND REGRESSION	10	20
	14	Simple correlation	3	
	15	Simple regression	3	
	16	Coefficient of determination	2	
III	17	Curve linear regression	2	
	Unit 1 Unit 1 Unit 1	ns from References: 4: 10.1, 10.2, 10.3, 10.4, 10.4.1, 10.4.2 [Ref 1] 5: 11.1, 11.2, 11.2.1, 11.2.2 [Ref 1] 6: 11.2.6 [Ref 1] 7: 11.3 [Ref 1]		
		SAMPLING DISTRIBUTIONS	11	15
	18	Parameter and Statistic, sampling distribution, standard error.	2	
	19	Distribution of sample mean	2	
	20	Chi- square distribution (definition, mean, variance, m.g.f, additive property)	4	
IV	21	F distribution (definition only)	1	
	22	t distribution	2	
	Unit 1 Unit 1 Unit 2 Unit 2	ns from References: 8: 14.3, 14.3.1, 14.3.2 [Ref 1] 9: 4.2 [Ref 3] 0: 4.3 [Ref 3] 1: 4.4 [Ref 3] 2: 4.5 [Ref 3]		
V		PRACTICUM	30	
	given charge	actice problems in spreadsheet from any 5 units of the list and one additional problem decided by the teacher- in- e, related to the content of the course. Other units listedhere e used as demonstrations of the concepts		

t	taught	in the course.	
	1	Scatterplot and correlation	
	2	Linear correlation coefficient r	
	3	Regression	
	4	Calculate factorials, permutations and combinations	
	5	Concept of simulation	
	6	Finding mean and variance of a probability distribution	
	7	Methods for finding binomial probabilities	
	8	Methods for finding Poisson probabilities	
	Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7	ns from References: : 2.4 [Ref 5] : 2.4 [Ref 5] : 2.4 [Ref 5] : 4.4 [Ref 5] : 4.5 [Ref 5] : 5.1 [Ref 5] : 5.2 [Ref 5] : 5.3 [Ref 5]	

Books and References:

- 1. Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics, 11th edition, Sulthan Chand, New Delhi
- 2. Prem S. Mann (2016), Introductory Statistics 9 th Edition, Wiley
- 3. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): Introduction to the Theory of Statistics, 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 4. Neil A. Weiss, Introductory Statistics, 9th Edition, Addison Wesley Pearson Learning (2011)
- 5. Mario F Triola, Elementary Statistics using Excel, (2018), 6th edition.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	2	3	2	-	-	-	-
CO 2	-	-	-	-	-	3	3	2	-	-	-	-
CO 3	-	-	-	-	-	2	2	3	-	-	-	-
CO 4	-	_	-	_	-	_	3	3	-	-	1	1

CO 5	_	2	-	3	2	-	2	-	1	_	2	-
CO 6	2	-	2	-	1	3	2	3	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		✓
CO 6	\checkmark			\checkmark

Programme	BSc Statistics
Course Code	STA3MN201 (P)

Course Title	Statistical inference	e using R						
Type of Course	Minor							
Semester	III							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Students should be	e comfortabl	le with conc	epts such as	probability			
	distributions, rando	om variables,	, and condition	onal probabili	ty.			
Course	Upon completion	of this cou	urse, student	ts will be p	roficient in			
Summary	understanding and	applying the	e concept of	estimation an	d testing of			
	hypothesis in statis	tics, allowin	g them to ma	ake informed	decisions			
	and draw reliable c	onclusions f	from sample	data.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Articulate the purpose of estimation in making inferences about population parameters based on sample data and analyze data to help entrepreneurial decisions using critical thinking skills.	Ap	С	Instructor-crea ted exams / Quiz
CO2	Explain the difference between point estimation and interval estimation	U	С	Practical Assignment / Observation of Practical Skills
CO3	Calculate and interpret confidence intervals for both population mean and proportion and critically evaluate ethical implications of statistical methods aligning with human values	Ap	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Explain how to formulate null and alternative hypotheses for different types of research questions	U	С	Instructor-crea ted exams / Home Assignments
CO5	Introduce R software and discuss R code for various graphical representations of data.	U	F	One Minute Reflection Writing assignments/ Instructor-creat

				ed exams					
CO6	Apply estimation and hypothesis testing methods to real-world data sets.	Ар	Р	Viva Voce/ Instructor-creat ed exams					
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Mo dul e	Units	Content	Hrs (45 +30)	Marks (70)
		THEORY OF ESTIMATION	14	25
	1	1		
	2	Unbiasedness	2	
	3	Consistency	2	
T	4	Efficiency	2	
Ι	5	Sufficiency	2	
	6	Methods of estimation	2	
	7	Interval estimation	1	
	8	Confidence limits for mean	1	
	9	Confidence limits for proportion	1	
	Sections			
	Unit 1: 1	6.1, 16.2, 16.2.1 [Ref 1]		
	Unit 2: 1	6.2.2 [Ref 1]		
	Unit 3: 1	6.2.3 [Ref 1]		
	Unit 4: 1	6.2.4 [Ref 1]		
	Unit 5: 1	6.6.5 [Ref 1]		
	Unit 6: 1	6.2.6 [Ref 1]		
	Unit 7: 1	6.4 [Ref 1]		
	Unit 8: 1			
	Unit 9: 1			
		TESTING OF HYPOTHESIS	10	20
Π	10	Statistical hypothesis, Simple and composite hypothesis	2	
	11	Null and alternate hypothesis, Two types of errors, Level of significance, Critical region, one tatiled and two tailed	2	

		Tests								
	12	Large sample tests: Test for single proportion	3							
	13	Test of significance for a single mean	3							
	Sections									
	Unit 10:									
	Unit 11:									
	Unit 12:	Unit 11: 16.6.3, 16.6.4, 16.6.5, 16.6.6, 16.6.7, 16.6.8 [Ref 1] Unit 12: 17, 17.2.1 [Ref 1] Unit 13: 17.3.2 [Ref 1]								
	Unit 13:	17.3.2 [Ref 1]								
		CHI SQUARE TEST	9	15						
	14	Applications of Chi square distribution	2							
	15	Chi square test of goodness of fit	3							
TTT	16	Chi square test for independence of attributes	4							
III	Sections	from References:								
	Unit 14:	18.3 [Ref 1]								
	Unit 15:	18.4 [Ref 1]								
	Unit 16:	18.6 [Ref 1]								
		INTRODUCTION TO R	12	10						
	17	Installation & Basic Mathematical Operations	2							
	18	R Preliminaries	1							
	19	Methods of Data Input	1							
	20	Graphical Representations (R Code)	2							
	21	Diagrammatic Representations (R Code)	3							
IV	22	Descriptive Measures (Mean, Median, Mode, Range, Standard deviation, variance)	3							
	Sections	from References:								
	Unit 19: 1	1.2&1.3 [Ref 5]								
	Unit 20:	1.4 [Ref 5]								
	Unit 21:	1.5&1.6 [Ref 5]								
	Unit 22:	1.8,2.3 [Ref 5]								
	Unit 23:2	2.2 [Ref 5]								
	Unit 24: 2	2.4,2.5 [Ref 5]								
V		PRACTICUM	30							
	and one a	ce problems in R software from any 5 units of the given list dditional problem decided by the teacher-in-charge, related netnt of the course. Other units listed here may be used as								

	demonstr	rations of the concepts taught in the course.				
	1	Basic mathematical operations and R preliminaries				
	2	Methods of data input				
	3	Data accessing or indexing				
	4	Built in functions in R				
	5	Graphical representations (R Code)				
	6	Diagrammatic representations (R Code)				
	7	Mean, Median, Mode				
	8	Range, Standard deviation, variance				
	Sections	from References:				
	Unit 1: 1	.3&1.4 [Ref 5]				
	Unit 2: 1	1.5 [Ref 5]				
	Unit 3: 1	1.6 [Ref 5]				
	Unit 4: 1	1.7 [Ref 5]				
	Unit 5: 1	1.8 [Ref 5]				
	Unit 6: 2.2 [Ref 5]					
	Unit 7: 2	2.4 [Ref 5]				
	Unit 8: 2	2.5 [Ref 5]				
Boo	ks and Refe	erences:				

1. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House.

- 2. Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics, 11th edition, Sulthan Chand, New Delhi
- 3. Prem S. Mann (2016), Introductory Statistics 9 th Edition, Wiley
- 4. The R book (2007), Michael J. Crawley John Wiley Series
- 5. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	1	-	-	2	2	3	-	-	3	-
CO 2	-	2	-	3	2	3	3	3	1	-	-	-
CO 3	2	_	2	-	-	-	2	2	-	3	-	3

CO 4	-	_	3	-	-	_	1	3	_	3	-	-
CO 5	-	-	2	-	-	-	1	3	-	3	-	-
CO 6	2	-	2	-	-	-	1	2	-	2	-	2

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics

Course Code	STA1MN102 (P)						
Course Title	Applied statistics u	Applied statistics using R					
Type of Course	Minor						
Semester	Ι						
Academic Level	100 – 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic Knowledge i	n the Descri	ptive Measur	res			
Course	Upon successful co	mpletion of	this course,	students will	possess a		
Summary		Upon successful completion of this course, students will possess a solid understanding of fundamentals of sampling concepts, index					
	numbers, vital stati	stics and R s	software.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the importance of sampling as a method for gathering data and making inferences about populations	U	С	Instructor-crea ted exams / Quiz
CO2	Describe the ability to implement simple random sampling techniques and understand their advantages and limitations.	U	F	Practical Assignment / Observation of Practical Skills/ Instruct or-created exams
CO3	Develop skills in interpreting index numbers and analyze data to help entrepreneurial decisions using critical thinking skills.	Ар	С	Seminar Presentation / Group Tutorial Work
CO4	Explain the significance of vital statistics in capturing essential demographic information and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Understand various methods of collecting vital statistics.	R	F	One Minute Reflection Writing assignments/ I nstructor-create

				d exams					
CO6	Demonstrate the ability to write and	Ар	Р	Viva					
	avaguta gimple D garinta			Voce/ Instruct					
	execute simple R scripts.			or-created					
				exams					
* - Rer	nember (R), Understand (U), Apply (Ap)	, Analyse (An), Evaluate (E), C	Create (C)					
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowl	Knowledge (M)								

Mo dul e	Units	Content	Hrs (45 +30)	Marks (70)
		SAMPLING METHODS	10	15
	1	Population and Sample, Census and Sampling Method	1	
	2	Advantages and Limitations of Sampling	1	
	3	Principal steps in a sample survey	1	
	4	Sampling and Non-Sampling Errors	1	
	5	Types of sampling (Purposive, Probability, Mixed)	1	
	6	Simple Random Sampling (Concept and Method of Selection)	2	
	7	Stratified Random Sampling	2	
Ι	8	Systematic Random Sampling	1	
	Sections	from References:		
	Unit 1: 1	5.2,15.3,15.6 [Ref 1]		
	Unit 2: 1	5.6,15.7[Ref 1]		
	Unit 3: 1	5.8 [Ref 1]		
	Unit 4: 1	5.9.1[Ref 1]		
	Unit 5:1:	5.10[Ref 1]		
	Unit 6:1:	5.11,15.11.1 [Ref 1]		
	Unit 7: 1	5.12,15.12.1 [Ref 1]		
	Unit 8: 1	5.13 [Ref 1]		
		INDEX NUMBERS	10	25
п	9	Introduction and Uses of Index Numbers	1	
11	10	Types of Index Numbers	1	
	11	Problems in the construction of Index Number	1	

	12	Methods of Construction of Index Numbers- Simple and Weighted Index Number	5	
	13	Tests for an Ideal Index Number- Time Reversal Test and Factor Reversal Test	2	
	Sections	from References:		
	Unit 9: 1	0.1&10.2[Ref 1]		
	Unit 10:	10.3 [Ref 1]		
	Unit 11:	10.4[Ref 1]		
	Unit 12:	10.5 [Ref 1]		
	Unit 13:1	10.6.2&10.6.3 [Ref 1]		
		VITAL STATISTICS	11	20
	14	Introduction to Vital Statistics	1	
	15	Uses of Vital Statistics	2	
	16	Collection of Vital Statistics-Registration Method, Census Enumeration Method, Survey Method, Analytical Method	2	
	17	Measures of Fertility –Crude Birth Rate (CBR), General Fertility Rate (GFR), Specific Fertility Rate (ASFR). Total Fertility Rate (TFR) (Concept and Problems)	3	
ш	18	Measurement of Mortality- Crude Death Rate (CDR), Specific Death Rate (ASDR), Standardized Death Rate (SDR), Infant Mortality Rate, Maternal Mortality Rate(Concept and Problems)	3	
	Sections	from References:		
	Unit 14:	16.2 [Ref 2]		
	Unit15: 1	6.2&16.3 [Ref 2]		
	Unit 16:	16.3&16.4[Ref 2]		
	Unit 17:	16.5&16.6 [Ref 2]		
	Unit 18:1	6.14,16.15,16.16,16.18 [Ref 2]		
		INTRODUCTION TO R	14	10
	19	Installation & Basic Mathematical Operations	1	
	20	R Preliminaries	1	
IV	21	Methods of Data Input	1	
	22	Graphical Representations (R Code)	4	
	23	Diagrammatic Representations (R Code)	3	
	24	Descriptive Measures (Mean, Median, Mode, Range,	4	

		Standard deviation, variance)		
	Sections	from References:		
	Unit 19:	1.2&1.3 [Ref 5]		
	Unit 20:	1.4 [Ref 5]		
	Unit 21:	1.5&1.6 [Ref 5]		
	Unit 22:	1.8,2.3 [Ref 5]		
	Unit 23:2	2.2 [Ref 5]		
	Unit 24:	2.4,2.5 [Ref 5]		
		PRACTICUM		
V	and one a to the co	ice problems in R software from any 5 units of the given list additional problem decided by the teacher-in-charge, related ntent of the course. Other units listed here may be used as rations of the concepts taught in the course.	30	
	1	Basic mathematical operations and R preliminaries		
	2	Methods of data input		
	3	Data accessing or indexing		
	4	Built in functions in R		
	5	Graphical representations (R Code)		
	6	Diagrammatic representations (R Code)		
	7	Mean, Median, Mode		
	8	Range, Standard deviation, variance		
	Sections	from References:		
	Unit 1: 1	.3&1.4 [Ref 5]		
	Unit 2: 1	.5 [Ref 5]		
	Unit 3: 1	.6 [Ref 5]		
	Unit 4: 1	.7 [Ref 5]		
	Unit 5: 1	.8 [Ref 5]		
	Unit 6: 2	2 [Ref 5]		
	Unit 7: 2	.4 [Ref 5]		
	Unit 8: 2	5 [Ref 5]		

Books and References:

- 1. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House
- 2. Gupta S.P (2021), Statistical Methods, 46th edition, Sultan Chand and Sons.
- 3. Gupta, S. C. and Kapoor, V. K. (2014). Fundamentals of applied Statistics, Sultan Chand and Sons.
- 4. The R book(2007), Michael J. Crawley John Wiley Series
- 5. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	2	2	2	-	-	-	-
CO 2	-	-	-	-	-	2	1	2	-	-	-	-
CO 3	-	-	3	-	-	3	3	2	-	2	3	-
CO 4	2	2	-	3	2	-	2	2	2	-	-	3
CO 5	2	2	-	-	-	-	1	1	_	_	_	-
CO 6	-	2	-	-	-	3	2	1	-	-	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA2MN102 (P)
Course Title	Probability theory II
Type of Course	Minor

Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic Knowledge i	n the concep	t of Probabil	ity and Rand	om
	Variables				
Course	Students will poss	ess a compi	ehensive un	derstanding of	of bivariate
Summary	random variables, enabling them to analyze and interpret the joint				
	behavior of two rar	ndom variab	les.		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and explain the concept of bivariate random variables.	U	С	Instructor-crea ted exams / Quiz
CO2	Explore the concept of joint and marginal probability density functions	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Calculate bivariate expectations for various functions of two random variables	Ap	F	Seminar Presentation / Group Tutorial Work/Instructor -created exams
CO4	Identify and describe common standard distributions like rectangular, beta, gamma and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Identify the importance of time series analysis and explain various components of time series and critically evaluate ethical implications of statistical methods aligning with human values.	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Locate probability curves for different distributions using R	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fa	emember (R), Understand (U), Apply (Ap) actual Knowledge(F) Conceptual Knowledg vledge (M)			

COURSE CONTENT

Mo dul e	Units	Content	Hrs (45 +30)	Marks (70)
]	TWO DIMENSIONAL RANDOM VARIABLES	11	20
	1	Introduction to two dimensional random variables	1	
	2	Joint PMF and Joint pdf (Concept and Problems)	2	
	3	Joint DF(Concept and Problems)	2	
	4	Marginal Distributions(Concept and Problems)	2	
	5	Conditional Distributions(Concept and Problems)	3	
I	6	Independence of Random Variables(Concept and Problems)	1	
	Sections	from References:		
	Unit 1: 5	.5 [Ref 1]		
	Unit 2: 5.5.1 & 5.5.4 [Ref 1]			
	Unit 3: 5.5.2 [Ref 1]			
	Unit 4: 5.5.1 & 5.5.4[Ref 1]			
	Unit 5:5.5.1 & 5.5.5 [Ref 1]			
	Unit 6:.5.5.6 [Ref 1]			
		BIVARIATE EXPECTATION	12	15
	7	Expectation of two random variables (Concept and Problems),Addition Theorem (Statement Only), Multiplication Theorem (Statement Only)	3	
	8	Properties of Variance	1	
	9	Covariance & Correlation Coefficient	3	
п	10	Conditional Expectation and Conditional Variance (Concept and Problems)	5	
	Sections	from References:		
	Unit 7: 6	.4 [Ref 1]		
	Unit 8: 6	.5 [Ref 1]		
	Unit 9: 6	.6&10.4 [Ref 1]		
	Unit 10:	6.9[Ref 1]		
тт		STANDARD DISTRIBUTIONS	12	15
III	11	Discrete Uniform Distribution (Mean, variance, mgf,	1	

		Problems)		
	12	Geometric Distribution (Mean, variance, mgf, Problems)	1	
	13	Hypergeometric Distribution (Mean, variance, mgf, Problems)	1	
	14	Negative Binomial Distribution (Mean, variance, mgf, Problems)	1	
	15	Rectangular Distribution(Mean, variance, mgf, Problems)	2	
	16	Gamma Distribution(Mean, variance, mgf, Problems)	2	
	17	Beta Distribution(Mean, variance, mgf, Problems)	2	
	18	Order Statistics[Distribution function of single order statistic, Examples]	2	
	Sections	from References:		
	Unit 11:	8.2 [Ref 1]		
	Unit 12:	8.7 [Ref 1]		
	Unit 13:	8.8 [Ref 1]		
	Unit 14:	8.6[Ref 1]		
	Unit 15: 9.3[Ref 1]			
	Unit 16:.	9.5 [Ref 1]		
	Unit 17:.	9.6,9.7 [Ref 1]		
	Unit 18:.	9.18 [Ref 1]		
		TIME SERIES ANALYSIS	10	20
	19	Introduction to Time Series & Utility of Time Series	1	
	20	Components of Time Series	1	
	21	Measurment of Trend- Graphic Method, Semi Average Method, Method of Moving Average, Method of Least squares (Linear Trend) (Concept and Problems)	4	
IV	22	Measurement of Seasonal Variations-Method of Simple Averages ,Ratio to Trend Method	4	
	Sections from References:			
	Unit 19:	11.1& 11.3[Ref 2]		
	Unit 20:11.2[Ref 2]			
	Unit 21:.	11.5[Ref 2]		
	Unit 22:.11.6 [Ref 2]			
V		PRACTICUM	30	
	Do practi	ice problems in R software from any 5 units of the given list		

to the co	additional problem decided by the teacher-in-charge, related ntent of the course. Other units listed here may be used as rations of the concepts taught in the course.			
1	Measures of skewness			
2	Measures of kurtosis			
3	Obtain the probability distribution			
4	Plot the probability distribution			
5	Obtain the cumulative distribution function			
6	Plot the cumulative distribution function			
7	Obatain any one discrete probability			
8	Obatain any one continuous probability			
Sections	from References:			
Unit 1: 2	.6 [Ref 5]			
Unit 2: 2	2.6 [Ref 5]			
Unit 3: 3	.2, 3.3 [Ref 5]			
Unit 4:3.	2, 3.3 [Ref 5]			
Unit 5: 3	5.2, 3.3 [Ref 5]			
Unit 6: 3	5.2, 3.3 [Ref 5]			
Unit 7: 3	.4 [Ref 5]			
Unit 8: 3	Unit 8: 3.6 [Ref 5]			
Books and Refe	rences:			

- 1. Gupta, S. C. and Kapoor, V. K. (2020). Fundamentals of Mathematical Statistics, 12th edition, Sulthan Chand, New Delhi
- 2. Gupta, S. C. (2015). Fundamentals of Statistics. , & 7th edition, Himalaya Publishing House
- 3. Gupta S.C (2021), Statistical Methods, 46th edition, Sultan Chand and Sons.
- 4. The R book(2007), Michael J. Crawley John Wiley Series
- 5 Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh ,Statistics Using R(2015)

Mapping of COs with PSOs and POs :

	1	2	3		5		1					
CO 1	2	3	-	-	-	3	1	2	2	-	-	-
CO 2	_	2	-	-	-	-	2	-	-	-	-	-
CO 3	-	3	-	2	2	2	1	2	-	-	-	-
CO 4	-	-	3	-	-	3	3	-	1	3	3	-
CO 5	3	-	-	-	-	2	3	1	-	-	-	3
CO 6	-	-	-	-	-	2	2	3	_	_	_	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics					
Course Code	STA3MN202 (P)					
Course Title	Statistical inference	e for data sci	ence			
Type of Course	Minor					
Semester	III					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Thorough knowled	ge in probab	oility concept	and Random	variables.	
Course	Students will pos	sess a wid	e understan	ding of Lav	v of Large	
Summary	Numbers, ANOVA, and non-parametric tests and they will be					
	equipped to apply these statistical techniques to various scenarios,					
	making informed decisions and drawing meaningful conclusions					
	from data.			0		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Introduce and explore different law of large numbers	U	С	Instructor-crea ted exams / Quiz
CO2	Define and understand the rationale for testing differences between two populations	R	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Formulate null and alternate hypothesis for a real life two population problem and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Differentiate between one-way and two- way ANOVA and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Define and understand the principles of non parametric statistics	U	F	One Minute Reflection Writing assignments/

				Instructor-creat ed exams		
CO6	Describe analysis of variance and	Ар	Р	Viva Voce/		
	hypothesis testing using R software.			Instructor-creat ed exams		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Mo dul E	Units	Content	Hrs (45 +30)	Marks (70)
		LAW OF LARGE NUMBERS	10	15
	1	Chebychev's inequality (Definition and Problems)	2	
	2	Modes of Convergence of a Sequence of Random Variables	1	
	3	Weak Law of Large Numbers (Statement and Problems)	2	
	4	Bernoulli's Law of Large Numbers		
	5	Strong Law of Large Numbers	2	
Ι	6	CLT (Lindeberg- Levy)	3	
	Sections			
	Unit 1: 7	.5 [Ref 1]		
	Unit 2: 7	.6 [Ref 1]		
	Unit 3: 7	.7 [Ref 1]		
	Unit 4:7.	7 [Ref 1]		
	Unit 5: 7	.8[Ref 1]		
	Unit 6: 9	.16[Ref 1]		
	Н	YPOTHESIS TESTING: TWO POPULATIONS	12	20
	6	Test of Significance for difference of two population proportions (Concept and Problems)	2	
Π	7	Test of Significance for difference of two population means (Large Sample-Concept and Problems)	2	
	8	Test of Significance for difference of two population means (Small Sample-Concept and Problems)	3	

	9	Paired t test(Concept and Problems)	3	
	10	F test for equality of proportions	2	
	Sections	from References:		
	Unit 6: 1	4.7.2 [Ref 1]		
	Unit 7: 1	4.8.4 [Ref 1]		
	Unit 8: 1	6.3.2 [Ref 1]		
	Unit 9: 1	6.3.3[Ref 1]		
	Unit 10:	16.7[Ref 1]		
		ANALYSIS OF VARIANCE	8	15
	11	ANOVA	1	
	12	One-Way Analysis of Variance	3	
ш	13	Two -Way Analysis of Variance	4	
111	Sections	from References:		
	Unit 11:	23.1,23.2 [Ref 2]		
	Unit 12:	23.3[Ref 2]		
	Unit 13:			
		15	20	
	14	Introduction to Non Parametric Methods	1	
	15 Advantages and Limitations		1	
	16	Sign Test- one sample	3	
	17	Wilcoxon Signed Rank Test	2	
	18	Mann- Whitney Test	2	
	19	Kruskal- Wallis Test	2	
	20	Single Sample Run Test	2	
IV	21	Median Test	2	
1,	Sections	from References:		
	Unit 14:	26.2[Ref 2]		
	Unit 15:2	26.2.1 [Ref 2]		
	Unit 16:	26.3[Ref 2]		
	Unit 17:	26.4 [Ref 2]		
	Unit 18:2	26.5 [Ref 2]		
	Unit 19:2	26.7[Ref 2]		
	Unit 20	26.8[Ref 2]		
	Unit 21:	26.9[Ref 2]		

V		30					
	and one to the co	ice problems in R software from any 5 units of the given list additional problem decided by the teacher-in-charge, related ontent of the course. Other units listed here may be used as rations of the concepts taught in the course.					
	1	Plots to check normality					
	2	Hypothesis testing					
	3	Goodness of fit tests					
	4	Correlation					
	5						
	6						
	7	Inference procedures for simple linear model					
	8	Polynomial regression models					
	Sections	from References:					
	Unit 1: 4	4.4 [Ref 5]					
	Unit 2: 4	4.5 [Ref 5]					
	Unit 3: 4	4.6 [Ref 5]					
	Unit 4: 5.2 [Ref 5]						
	Unit 5: 5.3 [Ref 5]						
	Unit 6: 5.4 [Ref 5]						
	Unit 7: 5	5.5 [Ref 5]					
	Unit 8: 5.8 [Ref 5]						

- 1. Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics. , 11th edition, Sulthan Chand, New Delhi.
- 2. Gupta, S. C. (2015). Fundamentals of Statistics,7 th Edition ,Himalaya Publishing House.
- 3. Gupta S.C (2021), Statistical Methods, 46th edition, Sultan Chand and Sons.
- 4. Prem S. Mann (2016), Introductory Statistics 9 th Edition , Wiley
- 5. W. N. Venables, D. M. Smith and the R Core Team, An Introduction to R (2023)
- 6. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	_	-	-	3	1	2	-	-	-	-
CO 2	2	-	_	-	-	2	2	1	-	-	-	-
CO 3	-	-	2	-	-	2	2	-	-	1	3	-
CO 4	2	-	-	-	-	-	2	1	-	-	-	3
CO 5	-	3	-	2	3	3	-	2	1	-	-	-
CO 6	-	-	-	-	-	2	3	1	-	-	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA1MN103 (P)				
Course Title	Introductory statist	ics with R			
Type of Course	Minor				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge al	bout data, ba	sic mathema	tical knowled	lge
Course	This course covers data types, distributions, graphs, and statistical				
Summary	measures using R p	programming	g. Students le	earn to analyz	e data
	effectively for info	rmed decisio	on-making ac	cross diverse	domains.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify data types and construct frequency distributions.	U	С	Instructor-crea ted exams / Quiz
CO2	Create diverse graphical representations effectively and critically evaluate ethical implications of statistical methods aligning with human values.	Ap	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Calculate and apply central tendency measures practically and analyze data to help entrepreneurial decisions using critical thinking skills	Ар	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Use measures of central tendency to summarize and describe data, demonstrating the ability to communicate the findings in both written and graphical formats	U	С	Instructor-crea ted exams / Home Assignments
CO5	Master R programming basics and descriptive statistics.	Ар	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Implement R for practical data analysis and graphical representation.	Ар	Р	Viva Voce/ Instructor-creat ed exams
* - Re	emember (R), Understand (U), Apply (Ap),	Analyse (An)), Evaluate (E), O	Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		Data	12	15
	1	Types of data: Primary data, Secondary data, Quantitative data,	4	
		Qualitative data, discrete data, continuous data		
	2	Frequency distribution: Ungrouped and grouped	4	
	3	Cumulative frequency distribution	4	
		1:2.2,11.1,2.1 Ref[1]		
		2: 2.2 Ref[1]		
	Unit 3	3: 3.5 Ref[3]		
II		Graphical representation of data	9	15
	4	Line diagram, Bar diagram	3	
	5	Pictogram, Pie diagram, Histogram	3	
	6	Frequency Polygon, Frequency curve, Ogives.	3	
	Unit 4	4: 4.3.3 Ref[3]		
	Unit 5	5:4.3.4, 4.3.6 Ref[3]		
	Unit 6	5: 4.4.3 Ref[3]		
III		Measures of central tendency	10	25
	7	Arithmetic Mean	2	
	8	Median	2	
	9	Mode	2	
	10	Geometric mean	2	
	11	Harmonic mean	2	
	Unit 7	7: 5.4 Ref[3]		
		3: 5.6.1 Ref[3]		
		9: 5.7.1 Ref[3]		
	Unit 1	10: 5.9 Ref[3]		
	Unit 1	11: 5.10 Ref[3]		
IV		Introduction to R programming	14	15
	12	Installing R	1	
	13	Objects in R	1	
	14	Using functions in R	1	
	15	Importing data	1	
	16	Exporting data	1	
	17	Simple base R plots	2	
	18	Multiple graphs	2	

	19	R packages	1					
	20		2					
		Exporting plots						
	21	1						
	22	Getting help	1					
		Saving stuff in R						
		12: 1.1 Ref[2]						
		13: 2.2 Ref[2]						
		14: 2.3 Ref[2]						
		15: 3.3 Ref[2]						
		16: 3.6 Ref[2]						
		17: 4.2 Ref[2]						
		18: 4.4 Ref[2]						
		19: 1.5 Ref[2]						
		20: 4.5 Ref [2]						
		21: 2.5 Ref[2]						
x 7	Unit	22: 2.6 Ref[2]	20					
V		PRACTICUM	30					
	additi	actice problems in R software from any 5 units of the given list and one onal problem decided by the teacher-in-charge, related to the content of ourse. Other units listed here may be used as demonstrations of the						
		pts taught in the course.						
	1	Functions in R— data.frame						
	2	multiply_columns()						
	3	return()						
	4	identical()						
	5	Conditional statements-if and else						
		Combining logical operators						
	7	For loop						
	8	While loop						
		ons from References:						
		1: 7.2 Ref[2]						
		2: 7.2Ref[2]						
		3: 7.2Ref[2]						
		4: 7.2Ref[2] 5: 7.3Ref[2]						
	1 1011							
		Unit 6: 7.4 Ref[2]						
	Unit							
	Unit Unit	7: 7.5.1 Ref[2]						
Books an	Unit Unit Unit	7: 7.5.1 Ref[2] 8: 7.5.2 Ref[2]						

Books and References:

1. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi

2. Douglas, Alex, Deon Roos, Francesca Mancini, Ana Couto, and David Lusseau. (2020), *An Introduction to R*. <u>https://intro2r.com/index.html</u>.

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	2	2	2	-	-	-	-
CO 2	-	2	-	3	2	3	-	3	1	-	3	-
CO 3	-	2	-	2	-	2	1	2	2	-	-	3
CO 4	-	-	-	-	-	1	3	1	-	-	-	-
CO 5	-	-	3	-	-	-	2	-	2	3	-	-
CO 6	2	-	-	-	-	2	1	-	1	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics					
Course Code	STA2MN103 (P)					
Course Title	Regression and pro	bability theo	ory			
Type of Course	Minor					
Semester	II					
Academic	100 - 199					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Basic knowledge al	bout set theo	ry, fundame	ntal concepts	of data	
Course	This course cov	vers dispers	sion, correl	ation, regre	ssion, and	
Summary	probability theory	probability theory with practical applications using R programming,				
	enhancing students	' statistical s	kills for dive	erse scenarios		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Utilize dispersion measures effectively in practical scenarios and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Quiz
CO2	Demonstrate mastery in correlation, regression, and their applications and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Comprehend and employ basic probability concepts and theorems.	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Explain fundamental concepts of probability theory including events, saple space, outcomes.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Understand and employ conditional probability and Bayes' theorem	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Implement R for creating scatter plots and performing statistical calculations.	Ар	Р	Viva Voce/ Instructor-creat

			ed exams				
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowledge (M)			_				

Module	Unit	Content	Hrs (45	Marks (70)
			+30)	()
		Measures of dispersion	10	10
	1	Range	1	
	2	Quartile deviation	3	
	3	Standard deviation	3	
Ι	4	Coefficient of variation	3	
		: 2.1.3 Ref[1]		
		2: 2.1.3 Ref[1]		
		3: 2.1.3 Ref[1]		
	Unit 4	1: 2.1.3 Ref[1]		
		Correlation and regression	13	20
	5	Bivariate distribution, correlation	1	
	6	Scatter diagram	2	
	7	Karl Pearson coefficient of correlation	2	
	8	Limits of Correlation coefficient	2	
	9	Regression	2	
	10	Lines of regression	3	
II	11	Regression coefficients	2	
		5: 10.1 Ref[2]		
		5: 10.1Ref[2]		
		7: 10.3 Ref[2]		
		3:10.3.1 Ref[2]		
		0: 10.7 Ref[2]		
		0: 10.7.1 Ref[2]		
II	Unit I	1:10.7.3 Ref[2]	10	25
	10	Probability theory	10	25
	12	Random experiment	1	
	13	Samplespace	1	
	14	Event	1	
	15	Classical Probability-definition	2	
ш	16	Statistical probability-definition	2	
	17	Axiomatic approach to Probability	2	
	18	Addition theorem (Statement only)	1	
		2:4.5.1 Ref[2]		
		3: 4.5.1 Ref[2]		
		4: 4.5.2 Ref[2]		
		5: 4.3.1 Ref[2]		
	Unit 1	6: 4.3.2 Ref[2]		

	Unit 17: 4.5 Ref[2]								
	Unit 18: 4.6.2 Ref[2]								
	Conditional Probability	12	15						
	18 Conditional Probability of two events	3							
	19 Multiplication theorem (Statement only)								
	20 Independence of events	2 2							
	21 Conditions of mutual independence of three events								
IV	22 Bayes theorem and its applications (Statement only)	23							
	Unit 18: 4.7 Ref[2]								
	Unit 19: 4.7 Ref[2]								
	Unit 20: 4.7.3 Ref[2]								
	Unit 21: 4.7.5 Ref[2]								
	Unit 22: 4.8 Ref[2]								
	PRACTICUM	30							
	Do practice problems in R software from any 5 units of the given list and one								
	additional problem decided by the teacher-in-charge, related to the content of								
	the course. Other units listed here may be used as demonstrations of the								
	concepts taught in the course.								
	1 cor() function								
V	2 Use of cor() function with missing values in data								
	3 Ggplot								
	4 Diagrammatic representation of data								
	5 Graphical representation of data								
	6 Measures of central tendency (Any two)								
	7 Measures of dispersion (Any two)								
	8 Any two exercises of above								
	Sections from References:								
	Unit 1: 6.2 Ref[3]								
	Unit 2: 6.2 Ref[3]								
	Unit 3: 6.3 Ref[3]								
	Unit 4: 2.2 Ref[4]								
	Unit 5: 2.3 Ref[4]								
	Unit 6: 2.4 Ref[4]								
	Unit 7: 2.5 Ref[4]								
	Unit 8: 2.8 Ref[4]								
Books a	nd References:								
1. 5	S.P Gupta (2021), Statistical Methods 46 th Edition								
	Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sul	tan Cha	and and						
	Sons, New Delhi								
3. 1	Douglas, Alex, Deon Roos, Francesca Mancini, Ana Couto, and David Lusseau. (2	2020), A	4 <i>n</i>						
j	Introduction to R. https://intro2r.com/index.html.								

Introduction to R. <u>https://intro2r.com/index.html</u>.
Sudha G. Purohit (2008), Statistics using R, Alpha Science International

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	-	-	-	3	2	2	2	-	-	3
CO 2	2	-	1	-	-	2	2	2	3	-	3	-
CO 3	-	1	-	2	2	-	3	1	1	-	-	-
CO 4	3	-	-	-	-	-	1	2	2	-	-	-
CO 5	2	-	-	-	-	3	2	3	3	-	-	-
CO 6	_	_	2	_	-	2	2	2	2	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA3MN203 (P)
Course Title	Random variables and CART

Type of Course	Minor						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic knowledge of set theory and probability theory						
Course	This course offers a comprehensive understanding of random						
Summary	variables, distributions, and statistical learning methods like						
	classification and regression trees, bagging, random forest, with						
	hands-on experience	ce in R					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Grasp random variables, distributions.	U	С	Instructor-crea ted exams / Quiz				
CO2	Summarize discrete, continuous distributions and analyze data to help entrepreneurial decisions using critical thinking skills.	Ар	Р	Practical Assignment / Observation of Practical Skills				
CO3	Calculate probabilities and statistical parameters for various standard distributions.	Ар	Р	Seminar Presentation / Group Tutorial Work				
CO4	Introduce to statistical learning, variables, models and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Home Assignments				
CO5	Understand bagging, random forest.	Ар	Р	One Minute Reflection Writing assignments/ Instructor-creat ed exams				
CO6	Implement classification, regression trees in R.	Ар	Р	Viva Voce/ Instructor-creat ed exams				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Module	Unit	Content	Hrs (45+ 30)	Marks (70)					
Ι		Random variables	14	20					
	1	Random variable	2						
	2	Distribution function	2						
	3	2							
	4	2							
	5	5 Discrete distribution function							
	6	Continuous random variable	2						
	7	Probability density function	2						
	Unit 1	: 5.1 Ref[2]							
		2: 5.2 Ref[2]							
		3: 5.3 Ref[2]							
		k: 5.3.1 Ref[2]							
		5: 5.3.2 Ref[2]							
		5: 5.4 Ref[2]							
	Unit 7	7: 5.4.1 Ref[2]	1.5	20					
II	0	Standard distributions	15	20					
	8	Bernoulli distribution	2						
	9	Binomial distribution	4						
	10	Poisson distribution Normal distribution	4						
	11	4							
	12	1							
		3: 7.1 Ref[2]							
		0: 7.2 Ref[2] .0: 7.3 Ref[2]							
		1: 8.2 Ref[2]							
		2: 8.2.13 Ref[2]							
Ш	Unit 1	Statistical learning	10	20					
111	13	An introduction to Statistical learning	1	20					
	13	Input and output variables	1						
	15	Response and predictor variables	1						
	16	Supervised and unsupervised learning	1						
	17	Classification verses regression	1						
	18	Classification and regression trees (CART)	2						
	19	Trees versus linear models	2						
	20	Advantages and disadvantages of trees	1						
		3: 2.1 Ref[1]							
		4: 2.1 Ref[1]							
		5: 2.1 Ref[1]							
	Unit 1								
	Unit 1								
	Unit 1								
		9: 8.1.3 Ref[1]							
	Unit 2	20: 8.1.4 Ref[1]							
IV		Bagging	6	10					
	21	An introduction to Bagging	3						

	22 Random forest	3						
	Unit 21: 8.2.1 Ref[1]							
	Unit 22: 8.2.2 Ref[1]							
V	PRACTICUM	30						
	Do practice problems in R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of							
	the course. Other units listed here may be used as demonstrations of the							
	concepts taught in the course.							
	1 Fitting classification trees							
	2 Pruning trees							
	3 Use the function–lm.fit							
	4 Use the function-names()							
	5 Use the function–predict()							
	6 Plotting of least square regression line-abline()							
	7 Plotting of least square regression line- plot()							
	8 residuals() function							
	Sections from References:							
	Unit 1: 8.3.1 Ref[1]							
	Unit 2: 8.3.1 Ref[1]							
	Unit 3: 3.6.2 Ref[1]							
	Unit 4: 3.6.2 Ref[1]							
	Unit 5: 3.6.2 Ref[1] Unit 6: 3.6.2 Ref[1]							
	Unit 7: 3.6.2 Ref[1]							
	Unit 8: 3.6.2 Ref[1]							
ooks an	d References:							

- 1. G. James, D. Witten, T. Hastie, and R. Tibshirani. (2013), An Introduction to Statistical Learning: with Applications in R, Springer.
- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	-	-	-	2	2	1	1	-	-	-
CO 2	2	2	-	3	2	2	2	1	2	-	3	-
CO 3	3	-	-	-	-	3	3	2	-	3	-	-
CO 4	2	-	-	-	-	2	2	3	1	-	-	3
CO 5	2	-	2	-	2	-	2	-	2	-	-	-
CO 6	_	_	_	2	-	2	1	2	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA1MN104 (P)
Course Title	Applied statistics
Type of Course	Minor
Semester	Ι

Academic Level	100 – 199					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	4	3	-	2	75	
Pre-requisites	Basic mathematical knowledge about calculus, introductory knowledge about data					
Course Summary	Gain a solid understanding of statistical concepts such as measurement scales, sampling methods, index numbers, and time series analysis, alongside practical applications, while acquiring hands-on data analysis skills using statistical software.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand grouped and ungrouped data, scales of measurement, and questionnaire design and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Quiz
CO2	Comprehend statistical surveys, both census and sample, along with probability and nonprobability sampling methods.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Understand index numbers, emphasizing weighted aggregate index numbers and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Identify and describe key measures in vital statistics	U	С	Instructor-crea ted exams / Home Assignments
CO5	Gain proficiency in time series analysis, including the measurement of secular trends and seasonal indices.	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Implement theoretical knowledge to practical scenarios through hands-on exercises using any software.	Ар	Р	Viva Voce/ Instructor-creat ed exams
	emember (R), Understand (U), Apply (Ap), actual Knowledge(F) Conceptual Knowledg			

Knowledge (M)

Module	Unit			Marks (70)
Ι		Data and questionnaire	9	15
	1	Statistical Survey—An Introduction	1	
	2 Planning the Survey		1	
	3	Specification of the Purpose	1	
	4	Scope of the Survey	1	
	5	2		
	6	Methods of collecting primary data	2	
	7	Drafting the questionnaire	1	
		1: 2.2 Ref[1]		
	Unit 2	2: 2.3 Ref[1]		
	Unit 3			
	Unit 4			
	Unit 5			
	Unit 6			
	Unit 7			
Π		Sample Survey	10	15
	4	Introduction	1	
	5	Types of sampling	2	
	6	Purposive sampling	2	
	7	Random sampling	1	
	8	Simple sampling	2	
	9	Stratified sampling	2	
	Unit 1	1: 12.1 Ref[2]		

	Unit 2							
		::12.2 Ref[2]						
	Unit 3	: 1 2.2.1 Ref[2]						
1	Unit 4: 12.2.2 Ref[2]							
	Unit 5							
	Unit 6	: 12.2.4 Ref [2] Index numbers and Vital Statistics						
III	_	16	20					
	7	Introduction and Uses of Index Numbers	1					
	8	Types of Index Numbers	1					
	9	Problems in the construction of Index Number	1					
	10	Methods of Construction of Index Numbers- Simple and Weighted Index Number	1					
	¹¹ Tests for an Ideal Index Number- Time Reversal Test and Factor Reversal Test							
	12 Introduction to Vital Statistics							
	13 Uses of Vital Statistics							
	 ¹⁴ Collection of Vital Statistics-Registration Method, Census Enumeration Method, Survey Method, Analytical Method 							
	15	Measures of Fertility –Crude Birth Rate (CBR), General Fertility Rate (GFR), Specific Fertility Rate (ASFR). Total Fertility Rate (TFR) (Concept and Problems)	3					
	16	Measurement of Mortality- Crude Death Rate (CDR), Specific Death Rate (ASDR), Standardized Death Rate (SDR), Infant Mortality Rate, Maternal Mortality Rate(Concept and Problems)	3					
	Unit 8 Unit 9 Unit 1	: 10.1&10.2[Ref 3] 3: 10.3 [Ref 3] 10.4[Ref 3] 0: 10.5 [Ref 3] 1:10.6.2&10.6.3 [Ref 3]						
	Unit 1 Unit 1 Unit 1 Unit 1	2: 16.2 [Ref 1] 3:16.2&16.3 [Ref 1] 4: 16.3&16.4[Ref 1] 5: 16.5&16.6 [Ref 1] 6:16.14,16.15,16.16,16.18 [Ref 1]						
IV		Time series	10	20				
	17	Introduction to Time Series & Utility of Time Series	1					
	18	Components of Time Series	1					

	19		2]				
		Measurement of Trend- Graphic Method						
	20	Semi Average Method	2					
	21	Method of Moving Average(Concept and Problems)						
	22	22 Measurement of Seasonal Variations-Method of Simple Averages						
	Sectio	ons from References:						
	Unit 1	17: 11.1& 11.3[Ref 3]						
		18:11.2[Ref 3]						
		19:.11.5[Ref 3]						
		20: 11.5[Ref 3]						
	.Unit	21: 11.5[Ref 3]						
	Unit 2	22:11.6 [Ref 3]						
V		PRACTICUM	30					
v		паснеем	50					
	Do pr	actice problems using any software from any 5 units of the given list and						
	-							
	one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the							
	concepts taught in the course.							
	1	Problems on graphic method						
	2	Problems on Semi average method						
	3	Problems on Moving average						
	4	Problems on method of Simple averages						
	5	Determination of sample size in sampling						
	6	Sampling errors						
	7	Method of reducing sampling errors						
	8	Non sampling errors						
1		ons from References:						
		1: 11.5 Ref[3]						
		2: 11.5 Ref[3]						
		3:11.6 Ref[3]						
		4: 11.6 Ref[3]						
		5: 4.16 Ref[1]						
		5:4.19 Ref[1]						
		7: 4.20 Ref[1]						
		3: 4.21 Ref[1]						
Books ar								
	1	ta (2021), Statistical Methods 46 th Edition						
2 0	Junta S	C and Kapoor V K (1997) Fundamentals of Mathematical Statistics Sul	ton Che	and and				

- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 3. Gupta, S. C.. (2015). Fundamentals of Statistics, Himalaya Publishing House

Mapping of COs with PSOs and POs :

PSO	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
-----	-----	-----	------	-----	------	-----	-----	-----	-----	-----	-----

	1	2	3		5							
CO 1	2	1	-	-	-	1	1	1	2	-	-	3
CO 2	-	2	-	1	2	_	2	-	1	3	-	-
CO 3	-	-	3	-		-	2	1	-	-	3	-
CO 4	-	-	-	-	-	2	3	2	-	-	-	-
CO 5	-	-	2	-	2	3	-	3	-	3	-	-
CO 6	2	-	-	-	-	2	2	_	-	_	_	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA2MN104 (P)
Course Title	Regression using JASP software
Type of Course	Minor
Semester	П

Academic Level	100 – 199				
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic understanding of statistical concepts, familiarity with algebraic concepts				
Course Summary	Covering advanced statistical concepts like skewness, kurtosis, multiple regression, and JASP software utilization, alongside developing skills in descriptive statistics, data manipulation, result interpretation, and understanding sampling distributions and test statistics using JASP.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp skewness and kurtosis measures, emphasizing Pearson's measure and percentile measure and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Quiz
CO2	Understand multiple regression concepts and the selection process and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Proficiently use JASP software for statistical analysis and result interpretation.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Comprehend sampling distributions and test statistics for Chi-square, F, and t distributions.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Implement theoretical knowledge in practical scenarios through hands-on exercises using JASP	Ар	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	correlation between variables.	Ар	Р	Viva Voce/ Instructor-creat ed exams
* - Re	emember (R), Understand (U), Apply (Ap),	Analyse (An)), Evaluate (E), G	Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45 +30)	Marks (70)
Ι		Skewness and Kurtosis	8	10
	1	Skewness	2	
	2	Kurtosis	2	
	3	Pearson's measure of skewness	2	
	4	Percentile measure of Kurtosis	2	
	Unit 1	1:3.13 Ref[2]		
	Unit 2	2: 3.14 Ref[2]		
	Unit 3	3: 3.13 Ref[2]		
	Unit 4	4: 3.14 Ref[2]		
II		Multiple regression	12	25
	5	Multiple regression	1	
	6	Multiple Regression and Correlation Analysis	1	
	7	Assumptions of Linear Multiple Regression Analysis	1	
	8	Coefficient of Multiple Determination	1	
	9	Partial correlation	1	
	10	Partial correlation coefficient	2	
	11 The Significance of a Partial Correlation Coefficient		1	
	12	Multiple correlation	1	
	13	Coefficient of Multiple Correlation	1	
	14	Advantages of Multiple Correlation Analysis	1	

	15	1	
	Limitations of Multiple Correlation Analysis		
	Unit 5: 9.9 Ref[1]		
	Unit 6: 9.9 Ref[1]		
	Unit 7: 9.10 Ref[1]		
	Unit 8: 9.7 Ref[1]		
	Unit 9: 9.2 Ref[1]		
	Unit 10: 9.2 Ref[1]		
	Unit 11: 9.6 Ref[1]		
	Unit 12: 9.7Ref[1]		
	Unit 13: 9.7 Ref[1]		
	Unit 14: 9.8 Ref[1]		
	Unit 15: 9.9 Ref[1]	12	20
III	JASPstatistical software 16	13 2	20
	Installing JASP		
	17 Loading data in JASP	2	
	18 Changing data from one measurement scale to another	3	
	19 Calculating Mean, Median and Mode in JASP	3	
	20 Calculating Range, standard deviation and variance using JASI	P 3	
	Unit 16: 3.1 Ref[3]		
	Unit 17: 3.3 Ref[3]		
	Unit 18: 3.5 Ref[3]		
	Unit 19: 4.1 Ref[3]		
	Unit 20: 4.2 Ref[3]		
IV	Sampling distributions	12	15
	21 Chi-square distribution	4	
	22 Student's t distribution	4	

	23	F distribution	4					
	Unit 2	21: 13.1 Ref[2]						
	Unit 22: 14.2 Ref[2]							
	Unit 23: 14.5 Ref[2]							
V		PRACTICUM	30					
	one ac of the	cactice problems in JASP software from any 5 units of the given list and diditional problem decided by the teacher-in-charge, related to the content e course. Other units listed here may be used as demonstrations of the opts taught in the course.						
	1	Problems on plotting scatter plots						
	2 Correlation calculation							
	3 Interpretation of correlation coefficient in JASP							
	4	Finding Rank correlation						
	5	Introduce correlation matrix in JASP						
	6	Linear regression model						
	7	Model checking						
	8	Model selection						
	Books	s and References:						
	Unit 1	1: 11.1.1 Ref[3]						
	Unit 2: 11.1.3 Ref[3]							
		3:11.1.5 Ref[3] 4: 11.1.6 Ref[3]						
		5: 11.2 Ref[3]						
	Unit 6	5: 11.3 Ref[3]						
		7:11.10 Ref[3]						
		3:11.11 Ref[3]						
	s and References:							

1. S.P Gupta (2021), Statistical Methods 46 th Edition

2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi

3. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version $1/(\sqrt{2})$).

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	_	-	-	-	1	2	-	-	-	3
CO 2	-	-	2	-	-	2	2	2	-	-	3	-
CO 3	3	2	3	-	2	3	3	3	2	3	-	-
CO 4	3	3	-	-	-	3	3	2	1	-	-	-
CO 5	-	-	3	2	-	-	2	1	-	3	-	-
CO 6	2	1	_	-	-	2	2	2	_	_	_	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Internal Assignm Project	End Semester
--------------------------	--------------

	Exam	ent	Evaluation	Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA3MN204 (P)
Course Title	Tests of hypothesis and SVM

Type of Course	Minor				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Familiarity with algebraic concepts, basic statistics and probability concepts. Understanding of data visualization methods.				
Course Summary	Explore hypothesis testing basics like null and alternative hypotheses, critical regions, significance levels, and one/two-tailed tests, alongside t-tests, chi-square tests, and support vector machines, emphasizing practical applications with R				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp fundamentals of hypothesis testing, including null and alternative hypotheses, critical regions, and significance levels.	U	С	Instructor-crea ted exams / Quiz
CO2	Understand small and large sample tests, focusing on tests for single mean and single proportion, t-tests, and chi-square tests.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Interpret results and understand the implications of large and small sample tests in real life situations and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Explain the fundamental purpose of one way ANOVA and its purpose in statistical analysis and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Home Assignments
CO5	Gain an overview of support vector machines, hyperplanes, and classifiers.	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Implement theoretical knowledge to practical scenarios through hands-on	Ар	Р	Viva Voce/ Instructor-creat

	exercises using R			ed exams				
* - R	emember (R), Understand (U), Apply (Ap),	, Analyse (An), Evaluate (E), C	Create (C)				
# - F	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knov	wledge (M)							

Module	Unit	Content	Hrs (45 +30)	Marks (70)
		Testing of hypothesis	10	15
	1	Tests of significance-Introduction	1	
	2	Null hypothesis	2	
	3	Alternative hypothesis	2	
	4	errors in hypothesis testing	2	
_	5	Critical region and Level of Significance	2	
Ι	6	One and two tailed tests	1	
	Unit 1	1: 12.4 Ref[2]		
	Unit 2	2:12.5 Ref[2]		
	Unit 3	3:12.5.1 Ref[2]		
	Unit 4	4: 12.6 Ref[2]		
		5:12.7 Ref[2] 5: 12.7.1 Ref[2]		
	Unit	Small and Large sample tests	9	15
	7	Steps for testing of hypothesis	1	
	8	t test for single mean	4	
п	9	t test for difference of means	4	
	Unit 7	7:12.7.3 Ref[2]		
	Unit 8	3: 14.2.9 Ref[2]		
	Unit 9	9: 14.2.10 Ref[2]		

	Chi square tests and ANOVA	18	25
	10 Chi square tests for Goodness of fit	3	
	11 Chi square test for independence of two attributes	3	
	12 Introduction to Analysis of variance	2	
	13 Assumptions	1	
III	14 Techniques of ANOVA	4	
	15 One way ANOVA	5	
	Unit 10: 13.7.2 Ref[2] Unit 11: 13.7.3 Ref[2]		
	Unit 12: 5.5 Ref[1]		
	Unit 13:5.6 Ref[1]		
	Unit 14: 5.7 Ref[1]		
	Unit 15:5.7 Ref[1]		
	Support vector machine	8	15
	16 Definition of hyperplane	1	
	17 Classification using separating hyperplane	1	
	18 Maximal margin classifier	1	
	19 Construction of Maximal Margin Classifier	2	
	20 Non separable case	1	
IV	21 An overview on support vector classifier	1	
11	22 A brief concept of Support vector machine	1	
	Unit 16: 9.1.1 Ref[3] Unit 17: 9.1.2 Ref[3]		
	Unit 18: 9.1.3 Ref[3]		
	Unit 19: 9.1.4 Ref[3]		
	Unit 20: 9.1.5 Ref[3]		
	Unit 21: 9.2.1 Ref[3]		
	Unit 22: 9.3.2 Ref[3]		
	PRACTICUM	30	
v	Do practice problems in R and JASP software from any 5 units of the give	en	
,	list and one additional problem decided by the teacher-in-charge, related to the		
	content of the course. Other units listed here may be used as demonstrations of	of	

			1					
	the co	oncepts taught in the course.						
	1	Fitting of regression trees in R						
-	2	Random forest in R						
	3	3 Chi-square goodness of fit test in JASP						
	4							
	5	One sample t test in JASP						
	6	How ANOVA works in JASP						
	7	Running ANOVA in JASP						
	8	An illustrative data set						
	Unit 1	ons from References: 1:8.3.2 Ref[3] 2: 8.3.3 Ref[3]						
	Unit 3	3:9.1Ref[4]						
	Unit 4	4: 9.2 Ref[4]						
	Unit 5	5: 10.2 Ref[4]						
	Unit 6	5:12.2 Ref[4]						
	Unit 7	7:12.3 Ref[4]						
	Unit 8	8:12.1 Ref[4]						
Books and	1. S 2. C 3. C	rences: S.P Gupta (2021), Statistical Methods 46 th Edition Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Stati Chand and Sons, New Delhi G. James, D. Witten, T. Hastie, and R. Tibshirani. (2013), An Introduction Learning: with Applications in R, Springer.						
		 Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version). 						

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO4	PSO	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	-----	-----	-----	------	-----	------	-----	-----	-----	-----	-----	-----	--

	1	2	3		5							
CO 1	2	2	-	-	-	1	1	-	-	-	-	-
CO 2	-	2	_	2	-	3	-	-	2	-	-	-
CO 3	-	-	2	-	-	-	2	-	-	-	3	-
CO 4	2	-	-	-	-	2	-	2	-	-	-	2
CO 5	-	-	3	-	-	2	-	1	-	2	-	-
CO 6	_	_	2	_	-	3	_	_	-	2	3	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA1MN105 (P)
Course Title	Descriptive statistics
Type of Course	Minor
Semester	Ι
Academic	100 - 199

Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites		Familiarity with different types of data, understanding of common data visualization techniques, basic algebraic concepts.					
Course Summary	Build a found primary/secondary, graphical represen dispersion measur applications.	, quantitat tation like	ive/qualitativ bar diagram	s, central ter	long with dency, and		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand data types and sampling techniques and critically evaluate ethical implications of statistical methods aligning with human values.	U	C	Instructor-crea ted exams / Quiz
CO2	Master diagrammatic representation and frequency distribution	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Apply measures of central tendency with practical examples and analyze data to help entrepreneurial decisions using critical thinking skills.	Ар	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Grasp measures of dispersion and their applications	U	С	Instructor-crea ted exams / Home Assignments
CO5	Conduct a survey and apply acquired skills using software	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Exlapin how to calculate measures of central tendency and dispersion using JASP software.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fa	emember (R), Understand (U), Apply (Ap), actual Knowledge(F) Conceptual Knowledge wledge (M)			

Module	Unit	Content	Hrs	Marks
			(45+ 30)	
Ι		A basic idea about data	6	15
	1	Primary and secondary data	3	
	2	Quantitative and qualitative data	1	
	3	Population and sample, Sampling and census	1	
	4	Discrete and continuous data	1	
		ns from References: : 2.2 [Ref 2]		
	Unit 2	: 11.1 [Ref 2]		
	Unit 3			
	Unit 4			
Π		15	15	
	5	Bar diagrams, pie diagram, Pictograms	5	
	6	Four types of classification	1	
	7	Frequency distribution, discrete and continuous frequency tables	6	
	8	Terms used in a frequency distribution, Cumulative frequency tables	3	
		ns from References: : 4.3(4.3.2 to 4.3.7) [Ref 2]		
	Unit 6	: 5.3 Ref[2]		
	Unit 7	: 3.3[Ref 2]		
	Unit 8			
III		Measures of central tendency	14	20

1			ſ	
	9	Mean, Median, Mode	9	
	10	Geometric mean and Harmonic mean with simple applications	4	
	11	Empirical relation connecting mean, median and mode	1	
	Section	ns from References:		
	Unit 9	: 2.5,2.6,2.7 [Ref 1], Chapter 2 [Ref 3]		
	Unit 1	0: 2.8,2.9 [Ref 1]		
	Unit 1	1: 2.7 [Ref 1]		
IV		Measures of dispersion	10	20
	12	Range, Standard deviation,	4	
	13	Quartile deviation	4	
	14	Coefficient of variation	2	
	Section	ns from References:		
	Unit 1	2: Section 1 and 4, Chapter 3 [Ref 3]		
	Unit 1	3: Section 2, Chapter 3 [Ref 3]		
	Unit 1	4: 3.8.1 [Ref 1]		
V		PRACTICUM	30	
	Do pra the giv teache units D concep			
	1	Installing JASP		
	2	Loading data in JASP		
	3	Quitting JASP		

4	Calculating mean in JASP	
5	Calculating Median in JASP	
6	Calculating mode in JASP	
7.	Calculating range in JASP	
8	Calculating interquartile range in JASP	
Section	ns from References:	
Unit 1	: 3.1 Ref[4]	
Unit 2	: 3.3 Ref[4]	
Unit 3	: 3.6 Ref[4]	
Unit 4	: 4.1.2 Ref[4]	
Unit 5		
Unit 6		
Unit 7	: 4.2.1 Ref[4]	
Unit 8	: 4.2.2 Ref[4]	

Books and References:

- **1.** Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 2. S.P Gupta (2021), Statistical Methods 46 th Edition
- **3.** Garrett, H.E. and Woodworth, R.S. (1973) Statistics in Psychology and education. Vakils, Feffer and Simons Private Ltd, Bombay.
- **4.** Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version).

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	2	3	2	-	-	-	3
CO 2	-	2	3	-	-	2	2	2	-	-	3	-
CO 3	3	-	2	-	3	3	3	2	2	3	-	-
CO 4	-	-	-	-	-	3	2	3	-	-	-	-
CO 5	2	-	-	-	-	-	2	1	-	-	-	2
CO 6	_	3	_	-	-	2	1	2	_	_	_	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics							
Course Code	STA2MN105 (P)							
Course Title	Introduction to Pro	bability						
Type of Course	Minor							
Semester	Π							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Understanding of manipulate and ana			-	-			
Course	Deepen statistical	5	· 1	1				
Summary	properties, and prol	0		• 1 •	0			
Summary		•	<i>, c</i>		1			
		correlation and regression coefficients, alongside introducing probability concepts, random variables, and distribution functions,						
	1 2 1	,		a ansuloudior	runeuons,			
	applied through pra	actical exerc	ises.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Comprehend types of correlation and scatter diagrams and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Instructor-crea ted exams / Quiz/ Instructor-creat ed exams
CO2	Understand properties of regression coefficients and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Introduce and apply probability theory concepts.	U	С	Seminar Presentation / Group Tutorial Work
CO4	Grasp the definition and types of	U	С	Instructor-crea

	random variables.			ted exams / Home Assignments				
CO5	Develop critical thinking skills to interpret and communicate results of statistical analysis effectively.	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams				
CO6	Describe how to draw scatter plot for correlation in JASP.	Ар	Р	Viva Voce/ Instructor-creat ed exams				
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Modul e	Un it	Content	Hrs (45+ 30)	Marks 70
Ι		Correlation	12	15
	1	Bivariate Distribution, Correlation	2	
	2	Scatter Diagram	1	
	3	Karl Pearson coefficient of correlation	2	
	4	Limits for Correlation Coefficient	2	
	5	Assumptions Underlying Karl Pearson's Correlation Coefficient	1	
	6	Rank Correlation	3	
	Sect	ions from References:		
	Unit	1: 10.1 Ref[2]		
	Unit	2: 10.2 Ref[2]		
	Unit	3: 10.3 Ref[2]		
	Unit	4: 10.3.1 Ref[2]		
	Unit	5: 10.3.2 Ref[2]		
	Unit	6: 10.6 Ref[2]		

п		Regression	14	20
	7	Regression	2	
	8	3		
	9	Regression coefficients	3	
	`10	Properties of regression coefficients	3	
	11	Relation between coefficient of correlation and regression coefficients	3	
	Sect	ions from References:		
	Unit	7: 10.7 Ref[2]		
	Unit	8: 10.7.1 Ref[2]		
	Unit	9: 10.7.3 Ref[2]		
	Unit	10: 10.7.4 Ref[2]		
	Unit	11: 10.7.4 Ref[2]		
ш		Introduction to Probability	10	15
	12	Terms in Probability	3	
	13	Mathematical or Classical Probability	1	
	14	Statistical or Empirical Probability	1	
	15	Axiomatic approach to Probability	2	
	16	Addition theorem for two events (statement only)	1	
	17	Conditional Probability	2	
	18	Independence of events		

	Sect	ions from References:		
	Unit	12: 4.3 Ref[2]		
	Unit			
	Unit			
	Unit	15: 4.5 Ref[2]		
	Unit	16: 4.6.2 Ref[2]		
	Unit	17: 4.7 Ref[2]		
	Unit	18: 4.7.3 Ref[2]		
IV		Random variables	9	20
	19	Definition of random variable	2	
	20	Probability mass function	2	
	21	Probability density function	2	
	22	Distribution function	3	
	Sect	ions from References:		
	Unit	19: 5.1 Ref[2]		
	Unit	20: 5.6 Ref[2]		
	Unit	21: 5.4.1 Ref[2]		
	Unit	22: 5.4 Ref[2]		
V		PRACTICUM	30	
	of th teach Othe	practice problems in JASP software from any 5 units e given list and one additional problem decided by the her-in-charge, related to the content of the course. er units listed here may be used as demonstrations of concepts taught in the course.		
	1	Problems on plotting scatter plots		
	2	Correlation calculation		
	3	Interpretation of correlation coefficient in JASP		

4.	Finding Rank correlation	
5	Introduce correlation matrix in JASP	
6	Linear regression model	
7	Model checking	
8	Model selection	
Sect	ions from References:	
Unit	1: 11.1.1 Ref[4]	
Unit	2: 11.1.3 Ref[4]	
Unit	3:11.1.5 Ref[4]	
Unit	4: 11.1.6 Ref[4]	
Unit	5: 11.2 Ref[4]	
Unit	6: 11.3 Ref[4]	
Unit	7:11.10 Ref[4]	
 Unit	8:11.11 Ref[4]	

Books and References:

- 1. Goon A.M., Gupta M.K. and Dasgupta B. (2002): Fundamentals of Statistics, Vol. I , 8th Edn. The World Press, Kolkata.
- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 3. Garrett, H.E. and Woodworth, R.S. (1973) Statistics in Psychology and education. Vakils, Feffer and Simons Private Ltd, Bombay.
- 4. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version).

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	2	-	-	2	2	1	-	-	3	-

CO 2	2	_	-	-	-	-	1	2	-	-	_	3
CO 3	-	3	-	2	2	2	2	1	2	-	-	-
CO 4	3	2	-	-	-	3	3	2	-	-	-	-
CO 5	2	-	-	-	-	-	2	2	-	-	-	-
CO 6	2	2	3	-	-	3	3	2	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics					
Course Code	STA3MN205 (P)					
Course Title	Inferential statistics	5				
Type of Course	Minor					
Semester	III					
Academic	200 - 299					
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	Awareness of different probability theory	rent types of	data sets, ba	sic understand	ling of	
Course	Discover statistical	testing basi	cs, including	g null and alte	ernative	
Summary	hypotheses, critical regions, and test statistics like z, t, F, and Chi-					
	square, with applic	ations such a	as t-tests, AN	IOVA, and pr	ractical	
	software exercises.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand testing fundamentals and hypotheses.	U	С	Instructor-crea ted exams / Quiz
CO2	Grasp test statistics and critical values.	U	С	Practical

				Assignment / Observation of Practical Skills/ Instructor-creat ed exams				
CO3	Apply t-tests and chi-square tests and analyze data to help entrepreneurial decisions using critical thinking skills.	Ар	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams				
CO4	Ability to calculate probabilities using normal distribution.	U	С	Instructor-crea ted exams / Home Assignments				
CO5	Comprehend Analysis of Variance and critically evaluate ethical implications of statistical methods aligning with human values.(ANOVA)	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams				
CO6	Conduct one sample tests in JASP software.	Ар	Р	Viva Voce/ Instructor-creat ed exams				
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Modul e	Un it	Content	Hrs (48+	Marks 70
			30)	
Ι		Fundamentals of Testing	12	15
	1	Tests of significance-Introduction	2	
	2	Null hypothesis	1	
	3	Alternative hypothesis	1	
	4	Errors in hypothesis testing	3	
	5	Critical region and Level of Significance	3	
	6	One and two tailed tests	2	

I	1		I	
	Sect	ions from References:		
	Unit	t 1: 12.4		
	Unit	t 2:12.5		
	Unit	3:12.5.1		
	Unit	t 4: 12.6		
	Unit	t 5:12.7		
	Unit	t 6: 12.7.1		
II		Distribution Theory	10	15
	7	Normal distribution-Properties	2	
	8	Properties of Normal distribution	1	
	9	Standard normal distribution	1	
	10	Problems with table values	2	
	11	Statistic of Chi-square distribution	2	
	12	Statistic of Student's t distribution	1	
	13	Statistic of F distribution	1	
	Sect	ions from References:		
	Unit	t 7:8.2.2 Ref[2]		
	Unit	t 8: 8.2.2 Ref[2]		
	Unit	t 9: 8.2.14 Ref[2]		
	Unit	t 10: 8.2.14 Ref[2]		
	Unit	t 11: 13.1 Ref[2]		
	Unit	t 12: 14.2 Ref[2]		
	Unit	t 13: 14.5 Ref[2]		

ш		Tests of Hypothesis	14	20
	14	Steps for testing of hypothesis	2	
	15	t test for single mean	3	
	16	t test for difference of means	3	
	17	Chi square tests for Goodness of fit	3	
	18	Chi square test for independence of two attributes	3	
	Sect	ions from References:		
	Unit	: 14:12.7.3 Ref[2]		
	Unit	15: 14.2.9 Ref[2]		
	Unit	16: 14.2.10 Ref[2]		
	Unit	17: 13.7.2 Ref[2]		
	Unit	18: 13.7.3 Ref[2]		
IV		Analysis of variance	9	20
	19	Introduction to Analysis of variance	1	
	20	Assumptions	2	
	21	Techniques of ANOVA	2	
	22	One way ANOVA	4	
	Sect	ions from References:		
	Unit	19: 5.5 Ref[1]		
	Unit	20:5.6 Ref[1]		
	Unit	21: 5.7 Ref[1]		
	Unit	22:5.7 Ref[1]		

V		30		
	Do j units by t cour dem			
	1	Chi-square goodness of fit test		
	2	Chi-square test for independence		
	3	One sample t test		
	4	How ANOVA works in JASP		
	5	Running ANOVA in JASP		
	6	An illustrative data set		
	7	Assumptions of one way ANOVA		
	8	Continuity correction		
	Unit	: 1:9.1Ref[3]		
	Unit			
	Unit	7: 12.6 Ref[3]		

Unit 8: 9.3 Ref[3]					
Books and References:					
1. S.P Gupta (2021), Statistical Methods 46 th Edition Gupta, S.C. and Kapoor, V.K. (1997)					
2. Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi					
3. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics					

3. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version).

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	2	-	-	-	2	2	2	-	-	-	-
CO 2	3	3	_	-	-	3	3	1	-	-	-	-
CO 3	-	-	2	-	-	2	2	2	-	-	3	-
CO 4	2	3	2	-	-	3	3	2	-	3	-	-
CO 5	-	2	-	2	3	-	2	2	1	-	-	3
CO 6	3	-	3	-	-	-	2	1	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev	Correlation
el	

-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Mapping of COs to Assessment Rubrics :

Programme	BSc Statistics				
Course Code	STA1MN106 (P)				
Course Title	Introductory statist	ics with JAS	Р		
Type of Course	Minor				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic mathematical probability theory.	l and compu	ter skills. Ba	sic knowledg	e of
Course Summary	Introduce statistical concepts with JASP software, covering data collection, questionnaire types, measurement scales, and graphical representation, while familiarizing students with installation, file manipulation, and descriptive statistics application, preparing for practical analysis in Psychology.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand data collection methods and questionnaire types and critically evaluate ethical implications of statistical methods aligning with human	U	С	Instructor-crea ted exams / Quiz

	values.					
CO2	Identify the differences between primary data and secondary data	U	С	Practical Assignment / Observation of Practical Skills		
CO3	Assess scales of measurement, reliability, and validity and analyze data to help entrepreneurial decisions using critical thinking skills	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams		
CO4	Design survey questions that minimize bias and encourage accurate response.	U	С	Instructor-crea ted exams / Home Assignments/ Instructor-creat ed exams		
CO5	Formulate and represent frequency distributions graphically.	U	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams		
CO6	Master JASP software for descriptive statistics.	Ар	Р	Viva Voce/ Instructor-creat ed exams		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Detailed Syllabus:

Modul e	Unit	Content	Hrs (45+ 30)	Mark s
Ι		Organizing a Statistical Survey	10	15
	1	Statistical Survey—An Introduction	2	
	2	Planning the Survey	1	
	3	Specification of the Purpose	1	
	4	Scope of the Survey	1	
	5	Sources of Data	2	
	6	Methods of collecting primary data	2	

	7	Drafting the questionnaire	1				
	Unit 1	1: 2.2 Ref[1]					
	Unit 2	Unit 2: 2.3 Ref[1]					
	Unit 3	3: 2.3 Ref[1]					
	Unit 4	4: 2.3 Ref[1]					
	Unit 5	5: 2.5 Ref[1]					
	Unit 6	5: 3.3 Ref[1]					
	Unit 7	7: 3.8 Ref[1]					
п		An introduction to Research Design	9	20			
	6	Introduction of Psychological measurement and variable	2				
	7	Scales of measurement	2				
	8	Accessing the reliability of measurement	3				
	9	9 Assessing validity of a study					
	Unit 6	5: 2.1 Ref[1]					
	Unit 7	Unit 7: 2.2 Ref[1]					
	Unit 8						
	Unit 9						
ш		Graphical Representation	15	20			
	9	Graphical representation of a Frequency Distribution	2				
	10	10 Histogram					
	11	11 Frequency Polygon					
	12 Ogives		3				
	13						
	14	Technique of Constructing Graphs	2				
	15	Graphs of Time Series or Line Graphs	2				

	16	Range Chart	1	
	17	Band Graph	1	
	Unit 9	9: 2.2 Ref[2]		
	Unit 1	0: 2.2.1 Ref[2]		
	Unit 1	1: 2.2.2 Ref[2]		
	Unit 1	2: 2.11.1 Ref[2]		
	Unit 1	3: 6.40 Ref[1]		
	Unit 1	4: 6.24 Ref[1]		
	Unit 1	5: 6.24 Ref[1]		
	Unit 1	6:: 6.29 Ref[1]		
	Unit 1	7: 6.30 Ref[1]		
IV	An Introduction to JASP		11	15
	18	Installing JASP	1	
	19	Loading data in JASP	1	
	20	Changing data from one measurement scale to another	1	
	21	Calculating Mean, Median and Mode in JASP	4	
	22	Calculating Range, standard deviation and variance using JASP	4	
	Sectio	ons from References:		
	Unit 1	8: 3.1 Ref[3]		
	Unit 1	9: 3.3 Ref[3]		
	Unit 2	20: 3.5 Ref[3]		
	Unit 2	21: 4.1 Ref[3]		
	Unit 2	22: 4.2 Ref[3]		
V		PRACTICUM	30	

1								
	units of by the course	Do practice problems using JASP software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.						
	1							
	2	Saving image files						
	3	Histogram						
	4	Box plots						
	5	Drawing multiple box plots						
	6							
	7							
	8	Examples on Interval scale						
	9	Examples on Ratio scale						
	Sectio	ons from References:						
	Unit 1	: 4.5 Ref[3]						
	Unit 2	2: 5.3 Ref[3]						
	Unit 3	8: 5.1 Ref[3]						
	Unit 4	Unit 4:5.2 Ref[3]						
	Unit 5							
	Unit (6:2.2.1Ref[3]						
	Unit7:	2.2.2 Ref[3]						
	Unit 8	:2.2.3 Ref[3]						
	Unit 9	2:2.2.4 Ref[3]						

Books and References:

- 1. S.P Gupta (2021), Statistical Methods 46 th Edition
- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 3. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version).

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	3	-	-	-	2	1	2	-	-	-	3
CO 2	-	-	-	-	-	3	2	2	-	-	-	-
CO 3	-	2	-	3	2	-	2	2	2	-	3	-
CO 4	-	-	-	-	3	-	3	1	2	-	-	-
CO 5	3	-	-	-	-	-	2	2	-	-	-	-
CO 6	-	_	3	-	-	3	1	1	-	3	2	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics					
Course Code	STA2MN106 (P)					
Course Title	Correlation and reg	ression				
Type of Course	Minor					
Semester	II					
Academic	100 - 199	100 – 199				
Level						
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4 3 - 2 75					
Pre-requisites	Understanding of fundamental statistical concepts, familiarity with					
	common data formats and basic data processing.					
Course	Delve into advanced statistical techniques like skewness, kurtosis,					
Summary	multiple correlation, multiple regression, and R programming,					
	equipping students to apply statistical analysis practically in					
	real-world scenario	s.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp skewness, kurtosis, and their measures.	U	С	Instructor-crea ted exams / Quiz
CO2	Define correlation and distinguish between positive, negative and zero correlation and critically evaluateethical implications of statistical methods aligning with human values.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Understand partial and multiple correlation and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Seminar Presentation / Group Tutorial/ Instructor-creat ed exams Work
CO4	Describe and apply multiple linear regression to model relationship with more than one predictor variable.	U	С	Instructor-crea ted exams / Home Assignments/ Instructor-creat ed exams
CO5	Implement multiple regression techniques effectively.	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Introduce and apply R programming for	Ар	Р	Viva Voce/

	statistical analysis.		Instructor-creat ed exams
# - Fa	emember (R), Understand (U), Apply (Ap), actual Knowledge(F) Conceptual Knowledg wledge (M)	• •	. ,

Detailed Syllabus:

Module	Unit	Content	Hours	Marks
			(45 +30)	70
Ι	Kurtos	sis	9	15
	1	Skewness	2	
	2	Kurtosis	2	
	3	Pearson's measure of skewness	3	
	4	Percentile measure of Kurtosis	2	
	Unit 1:	3.13 Ref[2]		
	Unit 2:	: 3.14 Ref[2]		
	Unit 3:	3.13 Ref[2]		
	Unit 4:	: 3.14 Ref[2]		
II		Partial and multiple correlation	14	20
	5	Partial correlation	2	
	6	Partial correlation coefficient	2	
	7	The Significance of a Partial Correlation Coefficient	2	
	8	Multiple correlation	2	
	9	Coefficient of Multiple Correlation	2	
	10	Advantages of Multiple Correlation Analysis	2	
	11	Limitations of Multiple Correlation Analysis	2	

1						
	Unit 5	: 9.2 Ref[1]				
	Unit 6	: 9.2 Ref[1]				
	Unit 7	: 9.6 Ref[1]				
	Unit 8	: 9.7Ref[1]				
	Unit 9	: 9.7 Ref[1]				
	Unit 1	0: 9.8 Ref[1]				
	Unit 1	1: 9.9 Ref[1]				
ш		Multiple regression	12	20		
	12	Multiple regression	3			
	13	Multiple Regression and Correlation Analysis	3			
	14	Assumptions of Linear Multiple Regression Analysis	3			
	15	Coefficient of Multiple Determination	3			
	Unit 12: 9.9 Ref[1]					
	Unit 13: 9.9 Ref[1]					
	Unit 14: 9.10 Ref[1]					
	Unit 15: 9.7 Ref[1]					
IV		Introduction to R programming	10	15		
	16	Installing R	1			
	17	Objects in R	1			
	18	Using functions in R	1			
	19	Importing data	1			
	20	Exporting data	1			
	21	Simple base R plots	2			
	22	Multiple graphs	3			
<u>l</u>			-			

Unit 16	5: 1.1 Ref[3]					
Unit 17	7: 2.2 Ref[3]					
Unit 18	3:2.3 Ref[3]					
Unit 19	9: 3.3 Ref[3]					
Unit 20): 3.6 Ref[3]					
Unit 2	1: 4.2 Ref[3]					
Unit 22	2: 4.4 Ref[3]					
	PRACTIUM	30				
units of the	of the given list and one additional problem d by the teacher-in-charge, related to the content course. Other units listed here may be used as					
1	Correlation in R					
2	Customising plots					
3	Simple base r plots					
4	R packages					
5	Installing R studio					
6	Projects in R studio					
7						
8 File names						
Sectior	as from References:					
Unit 1: 6.2 Ref[3]						
Unit 3:	4.2 Ref[3]					
Unit 5:	1.2 Ref[3]					
	Unit 17 Unit 18 Unit 19 Unit 20 Unit 21 Unit 21 Unit 22 Do pra units of decided of the of demon 1 2 3 4 5 6 7 8 Sectior Unit 1: Unit 2: Unit 2: Unit 2:	Do practice problems using R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.1Correlation in R2Customising plots3Simple base r plots4R packages5Installing R studio6Projects in R studio7Backing up projects8File namesSections from References:	Unit 17: 2.2Ref[3]Unit 18:2.3Ref[3]Unit 19: 3.3Ref[3]Unit 20: 3.6Ref[3]Unit 21: 4.2Ref[3]PRACTIUM30Do practice problems using R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.1Correlation in R2Customising plots3Simple base r plots4R packages5Installing R studio6Projects in R studio7Backing up projects8File namesSections from References:Unit 1: 6.2 Ref[3]Unit 2: 4.3 Ref[3]Unit 2: 4.3 Ref[3]Unit 3: 4.2 Ref[3]Unit 4: 1.5Ref[3]			

Unit 7: 1.12 Ref[3]

Unit 8: 1.9 Ref[3]

Books and References:

1. S.P Gupta (2021), Statistical Methods 46 th Edition

2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi

3. Douglas, Alex, Deon Roos, Francesca Mancini, Ana Couto, and David Lusseau. (2020), *An Introduction to R*. <u>https://intro2r.com/index.html</u>.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	3	1	2	-	2	2	-
CO 2	1	-	2	-	-	3	2	1	-	2	2	3
CO 3	-	-	2	-	-	2	2	2	-	1	3	-
CO 4	-	-	-	-	-	-	1	1	-	2	-	-
CO 5	-	3	-	2	2	-	3	2	2	2	-	-
CO 6	_	_	_	-	-	2	2	1	-	2	-	-

Correlation Levels:

Lev Correlation el	
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial /

	High
--	------

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA3MN206 (P)

Course Title	Tests of hypothesis	with JASP s	software				
Type of Course	Minor						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Credit Lecture Tutorial Practical Total					
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Familarity with con	nmon data f	ormats, awar	reness of hype	othesis		
	testing concepts inc	luding null a	and alternate	hypothesis, s	ignificance		
	levels and p-values	•					
Course	Cover sampling, pr	obability dis	tributions, a	nd mediation/	moderation		
Summary	analysis, introducing JASP software for correlation, t-tests, and						
	ANOVA. Equip stu	ANOVA. Equip students with skills for hypothesis testing, normal					
	distribution proper	ties, and psy	chological re	esearch analys	sis.		

CO	CO Statement	Cognitive Level*	Knowledge	Evaluation
			Category#	Tools used
CO	Explain why sampling is used in	U	С	Instructor-crea
1	statistical analysis.			ted exams /
				Quiz
CO	Describe and explain various sampling	U	F	Practical
2	techniques such as simple random			Assignment /
	sampling, stratified sampling.			Observation of
	sampning, stratmed sampning.			Practical Skills/
				Instructor-creat
				ed exams
CO	Introduce mediation and moderation	U	С	Seminar
3	analysis concepts.			Presentation /
	v 1			Group Tutorial
				Work/
				Instructor-creat
				ed exams
CO	Define what non parametric tests are and	U	С	Instructor-crea
4	explain how they differ from parametric			ted exams /
	tests and analyze data to help			Home
	entrepreneurial decisions using critical			Assignments
	thinking skills.			8
CO	Define correlation and explain its	R	F	One Minute
5	significance in statistical analysis and			Reflection
	critically evaluate ethical implications			Writing
	of statistical methods aligning with			assignments/
	human values.			Instructor-creat
				ed exams
CO	A male IACD software for humothesis	Ap	Р	Viva Voce/
6	Apply JASP software for hypothesis	Ŧ		Instructor-creat
	testing and analysis.			ed exams

* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Know	vledge (M)						

Detailed Syllabus:

Modul e	Un it	Content	Hrs	Marks
			(45	70
			+30)	
Ι		Sampling methods	10	15
	1	Introduction	1	
	2	Types of sampling	1	
	3	Purposive sampling	2	
	4	Random sampling	2	
	5	Simple sampling	2	
	6	Stratified sampling	2	
	Sect	ions from References:		
	Unit	1: 12.1 Ref[2]		
	Unit	2:12.2 Ref[2]		
	Unit	3: 1 2.2.1 Ref[2]		
	Unit	4: 12.2.2 Ref[2]		
	Unit	5: 12.2.3 Ref[2]		
	Unit	6: 12.2.4 Ref[2]		
п		An introduction to Mediation analysis	9	15
	7	The Simple Mediation Model	2	
	8	Estimation of the Direct, Indirect, and Total Effects of X- Brief concept	2	

	9	Concept of confounding and causal order	2	
	10	Conditional and Unconditional Effects	3	
	Sect	ions from References:		
	Unit	t 7: 3.1 Ref[3]		
	Unit	8: 3.2 Ref[3]		
	Unit	a 9: 4.2 Ref[3]		
	Unit	t 10: 7.1 Ref[3]		
ш		Introduction to Non parametric tests	14	20
	11	Non-parametric Methods	2	
	12	Advantages and Disadvantages of Non parametric Methods over parametric methods	2	
	13	Sign test	3	
	14	Median test	2	
	15	Mann Whitney Wilcoxon U test	2	
	16	Wald-Wolfowitz Run Test	3	
	Sect	ions from References:		
	Unit	11: 16.8 Ref[2]		
	Unit	12 16.8.1 Ref[2]		
	Unit	13:16.8.3 Ref[2]		
	Unit	: 14: 16.8.5 Ref[2]		
	Unit	15:16.8.7 Ref[2]		
	Unit	16: 16.8.3 Ref[2]		
IV		Correlation and test in JASP software	12	20
	17	The one-sample z-test.	2	
	18	The one-sample t-test.	2	
	19	The independent samples t-test	3	
	20	The paired-samples t-test	2	

1	l			
	21	Correlations	2	
	22	Scatter plots	1	
	Sect	ions from References:		
	Unit	217: 10.1 Ref[4]		
	Unit	18: 10.2 Ref[4]		
	Unit	2 19: 10.3 Ref[4]		
	Unit	20: 10.5 Ref[4]		
	Unit	21:11.1 Ref[4]		
	Unit	22: 11.2 Ref[4]		
V		PRACTICUM	30	
	Do j units by t cour dem			
	1	Checking the normality of a sample		
	2	Testing non normal data with Wilcoxon tests		
	3	Reporting the results of a hypothesis test		
	4	Making decisions		
	5	p value of a test		
	6	Running hypothesis test in practice		
	7	Discussion on various examples of population		
	8	Discussion on simple random sampling		
	Sect	ions from References:		
	Unit	1: 10.8 Ref[4]		
	Unit	2:10.9 Ref[4]		
	Unit	3: 8.6 Ref[4]		

Unit 4: 8.4 Ref[4]

Unit 5: 8.5 Ref[4]

Unit 6: 8.7 Ref[4]

Unit 7: 7.1.1 Ref[4]

Unit 8:7.1.2 Ref[4]

Books and References:

- 1. S.P Gupta (2021), Statistical Methods 46 th Edition
- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 3. Hayes, A.F. (2017) Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Press, New York
- 4. Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	1	1	-	-	-	-
CO 2	-	-	-	-	-	3	2	1	-	-	-	-
CO 3	-	2	-	3	2	-	2	2	2	-	-	-
CO 4	-	-	3	-	-	3	3	3	2	-	3	-
CO 5	3	-	-	-	-	2	1	2	-	-	-	3
CO 6	-	-	3	-	-	-	2	3	-	3	-	-

Correlation Levels:

Lev Correlation

el	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		√
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA1MN107 (P)
Course Title	Basic statistics

Type of Course	Minor				
Semester	Ι				
Academic Level	100 – 199				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge of data, variables, charts and graphs. Basic computer skills				
Course Summary	To provide students with a fundamental understanding of life science data and statistical methods for its analysis.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate proficiency in collecting life science data and understanding the distinction between population and sample	U	C	Instructor-crea ted exams / Quiz
CO2	Identify and analyze sampling and non-sampling errors, determine appropriate sample sizes, and recognize different variables and observational units within life science datasets.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Apply frequency distributions and plotting techniques to visualize life science data effectively and analyze data to help entrepreneurial decisions using critical thinking skills.	Ap	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Explore relationships between variables within life science datasets, employing statistical methods to quantify and analyze these relationships and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-crea ted exams / Home Assignments/ Instructor-creat ed exams
CO5	Define key terms in probability, including events, outcomes and sample spaces.	R	Р	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Develop a basic understanding of how to do measures of central tendency and dispersion using spread sheet.	Ap	C	Viva Voce/ Instructor-creat ed exams
- K	emember (R), Understand (U), Apply (Ap),	Analyse (All	j, Evaluate (E), C	

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

COURSE CONTENT

Mo dul e	Unit	Content	Hrs (45 +30)	Marks (70)
		Collection of Data and Sampling	10	20
	1	Examples of Life Science data	1	
	2	Collection of data- Primary and secondary data,	1	
	3	Population and Sample, Census and Sampling	1	
	4	Advantages and Limitations of Sampling	1	
	5	Simple Random Sampling (Concept and Method of Selection)	2	
	6	Stratified Random Sampling	2	
	7	Systematic Random Sampling	1	
1	8	Sampling and Non Sampling Errors	1	
	Sections	from References:		
	Unit 1: 1	.1[Ref 1]		
	Unit 2:2.	2 [Ref 2]		
	Unit 3: 1	5.2,15.3,15.6 [Ref 2]		
	Unit 4: 1	5.6,15.7[Ref 2]		
	Unit 5:15	5.11,15.11.1 [Ref 2]		
	Unit 6: 1	5.12,15.12.1 [Ref 2]		
	Unit 7: 1	5.13 [Ref 2]		
	Unit 8:15	5.9.1[Ref 2]		
	F	requency Distribution and Descriptive Statistics	12	10
	9	Frequency Distribution	2	
	10	Cumulative Frequency distribution	2	
2	11	Diagrammatic Representations	4	
	12	Graphical Representation of data	4	
	Sections	from References:		
	Unit 9: 3	.3[Ref 2]		

	Unit 10:	3.5[Ref 2]		
	Unit 11:	4.3[Ref 2]		
	Unit 12:	4.4[Ref 2]		
		Measures of Central Tendency&Dispersion	12	20
	13	Measures of Central Tendency	1	
	14	Arithmetic Mean	2	
	15	Median	2	
	16	Mode	2	
	17	Measures of Dispersion	1	
	18	Range, Quartile Deviation	2	
	19	Standard Deviation	2	
3	Sections	from References:		
	Unit 13:	5.1&5.3[Ref 2]		
	Unit 14: 5.4[Ref 2]			
	Unit 15: 5.6[Ref 2]			
	Unit 16: 5.7[Ref 2]			
	Unit 17: 6.1,6.3&6.4[Ref 2]			
	Unit 18: 6.5&6.6[Ref 2]			
	Unit 19: 6.9[Ref 2]			
	Theory of Probability			20
	20	Random Experiment, Sample Space, Events (Basic terminology), Three Conceptual Approaches to Probability, Calculation of Probabilities	4	
	21	Addition theorem (for two and three events) and simple problems (Statement Only)	3	
4	22	Conditional Probability & Multiplication theorem of probability(Concept and Problems)	4	
	Sections	from References:		
	Unit 20:	12.3,12.5,12.6,12.7[Ref 2]		
	Unit 21: 12.8[Ref 2]			
	Unit 22:	12.9[Ref 2]		
5	PRACTICUM			
	list and related to	ice problems in spreadsheet from any 5 units of the given one additional problem decided by the teacher-in-charge, o the content of the course. Other units listed here may be demonstrations of the concepts taught in the course.		

	1	Types of data				
	2	Introduction to spreadsheet				
	3	Frequency distributions for organizing and summarizing data				
	4	Histograms				
	5	Graphs that enlighten and graphs that deceive				
	6	Measures of central tendency				
	7	Measures of dispersion				
	8	Measures of Relative Standing and Boxplots				
	Sections	from References:				
	Unit 1: 1	1.2 Ref [5]				
	Unit 2:	1.4 Ref [5]				
	Unit 3: 2	2.1 Ref [5]				
	Unit 4: 2	2.2 Ref [5]				
	Unit 5: 2	2.3 Ref [5]				
	Unit 6: 3	3.1 Ref [5]				
	Unit 7: 3	3.2 Ref [5]				
	Unit 8: 3	3.3 Ref [5]				
Boo	oks and Refe					
1.	1. Myra L. Samuels, Jeffrey A. Witmer, Andrew A. Schaffner, Statistics for the Life Sciences, fifth edition (2016), Pearson Education					
	Inth Carton (2010), i carson Education					
2.	2. Gupta, S. C (2015). Fundamentals of Statistics, Himalaya Publishing House					
3.	. Prem S. Mann (2016), Introductory Statistics 9 th Edition, Wiley					

- 4. Gupta, S. C. and Kapoor, V. K. (2020). Fundamentals of Mathematical Statistics, 12th edition, Sulthan Chand, New Delhi
- 5. Mario F Triola, Elementary Statistics using Excel

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	2	1	2	-	-	-	-
CO 2	-	-	-	-	-	2	2	2	-	-	-	-
CO 3	-	2	-	-	2	3	2	2	-	3	3	-
CO 4	-	-	3	-	-	2	2	1	-	-	-	3
CO 5	-	-	-	3	-	-	1	2	2	-	-	-
CO 6	-	-	3	-	-	-	3	2	1	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA2MN107 (P)
Course Title	Statistical Inference I
Type of Course	Minor

Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Understanding of fu	undamental	statistical cor	ncepts. Basic	knowledge
_	in probability theor	y and rando	m Variables.		
Course	To equip students with a comprehensive understanding of theoretical				
Summary	distributions, sampling distributions,, hypothesis testing, and				
	comparisons betwe	en independ	ent and paire	ed samples.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Develop a basic understanding of Theoretical Distributions such as Binomial,Poisson and Normal distributions	U	С	Instructor-crea ted exams / Quiz					
CO2	Grasp the fundamental principles underlying sampling distributions.	R	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams					
CO3	Analyze and interpret data effectively by comparing two means, calculating confidence intervals for the difference of two population means and analyze data to help entrepreneurial decisions using critical thinking skills.	Ap	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams					
CO4	Evaluate the significance of differences between paired observations.	U	С	Instructor-crea ted exams / Home Assignments					
CO5	Explain the principles of relationships between categorical variables, including independence and association and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams					
CO6	Demonstrate how to plot probability curves using any software.	Ар	Р	Viva Voce/ Instructor-creat ed exams					
# - Fa	ctual Knowledge(F) Conceptual Knowledge	 ed exams * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

COURSE CONTENT

Mo dul e	Unit	Content	Hrs (45 +30)	Marks (70)
	Theoretical Distributions			15
	1	Binomial Distribution	3	
	2	Poisson Distribution	3	
т	3	Normal Distribution	6	
Ι	Sections	from References:		
	Unit 1:14	4.2 [Ref 1]		
	Unit 2:14	4.3[Ref 1]		
	Unit 3:14	4.4 [Ref 1]		
		Testing of Hypothesis	13	20
	4	Statistical Hypothesis-Simple and Composite, Null and Alternative	1	
	5	Types of errors in testing ,Level of Significance, Critical Region	3	
	6	One tailed and two tailed, p- value	1	
	7	Procedure of testing of hypothesis	1	
	8	Test for Single Proportion-Large Sample	1	
	9	Test of Significance for Difference of Proportions-Large Sample	2	
п	10	Test of Significance for a single mean	2	
11	11	Test of Significance for difference of Means	2	
	Sections	from References:		
	Unit 4: 1	6.6,16.6.1,16.6.3,16.6.4[Ref 1]		
	Unit 5: 1	6.6.5,16.6.6,16.6.7[Ref 1]		
	Unit 6: 1	6.6.8,16.6.9[Ref 1]		
	Unit 7: 1	6.7[Ref 1]		
	Unit 8: 1	7.2.1[Ref 1]		
	Unit 9: 1	7.2.2[Ref 1]		
	Unit 10:	17.3.1[Ref 1]		
	Unit 11:	17.3.2[Ref 1]		
III		Chi- Square Test	11	20

	12	Chi-square Distribution	2	
	13	Chi- Square Test of goodness of fit	2	
	14	Chi Square Test for Independence of Attributes	2	
	15	1		
	16	2		
	17	2×k Contingency table	2	
	Sections	from References:		
	Unit 12:	18.2[Ref 1]		
	Unit 13:	18.4&18.5[Ref 1]		
	Unit 14:	18.6[Ref 1]		
	Unit 15:	18.7[Ref 1]		
	Unit 16:	18.8[Ref 1]		
	Unit 17:	18.9[Ref 1]		
		Small sample Tests	9	15
	18	Student's t distribution	2	
	19	Applications of t distribution	1	
	20	Test for single mean	2	
	21	t- Test for Difference of Means	2	
IV	22	Paired t- Test for difference of Means	2	
1 4	Sections from References:			
	Unit 18: 19.2[Ref 1]			
	Unit 19:	19.4[Ref 1]		
	Unit 20:	19.5[Ref 1]		
	Unit 21:	19.6[Ref 1]		
	Unit 22:	19.7[Ref 1]		
V		PRACTICUM	30	
	list and or related to	ice problems using spreadsheet from any 5 units of the given one additional problem decided by the teacher-in- charge, o the content of the course. Other units listed here may be demonstrations of the concepts taught in the course.		
	1	Draw probability histogram		
	2	Finding mean and variance of a probability distribution		
	3	Methods for finding Binomial probability		
	4	Methods for finding Poisson probability		

	5	Find normal distribution areas				
	6	Find z scores from known area of normal probability				
	7	Assessing normality				
	8	Normal quantile plots				
	Sections	from References:				
	Unit 1: 5	5.1 [Ref 5]				
	Unit 2: 5	5.1 [Ref 5]				
	Unit 3: 5	5.2 [Ref 5]				
	Unit 4: 5	5.4 [Ref 5]				
	Unit 5: 6	5.1 [Ref 5]				
	Unit 6: 6	5.1[Ref 5]				
	Unit 7: 6	5.5[Ref 5]				
	Unit 8: 6	5.5 [Ref 5]				
Boo	oks and Refe	rences:				
1.	Gupta, S. C	(2015). Fundamentals of Statistics, Himalaya Publishing He	ouse			
2.	2. Myra L. Samuels, Jeffrey A. Witmer, Andrew A. Schaffner, Statistics for the Life Sciences ,fifth edition (2016),Pearson Education					
3.	3. Gupta, S. C. and Kapoor, V. K. (2020). Fundamentals of Mathematical Statistics, 12 th edition, Sulthan Chand, New Delhi					

- 4. Prem S. Mann (2016), Introductory Statistics 9 th Edition, Wiley
- 5. Mario F Triola, Elementary Statistics using Excel

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	----------	----------	----------	------	----------	------	-----	-----	-----	-----	-----	-----	--

CO 1	3	2	_	-	-	2	1	1	-	_	-	-
CO 2	-	-	-	-	-	3	2	2	-	-	-	-
CO 3	_	-	3	-	-	2	2	2	-	-	3	-
CO 4	-	2	-	-	-	-	2	3	-	-	-	-
CO 5	-	-	-	-	-	2	3	1	-	-	-	3
CO 6	-	2	-	2	3	-	2	2	3	3	-	2

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Internal Assignm I	roject End Semester
--------------------	---------------------

	Exam	ent	Evaluation	Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA3MN207 (P)
Course Title	Statistical inference II
Type of Course	Minor
Semester	III

Academic	200 - 299								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Strong foundation in sampling distributions. Familiarity with simple								
	hypothesis tests.								
Course	This course cove	ers inferentia	al statistics,	non-parame	etric tests,				
Summary	correlation analysi	s, and regr	ession analy	sis. Student	s learn to				
	analyze data using	techniques si	uch as ANOV	A, Mann-W	hitney Test,				
	correlation coeffic	ients, and re	egression m	odels, enablin	ng them to				
	draw meaningful i	nsights and	make inform	med decision	s from				
	statistical data								

СО	CO Statement	Cognitive Level*	Knowledge	Evaluation Tools used
001			Category#	
CO1	Understand the fundamental concepts	U	C	Instructor-crea
	and applications of inferential statistics			ted exams /
	and critically evaluate ethical			Quiz
	implications of statistical methods aligning with human values.			
CO2		U	С	Practical
02	Evaluate differences in means among multiple independent samples using	U	C	Assignment /
	one-way analysis of variance			Observation of
	one-way analysis of variance			Practical Skills/
				Instructor-creat
				ed exams
CO3	Define and understand the principles of	R	F	Seminar
	1 1		_	Presentation /
	non parametric statistics.			Group Tutorial
				Work/
				Instructor-creat
				ed exams
CO4	Relate the fundamentals of linear	U	С	Instructor-crea
	regression and correlation and analyze			ted exams /
	data to help entrepreneurial decisions			Home
	using critical thinking skills.			Assignments
CO5	Explain what regression analysis is and	U	F	One Minute
	how it differs from correlation analysis.			Reflection
				Writing
				assignments/
				Instructor-creat
			~	ed exams
CO6	Apply statistical techniques in software	Ap	Р	Viva Voce/
	to analyze categorical data effectively			Instructor-creat
* D				ed exams
* - Re	emember (R), Understand (U), Apply (Ap),	Analyse (An)), Evaluate (E), C	Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

COURSE CONTENT

Mo dul e		Content	Hrs (45 +30)	Marks (70)
		ANOVA	10	20
	1	F Statistic	2	
	2	F Test for Equality of Population Variance	2	
	3	ANOVA	2	
	4	One-Way Analysis of Variance	2	
1	5	Two -Way Analysis of Variance	2	
1	Sect	ions from References:		
	Unit	1: 19.10,19.10.1,19.10.2[Ref 1]		
	Unit	2:19.10.4[Ref 1]		
	Unit	3: 23.1,23.2 [Ref 1]		
	Unit	4: 23.3[Ref 1]		
	Unit	5: 23.4[Ref 1]		
		Non Parametric Test	15	15
	5	Introduction to Non Parametric Methods	1	
	6	Advantages and Limitations	1	
	7	Sign Test- one sample	3	
	8	Wilcoxon Signed Rank Test	2	
	9	Mann- Whitney Test	2	
	10	Kruskal- Wallis Test	2	
2	11	Single Sample Run Test	2	
4	12	Median Test	2	
	Sect	ions from References:		
	Unit	5: 26.2[Ref 2]		
	Unit	6: 26.2.1[Ref 2]		
	Unit	7:26.3 [Ref 2]		
	Unit	8: 26.4[Ref 2]		
	Unit	9: 26.5 [Ref 2]		
	Unit	10: 26.7[Ref 2]		

	Unit	11: 26.8[Ref 2]		
	Unit	12: 26.9[Ref 2]		
		Correlation Analysis	9	15
	13	Correlation	1	
	14	Types of Correlation	1	
	15	Methods of Studying Correlation	1	
	16	Scatter Diagram Method	2	
3	17	Karl Pearson's coefficient of correlation (Concept and Problems)	4	
	Secti	ons from References:		
	Unit	13: 8.1 [Ref 1]		
	Unit	14: 8.1.1[Ref 1]		
	Unit	15: 8.2[Ref 1]		
	Unit	16: 8.3[Ref 1]		
	Unit	17: 8.4[Ref 1]		
		Regression Analysis	11	20
	18	Introduction to Regression	1	
	19	Linear and Non Linear Regression	1	
	20	Lines of Regression	3	
	21	Coefficients of Regression	3	
4	22	Properties of Regression Coefficients	3	
-	Secti	ons from References:		
	Unit	18: 9.1 [Ref 1]		
	Unit	19: 9.2[Ref 1]		
	Unit	20: 9.3(9.3.1&9.3.2)[Ref 1]		
	Unit	21: 9.4[Ref 1]		
	Unit	22: 9.4.1,9.5,9.6[Ref 1]		
5		PRACTICUM	30	
	list a	practice problems in spreadsheet from any 5 units of the given and one additional problem decided by the teacher-in-charge, ed to the content of the course. Other units listed here may be as demonstrations of the concepts taught in the course.		
	1	Scatterplot		
	2	Correlation		
	3	Regression		

-				
	4	Linear correlation coefficient r		
	5	Graphing regression line		
	6	Outliers		
	7	Influential points		
	8	Residual plot		
	Secti	ons from References:		
	Unit	1: 2.4 [Ref 5]		
	Unit	2: 2.4 [Ref 5]		
	Unit	3: 2.4 [Ref 5]		
	Unit	4: 10.1 [Ref 5]		
	Unit	5: 10.2 [Ref 5]		
	Unit	6: 10.2 [Ref 5]		
	Unit	7: 10.2 [Ref 5]		
		8: 10.2 [Ref 5]		
		References: S. C (2015). Fundamentals of Statistics, Himalaya Publishing H	Iouse	
	•	. Samuels, Jeffrey A. Witmer, Andrew A. Schaffner, Statistics for lition (2016), Pearson Education	the Life	Sciences
3. F	Prem S	. Mann (2016), Introductory Statistics 9 th Edition, Wiley		
	1	S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Chand, New Delhi	Statistics, 1	1 th edition,
5. N	Mario I	F Triola, Elementary Statistics using Excel		

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	----------	----------	----------	------	----------	------	-----	-----	-----	-----	-----	-----	--

CO 1	3	2	_	-	-	2	1	2	-	_	-	3
CO 2	-	-	-	-	-	2	2	2	-	-	-	-
CO 3	-	-	_	-	3	-	2	1	-	-	-	-
CO 4	-	3	-	2	2	1	3	3	2	-	3	-
CO 5	-	-	-	-	-	2	2	2	-	-	-	-
CO 6	-	-	3	-	-	-	1	1	-	3	-	2

Correlation Levels:

Lev el	Correlation					
-	Nil					
1	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Internal Assignm	Project End Semester
------------------	----------------------

	Exam	ent	Evaluation	Examinations
		,		,
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA1MN108 (P)
Course Title	Statistics for critical thinking I
Type of Course	Minor

Semester	Ι								
Academic	100 - 199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Basic mathematica	l knowledge		·	•				
Course Summary	studies by delving generation method	Basic mathematical knowledge This course aims to illustrate the relevance of statistics in social studies by delving into the concept of data, its various forms, generation methods, diverse techniques for summarization and visualization, ultimately fostering a comprehensive understanding.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify different types of variables, including categorical, ordinal, interval, and ratio variables, and analyze their characteristics.	U	С	Instructor-creat ed exams / Quiz
CO2	Analyze relationships between variables, including correlations, associations, and causality and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Diffrentiate between qualitative and quantitative data	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Evaluate the advantages and disadvantages of four sampling methods: simple, stratified, cluster, and multistage sampling and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Calculate and interpret measures of dispersion, including range, variance, standard deviation, and coefficient of	U	С	One Minute Reflection Writing assignments/

	variation, to assess the spread or variability within a data set.			Instructor-creat ed exams					
CO6	Apply various methods for summarizing data, including numerical techniques such as scatter plots, dot plots, histograms, and box plots, and interpret their characteristics such as shape, symmetry, and outliers using R software.	Ар	Р	Viva Voce/ Instructor-creat ed exams					
# - Fac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Mo dul e	Unit	Content	Hrs (45	Marks (70)
		Data basics	+30)	15
			10	
1	1	Qualitative and Quantitative data, variables, and data matrices.	2	
1	2	Types of variables, Relationships between variables.	2	
	3	Explanatory and response variables.	2	
	4	Introducing observational studies and experiments.	4	
		Sections from References: Unit 1-4: 1.2 [Ref 2]		
		Sampling principles and strategies	11	15
	5	Populations and samples, anecdotal evidence.	2	
2	6	Sampling from a population, Observational studies. confounding variable, Retrospective studies.	2	
	7	Four sampling methods: simple, stratified, cluster, and multistage sampling.	2	

	8	3							
	9	Reducing bias in human experiments, treatment group, control group.	2						
		15	25						
	10	Examining numerical data, Scatterplots for paired data.	1						
	11	Dot plots, the mean and the weighted mean.	2						
3	12	Histograms, shape, symmetry, and mode of a data set.	2						
	13	Dispersion: Range, Variance, standard deviation, and coefficient of variation.	2						
	14	Box plots, quartiles, and the median.	2						
	15	Outliers, Inter quantile rage, Quantile deviation.	2						
	16	Robust statistics .	1						
	17	Transforming data.	1						
	18	Mapping data.	2						
		Sections from References: Unit 10-18: 2.1 [Ref 2]							
		Categorical data	9	15					
	19	Contingency tables and bar plots.	2						
	20	Row and column proportions, pie chart.	2						
4	21	Using a bar plot with two variables, stacked bar plot, side-by-side bar plot, Mosaic plots.	3						
	22	Comparing numerical data across groups: side-by-side box plots and hollow histograms.	2						
		Sections from References: Unit 19-22: 2.2 [Ref 2]							
5		PRACTICUM	30						
	given l teacher- units li	Do practice problems in R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.							
	1	Basic Mathematical Operations and R							

	Preliminaries	
2	Methods of Data Input	
3	Graphical Representations (R Code)	
4	Diagrammatic Representations (R Code)	
5	Descriptive Measures -Mean	
6	Median and Mode	
7	Range	
8	Standard deviation, variance	
Section	s from References:	
Unit 1:	1.3&1.4 [Ref 5]	
Unit 2:	1.5&1.6 [Ref 5]	
	1.8,2.3 [Ref 5]	
	2.2 [Ref 5]	
Unit 5:	2.4 [Ref 5]	
Unit 6:	2.4 [Ref 5]	
Unit 7:	2.5[Ref 5]	
Unit 8:	2.5[Ref 5]	
Books a	nd references:	
Stat 2. Die (201 Ope 3. Ast soci Pvt. 4. Arc for t Pea 5. Sud Des 6. Sirl Sage 7. Mu (201 (pp. 8. Guj Mat	ore, D. S. (2009). <i>Introduction to the Practice of istics</i> . WH Freeman and company. z, D. M., Barr, C. D., & Cetinkaya-Rundel, M. 9). <i>OpenIntro statistics</i> . Boston, MA, USA:: nIntro. (Available Online) hana, H. S., & Bhushan, B. (2016). <i>Statistics for al sciences (with SPSS applications)</i> . PHI Learning Ltd on, A., Coups, E. J., & Aron, E. N. (2013). <i>Statistics the behavioral and social sciences: A brief course:</i> <i>rson new international edition</i> . Pearson Higher Ed. ha G Purohith, Sharad D Core, Shailaja R hmukh ,Statistics Using R(2015) kin, R. M. (2006). <i>Statistics for the social sciences</i> . <i>e.</i> kherjee, S. P., Sinha, B. K., & Chattopadhyay, A. K. 8). <i>Statistical methods in social scienceresearch</i> 29-37). Springer Singapore. pta, S. C. and Kapoor, V. K. (2002). Fundamentals of hematical Statistics. , 11 th edition, Sulthan Chand, <i>y</i> Delhi.	

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	2	2	-	-	-	-
CO 2	-	-	3	-	-	2	3	3	-	-	3	-
CO 3	-	2	-	3	1	-	2	2	2	-	-	-
CO 4	3	-	-	-	-	1	1	2	-	-	-	3
CO 5	-	_	3	-	-	2	3	2	2	3	_	-
CO 6	-	_	_	-	-	2	2	3	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark		\checkmark
CO 4		\checkmark	\checkmark
CO 5		\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics				
Course Code	STA2MN108 (P)				
Course Title	Statistics for critica	al thinking II			
Type of Course	Minor				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours

	4	75							
Pre-requisites	Basic mathematical knowledge, familiarity with functions, graphs and basic equations.								
Course Summary	This course explo foundation on pro experiment effective special distribution	obability, d vely using r	escribes how	w to model	a random				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Design and develop questionnaires and schedules, ensuring reliability and validity through appropriate measures and techniques and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Quiz
CO2	Evaluate the reliability of data through various techniques and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Utilize random variables to model outcomes of random experiment.	U	С	Seminar Presentation / Group Tutorial Work
CO4	Define probability and analyze scenarios involving disjoint or mutually exclusive outcomes using probability concepts and tools.	U	С	Instructor-creat ed exams / Home Assignments/ Instructor-creat ed exams
CO5	Identify and describe key properties of common statistical distributions.	Ар	Р	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Explore various probability distributions such as Bernoulli, binomial, Poisson, geometric, and negative binomial distributions, including understanding their	Ар	Р	Viva Voce/ Instructor-creat ed exams

characteristics and differences using R software.										
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)										
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive										
Knowledge (M)										

Μ	odule	Content	Hours (45 +30)	Marks (70)
		Methods of Data Collection	9	10
	1	Case study, Observation, Interview, Survey, Use of Secondary Data	3	
1	2	Questionnaires and Schedules : Reliability and Validity of Questionnaire	3	
	3	Cleaning Data, Methods to Check reliability of Data.	3	
		Sections from References: Unit 1-3:		
		Probability	11	20
	4	Defining probability, Disjoint or mutually exclusive outcomes, Probabilities when events are not disjoint, Venn-diagrams.	2	
	5	Probability distributions, Complement of an event, Independence.	2	
2	6	Exploring probabilities with a contingency table, Marginal and joint probabilities.	1	
	7	Defining conditional probability, General multiplication rule.	2	
	8	Sum of conditional Probabilities, Independence considerations in conditional probability, Tree diagrams.	2	
	9	Bayes' Theorem and its applications.	2	
		Sections from References: Unit 4-9: 3.1,3.2 [Ref 2]		
		Continuous distributions	14	20
3	10	Sampling from a small population, without replacement, with replacement.	1	
	11	Random variable and its Expectation.	2	

	12	Variability in random variables.	2	
	13	Linear combinations of random variables, its Expectation and Variability in linear combinations of random variables.	2	
	14	Continuous distributions, From histograms to continuous distributions.	1	
	15	Probabilities from continuous distributions.	2	
	16	Normal distribution, standard normal distribution.	2	
	17	Standardizing with Z-scores, Finding tail areas, examples.	2	
		Sections from References: Unit 10-15: 3.3,3.4,3.5 [Ref 2] Unit 16-17: 4.1 [Ref 2]		
		Discrete distributions	11	20
	18	Bernoulli distribution, binomial distribution,	2	
	19	Normal approximation to the binomial distribution,	1	
4	20	Poisson distribution.	3	
	21	Geometric distribution.	2	
	22	Negative binomial distribution, Binomial vs Negative binomial distribution.	3	
		Sections from References: Unit 18-22: 4.2,4.3,4.4,4.5 [Ref 2]		
5		PRACTICUM	30	
	given l teacher- units li	etice problems in R software from any 5 units of the ist and one additional problem decided by the in-charge, related to the content of the course. Other sted here may be used as demonstrations of the s taught in the course.		
	1	Obtain the probability distribution		
	2	Plot the probability distribution		
	3	Obtain the cumulative distribution function		
	4	Plot the cumulative distribution function		
	5	Calculation of Probabilities from binomial distribution		
	6	Calculation of Probabilities from binomial distribution		
	7	Calculation of Probabilities from binomial distribution		

8	Fitting of Binomial distribution	
	s from References:	
	3.3 [Ref 5]	
	3.3 [Ref 5]	
	3.3 [Ref 5]	
	3.4&3.5 [Ref 5]	
	3.4 &3.5 [Ref 5]	
	3.4 &3.5 [Ref 5]	
	3.4 &3.5 [Ref 5]	
	3.4 &3.5 [Ref 5]	
	and References:	
BOOKS 2	and Kelerences:	
	Asthana, H. S., & Bhushan, B. (2016). <i>Statistics for</i> social sciences (with SPSS applications). PHI Learning Pvt. Ltd	
	Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2019). <i>OpenIntro statistics</i> . Boston, MA, USA:: OpenIntro.	
	Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for the behavioral and social sciences: A brief course: Pearson new international edition. Pearson Higher Ed.	
	Sirkin, R. M. (2006). Statistics for the social	
	<i>sciences</i> . Sage. Sudha G Purohith, Sharad D Core, Shailaja R	
	Deshmukh ,Statistics Using R(2015)	
	Mukherjee, S. P., Sinha, B. K., & Chattopadhyay, A. K. (2018). <i>Statistical methods in social science research</i> (pp. 29-37). Springer Singapore.	
7.	Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics. , 11 th edition, Sulthan Chand, New Delhi.	
8.	Gupta, S. C. and Kapoor, V. K. (2007). Fundamentals of applied Statistics, Sultan Chand and Sons.	

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
СО	2	2	-	-	-	3	1	2	-	-	-	3

1												
CO 2	-	-	3	-	-	2	2	1	-	-	3	-
CO 3	-	-	-	-	I	-	3	2	-	-	-	-
CO 4	-	3	-	3	2	-	2	2	3	-	-	-
CO 5	-	-	-	-	-	-	2	1	-	-	-	-
CO 6	-	-	3	-	-	2	1	2	-	3	-	2

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark

CO 4		\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics				
Course Code	STA3MN208 (P)				
Course Title	Statistics for critica	l thinking II	I		
Type of Course	Minor				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic understandin	g of introduc	ctory statistic	al concepts. I	Familiarity

	with the fundamentals of probability.
Course Summary	This course examines different ways to analyse data to make meaningful conclusions about the larger population from it is drawn. Course also explores ways to describe relationships between different variables in a data matrix.

CO1	Explain the concept of a sampling	U		Tools used
	distribution and calculate standard error for different statistics.		С	Instructor-creat ed exams / Quiz
CO2	Explain central limit theorem and its importance in statistics.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Construct and interpret confidence intervals for proportions, including understanding the margin of error and changing the confidence level and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Analyze the difference of two proportions using hypothesis tests and confidence intervals.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Perform paired data analysis using paired t-tests and interpret the results and critically evaluate ethical implications of statistical methods aligning with human values.	U	f	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Conduct ANOVA tests to compare means across multiple groups and interpret ANOVA tables using R software. nember (R), Understand (U), Apply (Ap),	Ap	P	Viva Voce/ Instructor-creat ed exams

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module		Content	Hours	Marks
			(45+ 30)	(70)
		Statistical Inference	12	17
	1	1		
	2	Sampling distribution, standard error, Central Limit Theorem.	1	
	3	Applying the Central Limit Theorem to a real- world setting, More details regarding the Central Limit Theorem.	2	
1	4	Confidence intervals for a proportion, Capturing the population parameter.	2	
	5	1		
	6	Changing the confidence level, margin of error, case studies, Interpreting confidence intervals.	1	
	7	4		
		Sections from References: Unit 1-7: 5.1,5.2,5.3 [Ref 2]		
		Hypothesis testing	12	17
	8	Inference for categorical data, Inference for a single proportion, Confidence intervals for a proportion.	2	
	9	Hypothesis testing for a proportion, Choosing a sample size when estimating a proportion.	1	
2	10 Difference of two proportions,		2	
	11	Hypothesis tests for the difference of two proportions.	1	
	12	Testing for goodness of fit using chi-square: Creating a test statistic for one-way tables, The chi-square test statistic.	2	
	13	The chi-square distribution and finding areas,	2	

		Finding a p-value for a chi-square distribution, Evaluating goodness of fit for a distribution.		
	14	Testing for independence in two-way tables, The chi-square test for two-way tables.	2	
		Sections from References: Unit 8-14: 6.1-6.4 [Ref 2]		
		Small sample tests	14	19
	15	Inference for numerical data: One-sample means with the t-distribution, The sampling distribution of smaple mean, Introducing the t-distribution, One sample t-tests.	3	
	16	Paired data, paired t-test. Difference of two means,	2	
3	17	Hypothesis tests for the difference of two means, Confidence interval for a difference of means	4	
	18	Comparing many means with ANOVA: Core ideas of ANOVA, Analysis of variance (ANOVA) and the F -test.	3	
	19	Reading an ANOVA table from software, Multiple comparisons and controlling Type 1 Error rate.	2	
		Sections from References: Unit 15-19: 7.1-7.5 [Ref 2]		
		Regression	7	17
	20	Introduction to linear regression: Fitting a line, residuals, and correlation, Describing linear relationships with correlation.	3	
4	21	Least squares regression, Conditions for the least squares line, Finding the least squares line.	2	
	22	Interpreting regression model parameter estimates, Using R2 to describe the strength of a fit, Categorical predictors with two levels.	2	
		Sections from References: Unit 20-24:8.1-8.4 [Ref 2]		
5		PRACTICUM	30	
	given l teacher- units li	ctice problems in R software from any 5 units of the ist and one additional problem decided by the -in-charge, related to the content of the course. Other sted here may be used as demonstrations of the staught in the course.		
	1			
	1	Test Concerning Means-One sample		

3	Test of Significance for difference of two population means	
4	Test of Significance for difference of two population proportions	
5	ANOVA	
6	Correlation	
7	Inference procedures for correlation coefficient	
8	Linear regression	
Sections	s from References:	
Unit 1: 4	4.5[Ref 5]	
Unit 2:4	.5[Ref 5]	
Unit 3: 4	4.5[Ref 5]	
Unit 4: 4	4.5[Ref 5]	
Unit 5: 4	4.5[Ref 5]	
Unit 6: :	5.2[Ref 5]	
Unit 7: :	5.3[Ref 5]	
Unit 8: :	5.4[Ref 5]	
	nd References: Asthana, H. S., & Bhushan, B. (2016). <i>Statistics for</i> <i>social sciences (with SPSS applications)</i> . PHI Learning Pvt. Ltd Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2019). <i>OpenIntro statistics</i> . Boston, MA, USA:: OpenIntro. Aron, A., Coups, E. J., & Aron, E. N. (2013). <i>Statistics for the behavioral and social sciences: A</i> <i>brief course: Pearson new international edition</i> . Pearson Higher Ed. Sirkin, R. M. (2006). <i>Statistics for the social</i> <i>sciences</i> . Sage. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh ,Statistics Using R(2015). Mukherjee, S. P., Sinha, B. K., & Chattopadhyay, A. K. (2018). <i>Statistical methods in social science</i> <i>research</i> (pp. 29-37). Springer Singapore. Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics. , 11 th edition, Sulthan Chand, New Delhi. Gupta, S. C. and Kapoor, V. K. (2007). Fundamentals of applied Statistics, Sultan Chand and Sons.	

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	_	-	2	-	-	-	3	-	-	-
CO 2	-	-	_	-	-	-	3	-	-	-	-	-
CO 3	2	2	-	-	-	-	1	-	-	-	3	-
CO 4	-	-	2	3	1	3	-	3	2	-	-	-
CO 5	3	-	-	-	-	-	-	-	-	-	-	3
CO 6	-	-	3	-	-	2	_	_	-	3	3	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics							
Course Code	STA1MN109 (P)	STA1MN109 (P)						
Course Title	Elementary statistic	cs						
Type of Course	Minor							
Semester	Ι	Ι						
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic knowledge of mathematics, including algebra and calculus.							
	Familiarity with ge	ographical c	concepts and	spatial data.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Recognize the importance of statistical methods in geographical research and analysis.	U	С	Instructor-creat ed exams / Quiz
CO2	Evaluate different types of data used in geography, including qualitative and quantitative variables, and analyze data to help entrepreneurial decisions using critical thinkingskills.	Ар	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Calculate and interpret measures of central tendency, such as mean, median, and mode, and measures of dispersion, including range, variance, and standard deviation, in the context of geographical data analysis.	Ар	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Analyze higher-order moments or other numerical measures of the characteristics of distributions, such as skewness and kurtosis, and interpret their implications for spatial patterns and trends and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Introduce the concepts of correlation and regression analysis and their applications in geography, including assessing the strength and direction of relationships between variables and making predictions based on statistical models.	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Demonstrate measures of central	Ар	Р	Viva Voce/ Instructor-creat

		tendency using spreadsheet.			ed exams				
* _	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# -	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Kn	Knowledge (M)								

Mo dul	Unit	Content	Hours	Marks
e			(45	(70)
			+30)	
		STATISTICS AND GEOGRAPHY	10	15
	1	1		
	2	Data, sources of data, internal data, external data, primary and secondary data, meta data	2	
	3	Data collection, characteristics of data sets	2	
	4	Quantitative and qualitative data sets	1	
	5	Measurement Evaluation: Validity, accuracy, precision	2	
	6	Data and Information	1	
1	Sections	s from References:		
	Unit 1: 1	1, 1.1 [Ref 1]		
	Unit 2:	1.2 [Ref 1]		
	Unit 3:	1.2 [Ref 1]		
	Unit 4: 1	1.2 [Ref 1]		
	Unit 5:	1.3 [Ref 1]		
	Unit 6:	1.4 [Ref 1]		
	_		12	15
		DISPLAYING AND INTERPRETING DATA		
2	7	Organization of data	2	
2	8	Classification	2	
	9	Frequency distribution	2	

	1		1]
	10	Basic principles for forming a groupes frequency distribution	2	
	11	Cumulative and bivariate frequency distribution	2	
	12	Tabulation, requisites of a good table	2	
	Sections	s from References:		
	Unit 7: 3			
	Unit 8: 3	3.2 [Ref 2]		
	Unit 9: 3	3.3, 3.3.1, 3.3.2, 3.3.3, 3.3.4 [Ref 2]		
	Unit 10:	3.4, 3.4.1, 3.4.2, 3.4.3, 3.4.4 [Ref 2]		
	Unit 11:	3.5, 3.5.1, 3.5.2, 3.6 [Ref 2]		
	Unit 12:	3.7, 3.7.2 [Ref 2]		
			14	25
		REPRESENTATIONS OF DATA		
	13	Types of diagrams	1	
	14	Graphical representation of data	3	
	15	Limitations of diagrams and graphs	1	
	16	Measures of Central Tendency:	4	
	17	Selection and limitations of an average	2	
	18	Measures of Dispersion	3	
3	Sections	s from References:		
5	Unit 13:	4.3.2, 4.3.3, 4.3.44.3.6, 4.3.7 [Ref 2]		
	Unit 14:	4.4.2, 4.4.3, 4.4.4 [Ref 2]		
	Unit 15:	4.5 [Ref 2]		
	Unit 16:	5.4,5.6, 5.7, 5.8, 5.9, 5.10 [Ref 2]		
	Unit 17:			
	Unit 18:	6.5, 6.6, 6.9 [Ref 2]		
		CORRELATION AND REGRESSION	10	15
	19	Correlation	2	
4	20	Correlation coefficient	2	

	21	Regression	3	
	22	Lines of regression	3	
	Sections	s from References:		
	Unit 19:	8.1, 8.1.1, 8.1.2, 8.3 [Ref 2]		
	Unit 20:	8.4 [Ref 2]		
	Unit 21:	9.2 [Ref 2]		
	Unit 22:	9.3, 9.3.1, 9.3.2, 9.3.4 [Ref 2]		
5		PRACTICUM	30	
	given lis	tice problems in spreadsheet from any 5 units of the st and one additional problem decided by the teacher- te, related to the content of the course. Other units listed y be used as demonstrations of the concepts taught in se.		
	1	Types of data		
	2	Introduction to spreadsheet		
	3	Frequency distributions for organizing and summarizing data		
	4	Histograms		
	5	Graphs that enlighten and graphs that deceive		
	6	Measures of central tendency		
	7	Measures of dispersion		
	8	Measures of Relative Standing and Boxplots		
	Unit 1: 1 Unit 2: Unit 3: 2 Unit 4: 2 Unit 5: 2 Unit 6: 3 Unit 7: 3	s from References: 1.2 Ref [5] 1.4 Ref [5] 2.1 Ref [5] 2.2 Ref [5] 2.3 Ref [5] 3.1 Ref [5] 3.2 Ref [5] 3.3 Ref [5]		
	Books a	and References:		
	I	James E. Burt_ Gerald M. Barber_ David L. Rigby - Elementary Statistics for Geographers-The Guilford Press (2009)		
	2. (Gupta, S. C (2015). Fundamentals of Statistics,		

	Himalaya Publishing House.	
3.	J. Chapman McGrew Jr., Arthur J. Lembo Jr., Charles	
	B. Monroe - An Introduction to Statistical Problem	
	Solving in Geography, Third Edition-Waveland Press,	
	Inc. (2014)	
4.	Mario F Triola, Elementary Statistics using Excel.	

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	-	3	-	-	-	-	-
CO 2	-	2	-	-	-	-	-	-	-	-	2	-
CO 3	-	-	-	-	-	3	-	3	-	-	-	-
CO 4	1	-	-	-	2	-	-	-	-	-	-	3
CO 5	-	2	3	1	-	-	-	-	2	1	-	-
CO 6	-	-	3	-	-	2	-	-	-	2	3	-

Correlation Levels:

Lev	Correlation
el	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics						
Course Code	STA2MN109 (P)						
Course Title	Theory of probabili	ty					
Type of Course	Minor						
Semester	II	II					
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Knowledge of introductory statistics would be beneficial for students						

	to grasp the content covered in the course effectively.
Course Summary	Provide students with a foundational understanding of probability theory and its applications in statistical experiments, random variables, probability distributions, and sampling techniques.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define statistical experiments, sample spaces, and events, and recognize their significance in modeling uncertain outcomes.	U	C	Instructor-creat ed exams / Quiz
CO2	Utilize conditional probability and understand the concept of statistical independence to analyze probabilistic relationships between events.	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Define random variables and probability distributions, and analyze the distribution of discrete and continuous random variables, including calculating expectations and variances.	R	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Identify sampling biases and evaluate different types of non-probability sampling techniques, such as judgmental, convenience, quota, and volunteer sampling and analyze datato help entrepreneurial decisions using critical thinking skills.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Acquire a comprehensive knowledge of probability theory and its diverse applications in statistical experiments, random variables and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Solve practical problems involving probability distributions using	Ар	Р	Viva Voce/ Instructor-creat ed exams

	spreadsheet.							
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Mo dul	Units	Content	Hrs	Marks
e			(45	(70)
			+30)	
		PROBABILITY	12	20
	1	Mathematical Preliminaries	1	
	2	Set theory	2	
	3	Permutation and combination	1	
	4	Definitions of probability	1	
	5	Addition theorem of probability	2	
	6	Multiplication theorem of probability	2	
	7	Independent events, multiplication theorem for independent events	2	
	8	1		
1	Sections	from References:		
	Unit 1:	12.4 [Ref 1]		
	Unit 2:	12.4.1 [Ref 1]		
	Unit 3:	12.4.2 [Ref 1]		
	Unit 4:	12.5, 12.6, 12.7 [Ref 1]		
	Unit 5:	12.8 [Ref 1]		
	Unit 6:	12.9 [Ref 1]		
	Unit 7:	12.9.1, 12.9.2 [Ref 1]		
	Unit 8:	12.10 [Ref 1]		
		RANDOM VARIABLES	10	15
Π	9	Random variable, probability distribution of discrete and continuous random variable	2	

	10	Distribution function	2	
	11	Moments (definition only)	2	
	12	Mathematical Expectation	2	
	13	Variance and covariance	2	
	Sections	from References:		
	Unit 9: 1	3.1, 13.2, 13.3 [Ref 1]		
	Unit 10:	13.4 [Ref 1]		
	Unit 11:	13.5 [Ref 1]		
	Unit 12:	13.6 [Ref 1]		
	Unit 13:	13.8, 13.9 [Ref 1]		
		STANDARD DISTRIBUTIONS	12	20
	14	Binomial distribution	2	
	14	Poisson distribution	2	
	15	Normal distribution	4	
	10	Areas under standard normal probability curve,	4	
III	1/	Importance of normal distribution	4	
	Sections	from References:		
	Unit 14:	14.2, 14.2.1, 1.2.2, 1.2.3 [Ref 1]		
	Unit 15:	14.3, 14.3.1, 14.3.2, 14.3.3 [Ref 1]		
	Unit 16:	14.4, 14.4.1, 14.4.2 [Ref 1]		
	Unit 17:	14.4.6, 14.4.7 [Ref 1]		
		SAMPLING	11	15
	18	Census, sample, principal steps in sample survey	2	
	19	Purposive Sampling	2	
IV	20	Simple random Sampling	3	
	21	Stratified random sampling	2	
	22	Systematic Sampling	2	
	Sections	from References:		
	Unit 18:	15.6, 15.8[Ref 1]		
	Unit 19:	15.10.1 [Ref 1]		
	Unit 20:	15.11 [Ref 1]		

	Unit 21:	15.12 [Ref 1]		
		15.13 [Ref 1]		
5		PRACTICUM	30	
	given lis	tice problems in spreadsheet from any 5 units of the st and one additional problem decided by the teacher- e, related to the content of the course. Other units listed y be used as demonstrations of the concepts taught in se.		
	1	Probability distribution		
	2	Probability histogram		
	3	Mean and variance of probability distribution		
	4	Finding binomial probabilities		
	5	Finding Poisson probabilities		
	6	Finding normal probabilities		
	7	Finding z scores from known areas		
	8	Find critical values		
	Unit 1: 5 Unit 2: 5 Unit 3: 5 Unit 4: 5 Unit 5: 5 Unit 6: 6 Unit 7: 6	5 from References: 5.1 [Ref 4] 5.1 [Ref 4] 5.1 [Ref 4] 5.2 [Ref 4] 5.3 [Ref 4] 5.1 [Ref 4] 5.1 [Ref 4] 5.1 [Ref 4] 5.1 [Ref 4]		
	1. (H 2. J H 3. J H S. J	 nd References: Gupta, S. C (2015). Fundamentals of Statistics, Himalaya Publishing House. James E. Burt_ Gerald M. Barber_ David L. Rigby - Elementary Statistics for Geographers-The Guilford Press (2009) J. Chapman McGrew Jr., Arthur J. Lembo Jr., Charles B. Monroe - An Introduction to Statistical Problem Solving in Geography, Third Edition-Waveland Press, Inc. (2014) Mario F Triola, Elementary Statistics using Excel. 		

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	-	2	-	-	-	-	-
CO 2	-	-	-	-	2	-	-	-	3	-	-	-
CO 3	-	3	1	2	-	-	1	-	2	-	-	-
CO 4	-	-	2	-	-	2	-	-	-	-	3	-
CO 5	1	-	-	-	-	3	-	3	-	-	-	3
CO 6	-	-	3	-	-	-	-	-	-	2	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA3MN209 (P)				
Course Title	Statistical inference	e			
Type of Course	Minor				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge	of rando	m variable,	probability,	standard
	distributions				

Equip students with a comprehensive understanding of sampling theory and its applications in statistical inference.

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define parameters and statistics, and differentiate between them using examples to illustrate their roles in statistical inference.	U	С	Instructor-creat ed exams / Quiz
CO2	Explain what a sampling distribution is and differentiate it from a population distribution.	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Describe the procedures for statistical estimation, including point estimation and interval estimation, and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Identify unbiased and efficient estimators and apply them to estimate population parameters such as the mean, proportion, and variance.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Interpret interval estimators for population mean and population proportion and critically evaluate ethical implications of statistical methods aligning with human values.	Ар	Р	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Perform testing of hypothesis using any software.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg edge (M)			

Мо	Units	Content	Hrs	Marks	
----	-------	---------	-----	-------	--

dul e			(45	(70)				
			+30)					
		10	10					
	1	Parameter and statistic	2					
1	2	Sampling Distribution	2					
	3	Principles of sampling	2					
	4	2						
	5	5 Central limit theorem						
	Sections	s from References:						
	Unit 1:	15.4 [Ref 1]						
	Unit 2:	15.4.1, 15.4.2 [Ref 1]						
	Unit 3:							
	Unit 4:	16.3 [Ref 1]						
	Unit 5:	16.3.2 [Ref 1]						
		11	25					
	6	Statistical Estimation Procedures-Point Estimation and Interval estimation	2					
2	7	Point estimation- Estimator and Estimate (Definition, Concept), Unbiases Estimator and Efficient Estimator, Point Estimators of Population Mean, Population Proportion, Population Variance	3					
	8	Interval estimation-Definition	3					
	9	Size of the random sample for specified precision	3					
	Sections	s from References:						
	Unit 6:	16.2 [Ref 1]						
	Unit 7: 1	16.2.1, 16.2.2, 1.62.3, 16.2.4, 16.2.5 [Ref 1]						
	Unit 8:	16.4, 16.4.1, 16.4.2, 16.4.3 [Ref 1]						
	Unit 9:	16.5 [Ref 1]						
		HYPOTHESIS TESTING	12	20				
3	10	Testing of hypothesis, simple and composite hypothesis, null and alternate hypothesis	2					

	11	Types of errors, Size and power of tests, critical	2	
	11	region	2	
	12	One tailed and two tailed tests	1	
	13	P- value or probability value of test statistic	1	
	14	Large sample tests	2	
	15	Test for single proportion	2	
	16	Test for single mean	2	
	Sections			
	Unit 10:			
	Unit 11:			
	Unit 12:			
	Unit 13:			
	Unit 14:	17 [Ref 1]		
	Unit 15:	17.2.1 [Ref 1]		
	Unit 16:			
		CHI SQUARE TEST	12	15
	17	Probability density function of Chi- square distribution	1	
	18	Applications of Chi square distribution	2	
	19	Chi square test of goodness of fit	3	
	20	Conditions for the validity for Chi square test	2	
	21	Chi square test for independence of attributes	3	
	22	Degrees of freedom	1	
4	Sections	s from References:		
	Unit 17:	18.2.1 [Ref 1]		
	Unit 18:	18.3 [Ref 1]		
	Unit 19:	18.4 [Ref 1]		
	Unit 20:	18.5 [Ref 1]		
	Unit 21:	18.6 [Ref 1]		

	Unit 22:	: 18.7 [Ref 1]						
5		PRACTICUM	30					
	given lis	tice problems in spreadsheet from any 5 units of the st and one additional problem decided by the teacher- ge, related to the content of the course. Other units listed y be used as demonstrations of the concepts taught in se.						
	1	Confidence interval for mean of single population						
	2	Confidence interval for difference of mean of double population						
	3	Confidence interval for proportion of single population						
	4	Confidence interval for difference of proportion of double population						
	5	Testing of hypothesis for mean of large population						
	6	Testing of hypothesis for mean of small population						
	7	Chi square test of goodness of fit						
	8 Chi square test for independence of attributes							

Books and References:

- 1. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House.
- 2. James E. Burt_ Gerald M. Barber_ David L. Rigby Elementary Statistics for Geographers-The Guilford Press (2009)
- J. Chapman McGrew Jr., Arthur J. Lembo Jr., Charles B. Monroe An Introduction to Statistical Problem Solving in Geography, Third Edition-Waveland Press, Inc. (2014)
- 4. Mario F Triola, Elementary Statistics using Excel.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	1	-	-	-	-	-
CO 2	-	_	_	_	1	3	_	1	_	_	_	-
СО	-	-	-	_	-	-	_	-	-	-	2	-

3												
CO 4	1	-		-	-	3	-	-	-	-	-	3
CO 5	-	3	2	2	-	-	-	-	2	-	-	-
CO 6	-	_	3	-	-	3	_	_	-	2	3	-

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark

CO 4		\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics							
Course Code	STA1MN110 (P)							
Course Title	Basic statistics and	data visualiz	zation					
Type of Course	Minor	Minor						
Semester	Ι							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic mathematical knowledge, skills in logical thinking and							
	problem solving							

Course Summary	Through theoretical concepts and practical applications, students will develop the skills necessary to classify data, organize frequency distributions, and calculate and interpret measures of central tendency and dispersion
	and dispersion.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and differentiate between primary data and secondary data, and understand the advantages and disadvantages of each type in research and analysis.	U	C	Instructor-creat ed exams / Quiz
CO2	Classify data into quantitative and qualitative categories and recognize their characteristics and appropriate analysis techniques and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Construct frequency distributions for discrete and continuous variables, including cumulative frequency distributions, to summarize and organize data effectively and critically evaluate ethical implications of statistical methods aligning with human values.	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Calculate positional values such as quartiles, deciles, and percentiles, and interpret their significance in understanding the distribution of data.	Ар	С	Instructor-creat ed exams / Home Assignments
CO5	Apply measures of dispersion to assess the consistency or variability of data points within a data set and make comparisons between different data sets.	Ар	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Apply spreadsheet functions to calculate measures of central tendency and dispersion.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fact	nember (R), Understand (U), Apply (Ap), ual Knowledge(F) Conceptual Knowledg edge (M)			

Module	Unit Content	Hrs (45 +30)	Marks (70)
Ι	Introduction of data	9	15
	¹ Types of data- Primary data, Secondary Quantitative data, Qualitative data, Discrete Continuous data	data, 2 data, 2	
	² Frequency distributions for discrete and continuous variables- Cumulative frequency distribution	2	
	3 Histogram, Frequency Polygon	3	
	4 Frequency Curve, Ogives	2	
	Sections from References: Unit 1: 2.2-2.5 [Ref 3] Unit 2: 3.3 [Ref 3] Unit 3&4: 4.3-4.4 [Ref 3]		
Π	Measures of central tendency	9	15
	5 Mean	2	
	6 Median, Mode	3	
	7 GM	2	
	8 HM	2	
	Unit 5: 2.5 [Ref 1] Unit 6: 2.6&2.7 [Ref 1] Unit 7: 2.8[Ref 1] Unit 8: 2.9[Ref 1]		
III	Measures of dispersion	19	25
	9 Positional values – Quartiles	2	
	10 Deciles	2	
	11 Percentiles	1	
	12 Range	1	
	13 Quartile deviation	3	
	14 Mean deviation	3	
	15 Standard deviation	3	
	16 Coefficient of variation	1	
	17 Coefficient of dispersion	3	
	Sections from References:		
	Unit 9,10&11: 2.10,2.11[Ref 1]		
	Unit 12,13,14&15: 2.12,2.13[Ref 1]		
	Unit 16&17: 2.14[Ref 1]		
IV	Statistical Quality Control	8	15

			-	T
	18	Concept of statistical quality control, assignable causes	2	
	10	and chance causes, process control.	2	
	19	Construction of control charts, 3sigma limits		
	20	Control chart for variables: Mean chart and Range chart Control chart for attributes: c chart	2	
	21		1	
	22	np chart	1	
		ons from References:		
		18: 25-1.1,1.2,2 [Ref 2]		
		19: 25-3.1,3.2,3.3[Ref 2] 20: 25:4.1,4.3[Ref 2]		
		21: 25:5.4[Ref 2] 22: 25:5.1[Ref 2]		
	Unit 2	22. 23.3.1[KCl 2]		
V		PRACTICUM	30	
	1	Do practice problems in spreadsheet from any 5 units of		
	-	the given list and one additional problem decided by the		
		teacher-in-charge, related to the content of the course.		
		Other units listed here may be used as demonstrations of		
		the concepts taught in the course.		
		the concepts taught in the course.		
		1. Types of data		
		2. Frequency distributions for organizing		
		and summarizing data		
		3. Graphs of frequency distribution		
		4. Arithmetic mean		
		5. Median and Mode		
		6. Partition of values		
		7. Measure of dispersion		
		8. Different charts in quality control		
		6. Different charts in quanty control		
	Sectio	ons from References		
	Unit	1: 1.2 Ref [4]		
	Unit	2: 2.1 Ref [4]		
	Unit 3	3: 2.2 Ref [4]		
		4: 3.1 Ref [4]		
	Unit :			
	Unit (6: 3.3 Ref [4]		
	Unit '	7: 3.4 Ref [4]		
	Unit 8	8:2.2 Ref[4]		
Books an	nd Dofo	ranças		
DOOKS a	nu kele	1011003.		

- 1. Gupta,S.C. and Kapoor,V.K.(2002).Fundamentals of Mathematical Statistics. , 11th edition, Sulthan Chand, New Delhi.
- 2. Gupta, P.K. and Man Mohan. (1987). Operations Research and Statistical Analysis, Third edition, Sultan Chand, New Delhi.
- 3. Gupta, S. C.(2015). Fundamentals of Statistics, Himalaya Publishing House.
- 4. Mario F Triola, Elementary Statistics using Excel, (2018), 6th edition.

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	_	-	-	-	1	-	-	-	-	-
CO 2	-	-	3	-	2	2	-	-	-	2	3	-
CO 3	-	-	-	-	-	-	2	-	-	-	-	3
CO 4	1	-	-	-	-	3	-	3	-	-	-	-
CO 5	_	3	2	2	-	-	-	-	3	-	-	-
CO 6							_	-	-	3	-	-

Correlation Levels:

Lev	Correlation
el	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA2MN110 (P)				
Course Title	Data analysis found	dations in sta	tistics		
Type of Course	Minor				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic mathematica	l skills			
Course					
Summary	Equip students wit	th the theore	etical founda	tion and prac	ctical skills

necessary to analyze and interpret time-series data.
--

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define the components of a time series and distinguish betweenadditive and multiplicative models, understanding their applications in time series analysis.	U	С	Instructor-creat ed exams / Quiz
CO2	Explain the concept and significance of index numbers, and apply different types of simple and weighted index numbers to analyze changes in economic variables over time and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Construct scatter diagrams and analyze the strength and direction of relationships between variables using correlation analysis and critically evaluate ethical implications of statistical methods aligning with human values.	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Apply arithmetic and geometric sequences and series to analyze financial data, including calculations related to simple interest, compound interest, and annual percentage rates.	Ар	С	Instructor-creat ed exams / Home Assignments
CO5	Calculate annuities and analyze debt repayment schedules, sinking funds, and other financial instruments.	Ар	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Explain the concept of correlation and use R to calculate correlation coefficients.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fact	nember (R), Understand (U), Apply (Ap), ual Knowledge(F) Conceptual Knowledge edge (M)	• •		. ,

Modul	Uni	Content	Hrs	Mark
e	t		(45	S (70)
			+30	(70)
Ι		Time series analysis	9	15
-	1	Time series analysis : Components of time series, additive and	1	10
	_	multiplicative models		
	2	measurement of trend- Graphic method, Semi average method	3	
	3	Method of moving averages	3	
	4	Method of least squares- Straight line trend	2	
	Sectio	ons from References:		
	Unit 1	19: 11.1&11.3 [Ref 1]		
	Unit 2	20:11.2 [Ref 1]		
	Unit 2	21&22:11.5 [Ref 1]		
II		Index numbers	10	15
	5	meaning and definition , uses and types, problems in the construction	3	
		of index numbers		
	6	different types of simple index numbers	3	
	7	different types of weighted index numbers	2	
	8	Test for an ideal index number, time and factor reversal test	2	
	Sectio	ons from References:		
	Unit 5	5: 10.1,10.2,10.4[Ref 1]		
	Unit 6	5: 10.3 [Ref 1]		
	Unit 7	7&8: 10.5[Ref 1]		
	Unit 8	8: 10.6.2,10.6.3 [Ref 1]		
III		Correlation and Regression	18	25
	9	Scatter diagram	2	
	10	Correlation	2	
	11	Types of correlation	1	
	12	Pearson's coefficient of correlation	3	
	13	Spearman's rank correlation	3	
	14	Spearman's rank correlation with repeated ranks	3	
	15	Regression	1	
	16	Linear regression	1	
	17	Properties of regression lines	2	
		ons from References:		
		9: 10.3 [Ref 2]		
		10&11: 10.2 [Ref 2]		
		12: 10.4 [Ref 2]		
		13&14: 10.7[Ref 2]		
	Unit	15: 11.1[Ref 2]		

	Unit 16&17: 11.2[Ref 2]			
IV	Introduction to R programming	8	15	
1,	18 Installation & Basic Mathematical Operations	2		
	19 R Preliminaries, Methods of Data Input	2		
	20 Graphical Representations (R Code)	2		
	21 Diagrammatic Representations (R Code)	1		
	22 Descriptive Measures (Mean, Median, Mode)	1		
	Sections from References:			
	Unit 19: 1.2&1.3 [Ref 3]			
	Unit 20: 1.4 [Ref 3]			
	Unit 21: 1.5&1.6 [Ref 3]			
	Unit 22: 1.8,2.3 [Ref 3]			
\mathbf{V}	PRATICUM	30		
	 to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course. 1. Basic mathematical operations 2. Frequency distributions for organizing and summarizing data 3. Histogram 4. Frequency curve 5. Pie diagram 6. Arithmetic mean 7. Median 8. Mode 			
	Sections from References: Unit 1: 1.8 Ref[3] Unit 2: 1.9 Ref[3] Unit 3: 2.1 Ref[3] Unit 4: 2.2 Ref[3] Unit 5:2.2 Ref[3] Unit 6: 2.3 Ref[3] Unit 7: 2.3 Ref[3] Unit 7: 2.3 Ref[3]			
Books at	Unit 8: 2.3 Ref[3] nd References:			
. Gupt	a, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House			
	a, S.C. and Kapoor, V.K. (2002). Fundamentals of Mathematical Statistics., 11 ^t	^h editio	n,	
	an Chand, New Delhi. a G Purohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R.			

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	3	-	-	-	-	-
CO 2	-	-	-	-	-	2	-	-	1	-	2	-
CO 3	-	-	2	-	-	-	-	-	-	-	-	3
CO 4	-	-	-	-	-	2	-	1	-	-	-	-
CO 5	-	2	-	1	3	-	-	-	1	-	-	-
CO 6	-	-	2	-	-	2	-	-	-	3	2	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam

- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA3MN210(P)				
Course Title	Probability theory a	and sampling	g techniques		
Type of Course	Minor				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Understanding of 1	oasic algebra	ic operation	s and set theore	ry.
	Familiarity with fu	nctions, grap	ohs and their	properties.	
Course					
Summary	Through theoretical concepts and practical applications, students will				
	develop the skills	•		•	1
	surveys, and imple	ment statisti	cal quality co	ontrol method	S.

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and apply basic concepts of probability, including classical probability and the axiomatic approach, to analyze uncertain events and outcomes.	U	С	Instructor-creat ed exams / Quiz
CO2	Differentiate between census and sampling methods and recognize the advantages and limitations of each approach in data collection and critically evaluate ethical implications of statistical methods aligning with human values.	Ар	F	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Describe the principal steps involved in sample surveys, including the organization and execution of large sample surveys.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Define life tables and understand their construction, including calculating measures such as the force of mortality, and interpreting results in demographic analysis and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Explain the concept of statistical quality control and differentiate between assignable causes and chance causes of variation in processes.	Ар	С	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Create basic plots in R to visualize range, variance and correlation between variables.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg edge (M)			

Modul e	Uni t	Content	Hrs (45 +30	Mark s (70)
Ι		Probability	10	15
	1	Basic concepts of Probability ,Classical definition of Probability ,Axiomatic approach to Probability	2	
	2	Addition Theorem, Multiplication Theorem	3	
	3	Conditional Probability	3	
	4	Independence of events	2	
		ons from References: 1: 3.3-3.8 [Ref 1]		
	Unit 2	2: 3.9,3.11 [Ref 1]		
	Unit 3	3: 3.10[Ref 1]		
	Unit 4	4: 3.11-3.15 [Ref 1]		
II		Random Variables	8	15
	5	Random Variables, Discrete and continuous random variables	2	
	6	Probability distribution, Distribution function (Applications in discrete case)	2	
	7	Mathematical expectation (Applications in discrete case)	2	
	8	Variance (Applications in discrete case)	2	
	Unit 5	ons from References: 5&6: 5.1-5.4.2 [Ref 1] 7: 6.1-6.4 [Ref 1]		
		8: 6.6 [Ref 1]		
III		Sampling theory	19	25
	9	Population and Sample	2	
	10	Census and Sampling Method	3	
	11	Advantages and Limitations of Sampling	1	
	12	principal steps in sample survey	3	
	13	Sampling Errors	3	
	14	Non-Sampling Errors	3	
	15	Simple random sampling(Concept and Methods of selection)	1	
	16	Stratified random sampling	1 2	
	17 Soutic	Systematic Sampling ons from References:	2	
		Dis from References: D: 15.2,15.3,15.6 [Ref 1]		
		10: 15.6,15.7[Ref 1]		
		11: 15.8 [Ref 1]		
		12: 15.9.1[Ref 1]		
		13&14:15.10[Ref 1]		
		15:15.11,15.11.1 [Ref 1]		
		17: 15.12,15.12.1 [Ref 1]		
	Unit 1	17: 15.13 [Ref 1]		

IV		R programming	8	15
	18	Range	2	
	19	Variance	2	
	20	Loops- Brief explanation	2	
	21	Pearson's correlation	1	
	22	Conditional statements(Brief)	1	
	Unit Unit Unit	ons from References: 18&19: 2.1-2.3[Ref 3] 20: 7.5 [Ref 2] 21: 6.2 [Ref 2] 22: 7.3 [Ref 2]		
V		PRACTICUM	30	
		Do practice problems in R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.		
		 Range Mean Deviation Quartile Deviation 		
		4. Standard Deviation		
		 5. Variance 6. Covariance 		
		7. Correlation		
		8. Rank correlation		
	Unit	ons from References: 1,2: 2.1 [Ref 3] 3: 2.2 [Ref 3]		
	Unit	4,5: 2.3 [Ref 3] 6,7,8: 6.2-7.5 [Ref 2]		
Sulth	nd Refe a, S. C. nan Cha		,	,
		<i>n to R</i> . <u>https://intro2r.com/index.html</u> . rohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R.		

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	
--	----------	----------	----------	------	----------	------	-----	-----	-----	-----	-----	-----	--

CO 1	2	1	-	-	-	-	3	-	-	_	-	-
CO 2	-	-	1	-	-	2	-	-	-	-	-	3
CO 3	_	-	-	1	2	-	-	-	3	-	2	-
CO 4	-	-	-	-	-	2	-	1	2	-	-	-
CO 5	-	-	2	-	-	-	1	-	-	-	-	-
CO 6	-	-	3	-	-	2	-	-	-	2	1	3

Lev el	Correlation				
-	Nil				
1	Slightly / Low				
2	Moderate / Medium				
3	Substantial / High				

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark

CO 3	\checkmark		\checkmark
CO 4		\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics								
Course Code	STA1MN111								
Course Title	Fundamentals of data analysis								
Type of Course	Minor								
Semester	Ι								
Academic	100 - 199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Competence in basic visualization technic	0	concepts, kn	owledge of ba	asic data				
Course									

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Differentiate between quantitative and qualitative data and identify suitable methods for their collection and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Quiz
CO2	Construct frequency distributions for both discrete and continuous variables.	U	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Calculate measures of central tendency including mean, median, mode, geometric mean, and harmonic mean and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Understand what dispersion means in the context of statistics and why it matters.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Apply positional values such as quartiles, deciles, and percentiles to analyze data distribution.	Ар	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Utilize R as a calculator, statistical software, and programming language for data analysis.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg edge (M)			

Modul	Unit	Content	Hrs	Marks
e			(45	(70)
			+30)	
Ι		Introduction of data	9	15
	1	Types of data- Primary data, Secondary data, Quantitative data, Qualitative data, Discrete data, Continuous data	2	
	2	Frequency distributions for discrete and continuous variables- Cumulative frequency distribution	2	
	3	Histogram, Frequency Polygon	3	
	4	Frequency Curve, Ogives	2	
	Sectio	ons from References:		
	Unit 1	1: 2.2-2.5 [Ref 3]		
	Unit 2	2: 3.3 [Ref 3]		
	Unit 3	3&4: 4.3-4.4 [Ref 3]		
П		Measures of central tendency	9	15
	5	Mean	2	
	6	Median, Mode	3	
	7	GM	2	
	8	HM	2	
	Sectio	ons from References:		
	Unit 5	5: 2.5 [Ref 1]		
	Unit 6	5: 2.6&2.7 [Ref 1]		
	Unit 7	7: 2.8[Ref 1]		
	Unit 8	3: 2.9[Ref 1]		
III		Measures of dispersion	19	25
	9	Positional values – Quartiles	2	
	10	Deciles	3	
	11	Percentiles	1	

	12	Range	1	
	13	Quartile deviation	2	
	14	Mean deviation	3	
	14	Standard deviation	3	
	16	Coefficient of variation	1	
	17	Coefficient of dispersion	3	
	Section	ons from References:		
	Unit	9,10&11: 2.10,2.11[Ref 1]		
	Unit	12,13,14&15: 2.12,2.13[Ref 1]		
	Unit	16&17: 2.14[Ref 1]		
IV		Introduction to R programming	8	15
	18	Installation & Basic Mathematical Operations	2	
	19	R Preliminaries, Methods of Data Input	2	
	20	Graphical Representations (R Code)	2	
	21	Diagrammatic Representations (R Code)	1	
	22	Descriptive Measures (Mean, Median, Mode)	1	
	Section	ons from References:		
	Unit	18&19: 1.2&1.3 [Ref 2]		
	Unit	20: 1.4 [Ref 2]		
	Unit	21: 1.5&1.6 [Ref 2]		
•	Unit	22: 1.8,2.3 [Ref 2]	20	
V		PRACTICUM	30	
		Do practice problems in R Software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Other units listed here may be used as demonstrations of the concepts taught in the course.		
		 Basic mathematical operations Frequency distributions for organizing and summarizing data Histogram Frequency curve 		

	5.	Pie diagram							
	6.	Arithmetic mean							
	7.	Median							
	8.	Mode							
Section	ons from References	:							
Unit	1: 1.8 Ref[2]								
Unit	2: 1.9 Ref[2]								
Unit	3: 2.1 Ref[2]								
Unit -	4: 2.2 Ref[2]								
Unit	Unit 5:2.2 Ref[2]								
Unit	6: 2.3 Ref[2]								
Unit	7: 2.3 Ref[2]								
Unit	8: 2.3 Ref[2]								
Books and Refe	erences:								
1. Gupta, S.	C. and Kapoor, V.	K. (2020). Fundamentals of Mathema	atical Stat	istics, 12 th					
- · ·	than Chand, New De								
2. Sudha G	Purohith, Sharad D (Core, Shailaja R Deshmukh (2015), S	Statistics Usi	ng R.					
3. Gupta, S.	C.(2015). Fundame	ntals of Statistics, Himalaya Publishi	ng House.						

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	-	-	-	2	-	-	-	-	-	2
CO 2	-	2	_	3	1	-	-	-	1	-	-	-
CO 3	-	-	2	-	-	1	-	-	2	-	3	-
CO 4	1	2	-	-	-	-	2	-	-	-	-	-

CO 5	-	-	-	-	_	2	_	3	-	-	-	-
CO 6	-	1	-	-	-	3	-	-	-	2	-	3

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics	BSc Statistics							
Course Code	STA2MN111 (P)								
Course Title	Statistical modeling	g and sampli	ng technique	es					
Type of Course	Minor								
Semester	II								
Academic	100 - 199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Knowledge of fund	amental stat	istics includi	ng measures	of central				
	tendency and dispe	rsion. Basic	knowledge of	of computer.					
Course									
Summary	Equip students with			-					
-	necessary for under	0	11.00						
	to moments, meas				0				
	types of curves, an	nalyzing rela	ationships be	etween variab	les through				
	correlation and reg	ression, und	lerstanding s	ampling tech	niques, and				
	utilizing R program	nming for da	ta computati	on and visual	lization.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and calculate moments of a distribution and understand their significance in describing the shape and characteristics of data.	U	С	Instructor-creat ed exams / Quiz
CO2	Fit various types of curves including straight lines, parabolas, and exponentials to data sets for modeling and prediction purposes and analyze data to help entrepreneurial decisions using critical thinking skills.	U	F	Practical Assignment / Observation of Practical Skills/ Instruct or-created exams
CO3	Construct scatter diagrams and assess the strength and direction of relationships between variables using correlation and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Seminar Presentation / Group Tutorial Work/ Instruct or-created exams
CO4	Determine sample size requirements and assess sampling errors in the context of survey design and analysis.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Calculate correlation coefficient using R software and interpret their strength and direction.	Ар	Р	One Minute Reflection Writing assignments/ I nstructor-create d exams
CO6	Implement R programming for computing and visualizing univariate and bivariate data using box plots, bar plots, pie diagrams, and scatter plots.	Ар	Р	Viva Voce/ Instruct or-created exams
# - Fact	nember (R), Understand (U), Apply (Ap), ual Knowledge(F) Conceptual Knowledg edge (M)			

Modul e	Uni t	Content	Hrs (45 +30)	Marks (70)
Ι		Skewness and Kurtosis	9	15

	1	Skewness, Kurtosis definitions and different types	2	
	2	Pearson's coefficient of skewness	2	
	3	Bowley's coefficient of skewness	2	
	5	Dowley scoencent of skewness	2	
	4	Percentile coefficient of kurtosis	3	
	-	ons from References:		
		1:3.13 Ref[2]		
	Chit			
	Unit	2: 3.14 Ref[2]		
	Unit	3: 3.13 Ref[2]		
	Unit	4: 3.14 Ref[2]		
II	Unit	Sampling Theory	9	15
11	5		2	15
	5	Sample size, sampling errors, methods of sampling. Census and Sampling, principal steps in sample survey	Z	
	6		3	
	0	organization and execution of large sample surveys, sampling and non-sampling errors	5	
	7	preparation of questionnaire	2	
	8		2	
	0	Simple random sampling, Stratified random sampling, Systematic Sampling	Z	
	Secti	ons from References:		
	Unit	5: 15.2-15.8 [Ref 2]		
	Unit	6&7: 15.9-15.10[Ref 2]		
	Unit	8: 15.11-15.13 [Ref 2]		
III		Correlation and Regression	19	25
	9	Fitting a straight line	2	
	10	Fitting a Parabola	2	
	11	Scatter diagram	1	
	12	Correlation, Types of correlation	3	
	13	Pearson's coefficient of correlation	3	
	14	Spearman's rank correlation	3	
	15	Regression	1	
	16	Linear regression	1	
1		e		
	17	Properties of regression lines	3	
	17		3	
	17 Secti	Properties of regression lines	3	
	17 Secti Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2]	3	
	17 Secti Unit Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2]	3	
	17 Secti Unit Unit Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2]	3	
	17 Secti Unit Unit Unit Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2]	3	
	17 Secti Unit Unit Unit Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2]		
IV	17 Secti Unit Unit Unit Unit Unit Unit	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2] R programming	8	15
IV	17SectiUnitUnitUnitUnitUnitUnit18	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2] R programming Range	8 2	15
IV	17SectiUnitUnitUnitUnitUnitUnit1819	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2] R programming Range Inter Quartile Range	8 2 2	15
IV	17SectiUnitUnitUnitUnitUnitUnit181920	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2] R programming Range Inter Quartile Range Standard Deviation	8 2 2 2 2	15
IV	17SectiUnitUnitUnitUnitUnitUnit1819	Properties of regression lines ons from References: 9: 10.3 [Ref 2] 10&11: 10.2 [Ref 2] 12: 10.4 [Ref 2] 13&14: 10.7[Ref 2] 15: 11.1[Ref 2] 16&17: 11.2[Ref 2] R programming Range Inter Quartile Range	8 2 2	15

Sec	tions from References:									
	it 18&19: 2.1-2.3[Ref 3]									
	Unit 20: 7.5 [Ref 1] Unit 21: 6.2 [Ref 1]									
Un										
Un	it 22: 7.3 [Ref 1]									
V	PRACTICUM	30								
	Do practice problems in R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course.									
	Other units listed here may be used as demonstrations of									
	the concepts taught in the course.									
	1. Range									
	2. Mean Deviation									
	3. Quartile Deviation									
	4. Standard Deviation									
	5. Variance									
	6. Covariance									
	7. Correlation									
	8. Rank correlation									
	tions from References:									
	it 1,2: 2.1 [Ref 3]									
	it 3: 2.2 [Ref 3]									
	it 4,5: 2.3 [Ref 3]									
	it 6,7,8: 6.2-7.5 [Ref 2]									
Books and Re	Ierences:	. 1 .	$\langle \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \rangle$							

1. Douglas, Alex, Deon Roos, Francesca Mancini, Ana Couto, and David Lusseau. (2020), *An Introduction to R*. <u>https://intro2r.com/index.html</u>.

- 2. Gupta, S.C. and Kapoor, V.K. (1997) Fundamentals of Mathematical Statistics. Sultan Chand and Sons, New Delhi
- 3. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh (2015), Statistics Using R.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	1	-	-	-	-	3	-	-	-	-	-

CO 2	2	_	-	-	-	-	-	-	_	2	2	-
CO 3	-	-	-	2	-	-	-	-	-	-	-	3
CO 4	-	-	-	-	-	3	-	2	-	-	-	-
CO 5	-	2	-	1	3	-	-	2	3	-	-	-
CO 6	_	_	2	-	-	2	-	-	-	3	2	-

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark

CO 5	\checkmark	\checkmark	\checkmark
CO 6	\checkmark		

Programme	BSc Statistics							
Course Code	STA3MN211 (P)							
Course Title	Probability theory a	and statistica	1 distribution	IC				
Type of Course	Minor	ind statistica	il distribution	15				
• 1								
Semester	III							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Familiarity with ba							
	integration, basic k	0	set theory. E	xperience with	th basic			
	data visualization t	echniques.						
Course								
Summary	Provide students	with a soli	d foundation	n in probabi	lity theory,			
	including classical and axiomatic approaches, conditional							
	probability, rando							
	applications.		, r					
	apprications.							

CO	CO Statement	Cognitive	Knowledge	Evaluation

		Level*	Category#	Tools used
CO1	Calculate probabilities of events using classical probability rules and understand their limitations.	U	С	Instructor-creat ed exams / Quiz
CO2	Determine marginal probabilities and identify their role in joint probability distributions.	R	С	Practical Assignment / Observation of Practical Skills/ Instructor-creat ed exams
CO3	Define random variables and distinguish between discrete and continuous random variables and analyze data to help entrepreneurial decisions using critical thinking skills.	R	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Understand the significance of probability distributions in statistical analysis and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Apply discrete and continuous probability distributions and understand their properties and applications.	Ар	F	One Minute Reflection Writing assignments/ Instructor-creat ed exams
CO6	Perform computations involving probabilities and using Rprogramming language.	Ар	Р	Viva Voce/ Instructor-creat ed exams
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg edge (M)	•		

Modul	Uni	Content	Hrs	Mark
e	t		(45 +30)	s (70)
Ι		Probability	9	15
	1	Basic concepts of Probability ,Classical definition of Probability ,Axiomatic approach to Probability		
	2	Addition Theorem, Multiplication Theorem	3	

	3 Conditional Probability	2	
	4 Independence of events	2	
	Sections from References:		
	Unit 1: 3.3-3.8 [Ref 1]		
	Unit 2: 3.9,3.11 [Ref 1]		
	Unit 3: 3.10[Ref 1]		
	Unit 4: 3.11-3.15 [Ref 1]		
II	Random Variables	9	15
	5 Random Variables, Discrete and continuous random	2	
	variables		
	6 Probability distribution, Distribution function (Applications	3	
	in discrete case)		
	7 Mathematical expectation (Applications in discrete case)	2	
	8 Variance (Applications in discrete case)	2	
	Sections from References:		
	4. Unit 5&6: 5.1-5.4.2 [Ref 1]		
	5. Unit 7: 6.1-6.4 [Ref 1]		
	6. Unit 8: 6.6 [Ref 1]		
III	Discrete and Continuous distributions	19	25
	9 Binomial distribution (Definition and problems)	2	
	10Poisson distribution (Definition and problems)	2	
	11Normal distribution (Definition and problems)	1	
	12 Properties of Normal distribution	3	
	13 Uniform distribution (Definition and properties)	3	
	14 Exponential distribution (Definition and properties)	3	
	15 Gamma distribution (Definition and properties)	1	
	16Beta distribution (Definition and properties)	1	
	17 Cauchy, Pareto distribution (Definition only)	3	
	Sections from References:		
	Unit 9:14.2 [Ref 2]		
	Unit 10:14.3[Ref 2]		
	Unit 11:14.4 [Ref 2]		
	Unit 12:14.5 [Ref 2]		
	Unit 13:14.6[Ref 2]		
	Unit 14:14.7 [Ref 2]		
	Unit 15:14.8 [Ref 2]		
	Unit 16&17:14.9[Ref 2]		
IV	R programming	8	15
	18 R as a set of statistical tables	2	
	19 cumulative distribution	2	
	20 probability density function	2	
	21 plotting probability curves for standard discrete distributions.	1	
	22 plotting probability curves for standard continuous distributions	1	
	Sections from References:		

	Unit 18: 3.3 [Ref 3]		
	Unit 19: 3.3 [Ref 3]		
	Unit 20: 3.3 [Ref 3]		
	Unit 21:3.4&3.5 [Ref 3]		
	Unit 22: 3.4 [Ref 3]		
V	PRACTICUM	30	
	 Do practice problems in R software from any 5 units of the given list and one additional problem decided by the teacher-in-charge, related to the content of the course. Otherunits listed here may be used as demonstrations of the concepts taught in the course. 1. Graph of Binomial distribution 2. Graph of Poisson distribution 3. Graph of Normal distribution 4. Graph of Uniform distribution 5. Graph of Exponential distribution 6. Graph of Beta distribution 7. Graph of Beta distribution 8. Graph of Cauchy distribution 		
	Sections from References:		
	Unit 1,2: 3.3 [Ref 3]		
	Unit 3,4,5: 3.4 [Ref 3]		
	Unit 6,7,8: 3.5 [Ref 3]		
Books ar	nd References:		
1. C	Gupta, S. C. and Kapoor, V. K. (2020). Fundamentals of Mathematical dition, Sulthan Chand, New Delhi	Statist	ics, 12 th

- 2. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House
- 3. Sudha G Purohith, Sharad D Core, Shailaja R Deshmukh ,Statistics Using R(2015)

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3	2	-	-	-	-	1	-	-	-	-	-
CO 2	-	-	-	-	1	-	-	1	-	1	-	-
CO 3	-	_	-	2	-	-	-	-	-	_	3	

CO 4	-	_	_	_	-	1	_	_	-	-	-	2
CO 5	_	3	-	1	-	-	-	-	2	-	-	-
CO 6	-	-	1	-	2	3	-	-	-	-	3	-

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark

CO 6	/		
COO	V		

MINOR COURSES IN ACTUARIAL SCIENCE

SYLLABUS

Programme	BSc Statistics							
Course Code	ACT1MN101 (P)							
Course Title	Actuarial mathema	tics I						
Type of Course	Minor							
Semester	Ι							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic knowledge of	f rates of inte	erest, arithme	etic skills, Bas	sic			
	computer skills							
Course	The aim of this cou	rse is to pro	vide a groun	ding in the pr	inciples of			
Summary	modelling as applie	ed to actuaria	al work					

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe how to use a generalized cash flow model in financial transaction.	U	F	Instructor-creat ed exams / Quiz
CO2	Apply different kinds of interest rates	Ар	Р	Instructor-creat

	expressed in different time periods			ed exams / Home Assignments
CO3	Recall and use the more important compound interest functions including annuities certain.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Describe how a loan may be repaid by regular instalments of interest and capital.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Recall how to take into account time value of money using the concepts of compound interest and discounting.	R	Р	One Minute Reflection Writing assignments
CO6	Solving cash flow models with sample data with spread sheet	Ар	Р	Viva-Voce/Prac tical Assignment
# - Fac	nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowledg edge (M)			

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι	I Cash flow models		8	10
	1	Cash flow process, Examples of cash flow scenarios	2	
	2	A zero-coupon bond, A fixed interest securityAn index-linked security, Cash on depositAn equity, An "interest-only" loan, A repayment loan (or mortgage)		
	3			
	4			
	Sectio	ns from References:		
		: 3.1,3.2 [Ref 1]		
	Unit 2: 3.2.1,3.2.2 [Ref 1]			
		: 3.2.3,3.2.4 [Ref 1] : 3.2.5,3.2.7,3.2.8 [Ref 1]		
II		The time value of money	9	15
	5	Interest, Simple interest, Compound (effective) interest	2	
	6	Accumulation factors, The principle of	2	

		consistency, Present values		
	7	Discount rates, Simple discount, Compound (effective) discount, Discount factors, Effective rates of interest and discount	3	
	8	Equivalent rates	2	
	Sections from References:			
		Unit 5: 4.1,4.1.1,4.1.2, [Ref 1] Unit 6: 4.1.3,4.1.4,4.2 [Ref 1] Unit 7: 4.3(4.3.1 to 4.3.3),4.4 - [Ref 1]		
	Unit 8: 4.5- [Ref 1]			
III		Interest Rates	12	25
	9	Nominal rates of interest	2	
	10	Accumulating and discounting using nominal interest rates	2	
	11	Nominal rate of discount	2	
	12	Accumulating and discounting using nominal discount rates	2	
	13	The force of interest(Concept only)	1	
	14	Accumulating and discounting using the force of interest	2	
	15	Relationship between force of interest, effective rate of interest, effective rate of discount, and present value function, v.	1	
	Unit 9 Unit 1 Unit 1 Unit 1 Unit 1 Unit 1 Unit 1	ns from References: 2: 5.1,5.1.1([Ref 1] 0: 5.1.2 [Ref 1] 1: 5.1.3 [Ref 1] 2: 5.1.4 [Ref 1] 3: 5.2 [Ref 1] 4: 5.2.2 [Ref 1] 5: 5.2.2 [Ref 1]		
IV		Level annuities and Equations of values	16	20
	16	Present values, Payments made in arrear, Payments made in advance	2	
	17	Accumulations of annuities	2	
	18	Continuously payable annuities	3	
	19	Annuities payable pthly- Accumulations	2	
	19 20	Annuities payable pthly- Accumulations Perpetuities, Perpetuities payable pthly, Deferred annuities	2 2	
		Perpetuities, Perpetuities payable pthly, Deferred		

		for the interest rate (i)		
	Sectio	ns from References:		
		6: 8.1(8.1.1 to8.1.2) [Ref 1]		
		7: 8.2 [Ref 1]		
		8: 8.3[Ref 1]		
		9: 8.4 (8.4.1 to 8.4.2) [Ref 1]		
		0: 8.6,8.7,8.7.1[Ref 1]		
		1: 10.1&10.1.2[Ref 1]		
		2: 10.1.2 [Ref 1]		
V			30	
		PRACTICUM		
	Do pra	actice problems in spreadsheet from any 5 units of		
	-	ven list and one additional problem decided by the		
	teache	r-in-charge, related to the content of the course.		
	Other	units listed here may be used as demonstrations of		
	the co	ncepts taught in the course.		
	1	Simple interest and compound interest		
	2	Present value		
	3	Accumulated value		
	4	Force of interest		
	5	Annuities		
	6	Relationship between various interest rates		
	7	Perpetuity		
	8	Equations of values		
Books and R	eference	28:		

Institute of Actuaries Act Ed. Study materials CM1 6.

- 7. McCutcheon, J.J., Scott William (1986): An introduction to Mathematics of Finance
- Butcher, M.V., Nesbit, Cecil. (1971) Mathematics of compound interest, Ulrich's Books 8.
- David Promislow, S. (2014), Fundamentals of Actuarial Mathematics, John wiley& sons. 9.
- 10. Newton LBowers, et al (1997): Actuarial Mathematics, The Societies of Actuaries, 2nd Ed
- 11. Shailaja R. Deshmukh- Actuarial Statistics-an introduction using R, 3rd Ed.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	1	3	1	1	-	2	-	3	-	-	-
CO 2	3	3	1	2	1	-	3	1	2	1	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	-	-
CO 4	3	2	_	1	-	-	3	_	2	2	_	-

CO 5	3	2	_	_	-	_	3	-	2	-	-	-
CO 6	1	1	2	-	3	3	2	2	1	-	2	2

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Programme	BSc Statistics							
Course Code	ACT2MN101 (P)							
Course Title	Actuarial mathema	tics II						
Type of Course	Minor							
Semester	II							
Academic	100 - 199							
Level								
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basic knowledge of	f present valu	ue, probabilit	y, mean and	variance,			
	Basic computer ski	lls						
Course	The aim of this cour	rse is to expo	se the studer	ts about Life	and Health			
Summary	Contingencies.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To demonstrate the life table functions and select mortality.	An	С	Instructor-creat ed exams / Quiz
CO2	To explain the life assurance contract and benefits.	U	С	Instructor-creat ed exams / Home Assignments
CO3	Develop formulae for the means and	Ар	Р	Seminar

	variances of the payments under various assurance and annuity contracts			Presentation / Group Tutorial Work
CO4	Define various annuity contracts.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Summarize various Joint life and last survivor functions	R	F	One Minute Reflection Writing assignments
CO6	Solving life and health contingencies with sample data with spread sheet	Ар	Р	Viva-Voce/Prac tical Assignment
# - Fac	nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowledg edge (M)	•		

Detailed Syllabus:

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι		The life table	12	20
	1	Life table, Constructing a life table	3	
	2	The force of mortality, Lifetime random variables, The pattern of human mortality	2	
	³ Life table functions at non-integer ages, uniform distribution of deaths (UDD), constant force of mortality (CFM)			
	4	Evaluating probabilities without use of the life table	1	
	5	Select mortality, Mortality rates that depend on both age and duration	2	
	Unit 1 Unit 2 Unit 3 Unit 4	ns from References: : 15.0&15.2 (15.2.1 to 15.2.2) [Ref 1] : 15.2.3,15.2.6,15.2.7 [Ref 1] : 15.3 (15.3.1 to 15.3.3) [Ref 1] : 15.4 [Ref 1] : 15.5,15.5.1, 15.5.2 [Ref 1]		
II		Life assurance contracts	13	20
	6	Whole life assurance contracts, Term assurance contracts	4	

	7	Pure endowment contracts, Endowment assurance contracts, Deferred assurance benefits	4	
	8	Benefits payable immediately on death (Whole life assurance, Term assurance, Endowment assurance)	3	
	9	Evaluating means and variances using select mortality.	2	
		ns from References:		
		: 16.1 (16.1.1 to 16.1.3), 16.2 (16.2.1 to 16.2.3)		
		[Ref 1] : 16.3(16.3.1 to 16.3.3), 16.4 (16.4.1 to 16.4.3),		
		16.5(16.5.1, 16.5.2) [Ref 1]		
		: 16.6(16.6.1 to 16.6.4) - [Ref 1]		
	Unit 9	: 16.7- [Ref 1]		
III		Life annuity contracts	11	15
	10	Life annuity contracts, Whole life annuities payable annually in arrears	2	
	11	Whole life annuities payable annually in advance	1	
	12	Temporary annuities payable annually in arrears	1	
	13	Temporary annuities payable annually in advance	2	
	14	Deferred annuities, Deferred annuities-due	3	
	15	Continuous annuities, Other annuities	2	
	Unit 1 Unit 1 Unit 1 Unit 1 Unit 1 Unit 1	ns from References: 0: 17.1,17.2(17.2.1 to 17.2.3) [Ref 1] 1: 17.3 (17.3.1 to 17.3.2) [Ref 1] 2: 17.4 (17.4.1 to 17.4.2) [Ref 1] 3: 17.5(17.5.1 to 17.5.2) [Ref 1] 4: 17.6(17.6.1 to 17.6.2), 17.7 [Ref 1] 5: 17.10,17.10.1, 17.10.2 [Ref 1]		
IV		Joint life and last survivor functions	9	15
	16	Random variables to describe joint life functions	1	
	17	Joint lifetime random variables and joint life table functions	2	
	18	Last survivor lifetime random variables	1	
	19	Simple probabilities involving two lives	1	
	20	Evaluating last survivor functions	1	
	21	Present values involving two lives	2	
	22	Present values of joint life and last survivor annuities	1	
		ns from References:		
		6: 22.1(22.1.1 to 22.1.2) [Ref 1]		
	Unit 1	7: 22.1.3 [Ref 1]		

	TT • 4					
		8: 22.1.4[Ref 1]				
	Unit 1	9: 22.2,22.2.1 [Ref 1]				
	Unit 2	0: 22.2.2 [Ref 1]				
	Unit 2	1: 22.3 & 22.3.1[Ref 1]				
	Unit 2	2: 22.3.2 [Ref 1]				
V			30			
		PRACTICUM				
	Do pra	actice problems in spreadsheet from any 5 units of				
	the give	ven list and one additional problem decided by the				
	teache	r-in-charge, related to the content of the course.				
	Other					
	the concepts taught in the course.					
	1	Life table using ultimate mortality				
	2	Select mortality				
	3	UDD and CFM assumption				
	4	Mean and variance of whole life assurance				
	5	Term assurance and endowment assurance				
	6	Life annuity contracts				
	7	Joint life functions				
	8	Last survivor functions				
Books and Re	eference	25:	·			
1 T ()	C A 4					

- 1. Institute of Actuaries Act Ed. Study materials CM1
- 2. Dickson, Mary R. Hardy and Howard R.Waters (2019), Actuarial Mathematics for Life Contingent Risks, Cambridge University Press, India
- 3. McCutcheon, J.J., Scott William (1986): An introduction to Mathematics of Finance
- 4. Butcher, M.V., Nesbit, Cecil. (1971) Mathematics of compound interest, Ulrich's Books
- 5. David Promislow, S. (2014), Fundamentals of Actuarial Mathematics, John wiley& sons.
- 6. Newton LBowers, et al (1997): Actuarial Mathematics, The Societies of Actuaries, 2nd Ed
- 7. Shailaja R. Deshmukh-Actuarial Statistics-an introduction using R, 3rd Ed.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	1	2	2	-	2	-	2	-	-	-
CO 2	3	3	1	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	2	2	-	2	-	2	-	-	-
CO 4	3	2	1	1	-	_	3	-	2	2	-	-
СО	3	2	-	-	-	-	3	-	2	-	-	-

5												
CO 6	1	1	2	-	3	3	2	2	1	-	2	3

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Programme	BSc Statistics	BSc Statistics							
Course Code	ACT3MN201 (P)	ACT3MN201 (P)							
Course Title	Risk modeling and	survival ana	lysis						
Type of Course	Minor								
Semester	III								
Academic	200 - 299	200 - 299							
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Basic knowledge of	f life table, p	robability, B	asic compute	er skills				
Course	The aim of this cou	The aim of this course is to provide a grounding in mathematical and							
Summary	statistical modelling techniques that are of particular relevance to								
	actuarial work, incl	luding surviv	val models a	nd their appli	cation.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe and apply techniques of survival analysis	Ар	Р	Instructor-creat ed exams / Quiz
CO2	Describe Apply compound distributions in risk modelling.	Ap	Р	Instructor-creat ed exams / Home Assignments
CO3	Understand the concept of reinsurance	U	С	Seminar Presentation / Group Tutorial Work

CO4	Memorize the basic concepts of ruin theory.	R	С	Instructor-creat ed exams / Home Assignments
CO5	Understand the basics of Machine Learning	U	F	One Minute Reflection Writing assignments
CO6	Solving survival models with sample data with spread sheet	Ар	Р	Viva-Voce/Prac tical Assignment
# - Fac	nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowledg edge (M)	-		

Detailed Syllabus:

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι		Survival models-I	13	20
	1	Survival models, Future lifetime, Probabilities of death and survival	3	
	2	The force of mortality, Survival probabilities	1	
	3	The probability density function of Tx, Life table functions, Initial and central rates of mortality	3	
	4	Expected future lifetime, Complete expectation of life, Curtate expectation of life, Some important formulae	3	
	5	Simple parametric survival models, The Gompertz and Makeham laws of mortality, Survival probabilities	3	
		ns from References: : 6.1 (6.1.1 to 6.1.2) [Ref 1]		
		: 6.1.3&6.1.4 [Ref 1]		
		: 6.1.5,6.1.6,6.1.7 [Ref 1]		
		: 6.2,6.2.1,6.2.2, 6.3 [Ref 1] : 6.4, 6.5, 6.5.2 [Ref 1]		
II		Risk Models- I	12	20
	6	General features of a product, Models forshort- term insurance contracts	2	
	7	The collective risk model, The basic model, Notation and assumptions	1	
	8	Distribution functions and convolutions	2	

	9	Moments of compound distributions, The compound Poisson distribution,	3	
	10	The compound binomial distribution	2	
	11	The compound negative binomial distribution	2	
	Sectio	ns from References:		
	Unit 6	: 19.1(19.1.1 to 19.1.2), 19.2 [Ref 1]		
		: 19.3, 19.3.1 [Ref 1]		
		: 19.3.2 [Ref 1]		
		: 19.3.3,19.3.4 [Ref 1]		
		0: 19.3.5 [Ref 1]		
TT	Unit I	1: 19.3.6 [Ref 1] Reinsurance & Risk Models- II	11	18
III	12	Keinsurance & Kisk Wouels- II	1	10
		Reinsurance and its types		
	13	Reinsurance arrangements, Excess of loss reinsurance(concept only), proportional reinsurance (concept only)	2	
	14	The individual risk model	2	
	15	Ruin theory, Basic concepts	2	
	16	The surplus process	2	
	17	The probability of ruin in continuous & discrete time	2	
	Sectio	ns from References:		
		2: 18.0 [Ref 1]		
		3: 18.1,18.1.1,18.1.3 [Ref 1]		
		4: 20.2 [Ref 1]		
	Unit 1	5: 8.1 [Ref 2]		
		6: 8.1.2 [Ref 2]		
	Unit 1	7: 8.1.3 & 8.1.4 [Ref 2]		
IV		Machine learning	9	12
	18	What is machine learning?	1	
	19	An overview of machine learning	2	
	20	Concepts in machine learning- The loss function, Model evaluation, Generalisation error and model validation, Train- validation- test	2	
	21	Branches of machine learning	2	
	22	Stages of Analysing Machine learning	2	
	Unit 1 Unit 1	ns from References: 8: 21.1 [Ref 1] 9: 21.2 [Ref 1] 0: 21.3(21.3.1 to 21.3.4)[Ref 1]		
		1: 21.4 [Ref 1]		
	Unit 2	2: 21.5 (21.5.1 to 21.5.9)[Ref 1]		

V			30	
		PRACTICUM		
	Do pra	actice problems in spreadsheet from any 5 units of		
	the give	ven list and one additional problem decided by the		
	teache	r-in-charge, related to the content of the course.		
		units listed here may be used as demonstrations of		
	the con	ncepts taught in the course.		
	1			
	2	Expectation of life		
	3	Laws of mortality		
	4	Life table functions		
	5	Compound Poisson distribution		
	6	Compound binomial distribution		
	7	Distribution function		
	8	Surplus process		
Pools and D	formaria			1

Books and References:

- 1. Institute of Actuaries Act Ed. Study materials CS2.
- 2. Institute of Actuaries Act Ed. Study materials CT6.
- 3. Denuit, M., Marechal, X., Pitrebois, S., Walhin, J.F. (2007). Actuarial Modelling of claim counts: Risk classification, credibility and bonus-malus systems. John Wiley & Sons
- 4. Bowers, Newton Let al (1997): Actuarial mathematics, society of Actuaries, 2nd Ed
- 5. Benjamin,B; Pollard, J.H. (1993).The analysis of mortality and other actuarial Statistics: (3rd Ed). Institute and faculty of Actuaries
- 6. Shailaja R. Deshmukh- Actuarial Statistics-an introduction using R, 3rd Ed.
- 7. Daykin C.D, Pentikainen T., Pesonen M.: Practical Risk theory for Actuaries (1194). Chapman& Hall.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	1	2	1	-	2	-	2	-	-	-
CO 2	3	3	2	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	3	-	-	2	-	2	-	-	-
CO 4	3	2	-	2	1	-	3	-	2	2	-	-
CO 5	3	2	-	-	-	-	3	-	2	-	-	-
СО	1	1	2	-	3	3	2	2	1	-	2	2

6												
---	--	--	--	--	--	--	--	--	--	--	--	--

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Programme	BSc Statistics				
Course Code	ACT1MN102 (P)				
Course Title	Financial Mathema	tics			
Type of Course	Minor				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge of	f rates of inte	erest, arithme	etic skills, Bas	sic
	computer skills				
Course	The aim of this cou	rse is to pro	vide a groun	ding in the pr	inciples of
Summary	modelling as applie	ed to actuaria	al work		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the possible aims of data analysis	U	F	Instructor-creat ed exams / Quiz
CO2	Explain the meaning and value of reproducible research and describe the elements required to ensure a data analysis is reproducible.	U	Р	Instructor-creat ed exams / Home Assignments
CO3	Describe why and how models are used including, in general terms, the use of models for pricing, reserving and capital modelling.	Ap	Р	Seminar Presentation / Group Tutorial Work
CO4	Apply force of interest in various financial transaction.	An	С	Instructor-creat ed exams / Home

				Assignments					
CO5	Describe how a loan may be repaid by regular instalments of interest and capital.	Ap	Р	One Minute Reflection Writing assignments					
CO6	Solving cash flow models with sample data with spread sheet	Ар	Р	Viva-Voce/Prac tical Assignment					
# - Fac	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)								

Detailed Syllabus:

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι	Data Analysis		8	10
	1	Aims of data analysis- Descriptive, inferential and predictive	2	
	2	The data analysis process	2	
	3	Data Sources, Big data	2	
	4	Data security privacy and regulation , Reproducible research	2	
	Unit 1 Unit 2 Unit 3	ns from References: : 1.1&1.1.1 to 1.1.3 [Ref 1] : 1.2 [Ref 1] : 1.3&1.3.1[Ref 1] : 1.3.2&1.4 [Ref 1]		
II		Principles of actuarial modelling	11	15
	5	Model, How models are used, Modelling – the benefits and limitations	2	
	6	Stochastic and deterministic models, Discrete and continuous state spaces and time sets	2	
	7	Scenario-based and proxy models, Suitability of a model, Short-term and long-term properties of a model	3	
	8 Analysing the output of a model, Sensitivity testing, Communication of the results		2	
	9	Insurance contracts- Pure endowment, Endowment, term, contingent annuity, a car insurance policy, a health cash plan	2	

	Unit 5 Unit 6 Unit 7	ns from References: : 2.1,2.1.2 &2.2 [Ref 1] : 2.3,2.4 [Ref 1] : 2.5,2.6&2.7 [Ref 1] : 2.8,2.9 & 2.10 [Ref 1]		
		2:3.1 (3.1.1 to 3.1.6) [Ref 1]		
III		Real and Money interest rates	12	25
	10	Real and Money interest rates	2	
	11	Deflationary conditions, Usefulness of real and money interest rates	2	
	12	Force of interest as a function of time	3	
	13	Relationship to constant force of interest, Applications of force of interest.	2	
	14	Present values of cash-flows	1	
	15	Payment streams, Sudden changes in interest rates	2	
	Unit 1 Unit 1 Unit 1 Unit 1 Unit 1 Unit 1	ns from References: 0: 6.1 ([Ref 1] 1: 6.2 & 6.3[Ref 1] 2: 5.4 [Ref 1] 3: 5.4.2 [Ref 1] 4: 7.1 [Ref 1] 5: 7.2.2 & 7.2.3 [Ref 1]		
IV		Loan Schedule & Varying annuities	14	20
	16	Introduction, Calculating the capital outstanding	2	
	17	calculating the interest and capital elements	3	
	18	The loan schedule	1	
	19		0	
		Instalments payable more frequently than annually.	2	
	20		2	
		annually.		
	20	annually. The consumer credit-APR	2	
	20 21 22 Sectio	annually.The consumer credit-APRVarying annuities- Annual paymentsDecreasing paymentsns from References:	2 3	
	20 21 22 Section Unit 1	annually. The consumer credit-APR Varying annuities- Annual payments Decreasing payments ns from References: 6: 11.1&11.2 [Ref 1]	2 3	
	20 21 22 Sectio Unit 1 Unit 1	annually.The consumer credit-APRVarying annuities- Annual paymentsDecreasing paymentsns from References:	2 3	
	20 21 22 Section Unit 1 Unit 1 Unit 1 Unit 1	annually. The consumer credit-APR Varying annuities- Annual payments Decreasing payments ns from References: 6: 11.1&11.2 [Ref 1] 7: 11.3 [Ref 1] 8: 11.4[Ref 1] 9: 11.5 [Ref 1]	2 3	
	20 21 22 Section Unit 1 Unit 1 Unit 1 Unit 1 Unit 2	annually.The consumer credit-APRVarying annuities- Annual paymentsDecreasing paymentsns from References:6: 11.1&11.2 [Ref 1]7: 11.3 [Ref 1]8: 11.4[Ref 1]9: 11.5 [Ref 1]0: 11.6[Ref 1]	2 3	
	20 21 22 Section Unit 1 Unit 1 Unit 1 Unit 1 Unit 2 Unit 2	annually. The consumer credit-APR Varying annuities- Annual payments Decreasing payments ns from References: 6: 11.1&11.2 [Ref 1] 7: 11.3 [Ref 1] 8: 11.4[Ref 1] 9: 11.5 [Ref 1]	2 3	
V	20 21 22 Section Unit 1 Unit 1 Unit 1 Unit 1 Unit 2 Unit 2 Unit 2	annually. The consumer credit-APR Varying annuities- Annual payments Decreasing payments ns from References: 6: 11.1&11.2 [Ref 1] 7: 11.3 [Ref 1] 8: 11.4[Ref 1] 9: 11.5 [Ref 1] 0: 11.6[Ref 1] 1: 9.1.1[Ref 1]	2 3	
	20 21 22 Section Unit 1 Unit 1 Unit 1 Unit 1 Unit 2 Unit 2	annually. The consumer credit-APR Varying annuities- Annual payments Decreasing payments ns from References: 6: 11.1&11.2 [Ref 1] 7: 11.3 [Ref 1] 8: 11.4[Ref 1] 9: 11.5 [Ref 1] 0: 11.6[Ref 1] 1: 9.1.1[Ref 1]	2 3	

	r-in-charge, related to the content of the course.	
	units listed here may be used as demonstrations of	
the con	ncepts taught in the course.	
1	Real and money interest rates	
2	Present value of cash-flows	
3	Payment streams	
4	Relationship to constant force of interest	
5	Loan schedule – preparation of loan amortization	
	table	
6	Loan schedule-Capital and interest calculations	
7	APR	
8	Flat rate of interest	

Books and References:

12. Institute of Actuaries Act Ed. Study materials CM1

- 13. McCutcheon, J.J., Scott William (1986): An introduction to Mathematics of Finance
- 14. Butcher, M.V., Nesbit, Cecil. (1971) Mathematics of compound interest, Ulrich's Books
- 15. David Promislow, S. (2014), Fundamentals of Actuarial Mathematics, John wiley & sons.
- 16. Newton LBowers, et al (1997): Actuarial Mathematics, The Societies of Actuaries, 2nd Ed
- 17. Shailaja R. Deshmukh- Actuarial Statistics-an introduction using R, 3rd Ed.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	1	3	-	-	1	-	2	2	-	-
CO 2	3	2	_	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	-	-
CO 4	3	2	-	1	-	-	3	-	2	2	-	-
CO 5	3	2	_	-	-	-	3	-	2	-	-	-
CO 6	1	1	2	-	3	3	2	2	1	-	2	1

Correlation Levels:

el	
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Programme	BSc Statistics				
Course Code	ACT2MN102 (P)				
Course Title	Actuarial Economic	es			
Type of Course	Minor				
Semester	II				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge o	f economic o	concepts		
Course	The aim of this co	The aim of this course is to provide the theoretical and practical			
Summary	understanding of th	e economic	concepts and	d theories	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Assess the main strands of economic thinking.	An	Р	Instructor-creat ed exams / Quiz
CO2	Describe the factors that influence market demand and supply	U	F	Instructor-creat ed exams / Home Assignments
CO3	Discuss how markets react to changes in demand and supply.	U	C	Seminar Presentation / Group Tutorial Work
CO4	Define and calculate price and income elasticities of demand and price elasticity of supply.	Ар	Р	Instructor-creat ed exams / Home Assignments
CO5	Remember the concept of marginal utility.	R	С	One Minute Reflection Writing assignments
CO6	Solving market economy with sample	Ар	Р	Viva-Voce/Prac

	data with spread sheet		tical Assignment
# - Fact	nember (R), Understand (U), Apply (Ap) tual Knowledge(F) Conceptual Knowledg edge (M)	•	. ,

Detailed Syllabus:

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι		Economic concepts and systems	10	15
	1	What economists study, Problem of scarcity, Economic choices	2	
	2	Business economics, Introduction to microeconomics and Microeconomic, Production possibility curve	2	
	3	Main strands of economic thinking	2	
	4	The classical approach, Marxist socialism, Keynesian schools of thought: Neo-Keynesians, Post-Keynesians and New-Keynesians	2	
	5	The monetarist approach- The new classical approach, The Austrian School	2	
	Sectio	ns from References:		
		: 15.0&15.2 (15.2.1 to 15.2.2) [Ref 1]		
		: 15.2.3,15.2.6,15.2.7 [Ref 1]		
		: 15.3 (15.3.1 to 15.3.3) [Ref 1]		
		: 15.4 [Ref 1] : 15.5,15.5.1, 15.5.2 [Ref 1]		
П		Demand and Supply	13	20
	6	Relationship between demand and price	4	
	7	The demand curve, Determinants of demand, Movements along and shifts in the demand curve	4	
	8	Supply: Supply and price, Supply curve , Determinants of supply, Movements along and shifts in the supply curve	3	
	9	Price and output determination: Equilibrium price and output, Movement to a new equilibrium, Incentives in markets	2	
		ns from References: : 16.1 (16.1.1 to 16.1.3), 16.2 (16.2.1 to 16.2.3)		
		[Ref 1]		

	Unit 7 Unit 8 Unit 9			
III	10	Elasticity and Uncertainty	11	20
	10	Price elasticity of demand (PED)	2	
	11	measuring price elasticity of demand, Calculating PED using original and point method	1	
	12	Determinates of price elasticity of demand, Price elasticity of supply	1	
	13	Other elasticity: Income elasticity of demand, Cross-price elasticity of demand	2	
	14	The time dimension: Short- run and long-run adjustment, Price expectations and speculation, Dealing with uncertainty and risk, Control of prices	3	
	15	Indirect taxes and subsidies: Effect of imposing taxes, Effect of subsidizing goods	2	
	Unit 1 Unit 1 Unit 1 Unit 1 Unit 1 Unit 1	ns from References: 0: 17.1,17.2(17.2.1 to 17.2.3) [Ref 1] 1: 17.3 (17.3.1 to 17.3.2) [Ref 1] 2: 17.4 (17.4.1 to 17.4.2) [Ref 1] 3: 17.5(17.5.1 to 17.5.2) [Ref 1] 4: 17.6(17.6.1 to 17.6.2), 17.7 [Ref 1] 5: 17.10,17.10.1, 17.10.2 [Ref 1]		
IV		Consumer demand and uncertainty	9	15
	16	Marginal utility theory	1	
	17	Timing of cost and benefits, indifference analysis	2	
	18	Demand under condition of risk and uncertainty	1	
	19	Utility and insurance	1	
	20	Behavioural economics	1	
	21	Prediction and cost, Meaning and types of costs	2	
	22	Production and cost in short run	1	
		ns from References:		
		6: 22.1(22.1.1 to 22.1.2) [Ref 1] 7: 22.1.3 [Ref 1]		
		8: 22.1.4[Ref 1]		
		9: 22.2,22.2.1 [Ref 1]		
		0: 22.2.2 [Ref 1] 1: 22.3 & 22.3.1[Ref 1]		
		2: 22.3.2 [Ref 1]		
V		PRACTICUM	30	

-	tice problems in spreadsheet from any 5 units of			
Ū.	n list and one additional problem decided by the			
	teacher-in-charge, related to the content of the course.			
	nits listed here may be used as demonstrations of			
the conc	cepts taught in the course.			
1 I	Demand and price			
2 I	Price elasticity of demand (PED)			
3 I	Price elasticity of supply			
4 I	Marginal utility			
5 1	Income elasticity of demand			
6 (Cross-price elasticity of demand			
7 (Calculating PED using original and point method			
8 I	Equilibrium price and output			
Sections	s from References:			
Unit 1: 1	1.2 Ref [5]			
Unit 2: 2	2.1 Ref [5]			
Unit 3: 2	2.2 Ref [5]			
Unit 4: 3	3.1 Ref [5]			
Unit 5: 3	3.2 Ref [5]			
Unit 6: 3	3.3 Ref [5]			
Unit 7: 3	3.4 Ref [5]			
Unit 8: 3	3.5 Ref [5]			
Books and References				

Books and References:

- 8. Institute of Actuaries Act Ed. Study materials CB2
- 9. Slomon J, Wride A, Garratt D, 2018-Economics –10th edition, Pearson.
- 10. Sloman J, Garratt D, Guest J, Jones E, 2016- Economics for Business -7th edition, Pearson
- 11. Parkin, M., & Bade, R. (2007). Foundations of economics. Pearson Addison Wesley.
- 12. Perman, R. J., & Scouller, J. (2010). Economics of corporate and competitive strategy Oxford University Press Autralia and New Zealand.
- 13. Chrystal, K. A., & Lipsey, R. G. (1997). Economics for business and management. OUP Catalogue.

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	3	1	2	-	-	2	-	2	-	-	-
CO 2	3	3	-	2	1	-	3	1	2	3	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	-	-
CO 4	3	2	_	1	-	-	3	-	2	2	-	-

CO 5	3	2	-	-	-	-	3	-	2	-	-	-
CO 6	1	1	2	-	3	3	2	2	1	-	3	3

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

Programme	BSc Statistics				
Course Code	ACT3MN202 (P)				
Course Title	Life Contingencies				
Type of Course	Minor				
Semester	III				
Academic	200 - 299				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	4	3	-	2	75
Pre-requisites	Basic knowledge of computer skills	f data, variab	oles, charts a	nd graphs, Ba	sic
Course	The aim of this cou	rse is to prov	vide a ground	ling in mathe	matical and
Summary	statistical modellin actuarial work, incl	0 1		1	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Calculate gross premium of assurance and annuity contracts using gross future loss random variable	Ар	Р	Instructor-creat ed exams / Quiz
CO2	Describe and calculate reserve under assurance and annuity contracts using prospective and retrospective method of valuation.	AP	Р	Instructor-creat ed exams / Home Assignments
CO3	Memorize the basic concepts of mortality profit.	R	С	Seminar Presentation / Group Tutorial Work
CO4	Define and calculate death strain at risk, expected death strain and actual death strain	An	Р	Instructor-creat ed exams / Home Assignments
CO5	Understand the basics of Multiple decrement model	U	F	One Minute Reflection Writing assignments

CO6	Analyse gross premium and reserve	Ар	Р	Viva-Voce/Prac						
	with sample data with spread sheet			tical						
				Assignment						
* - Ren	nember (R), Understand (U), Apply (Ap),	, Analyse (An), Evaluate (E), G	Create (C)						
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive									
Knowl	edge (M)									

Detailed Syllabus:

Module	Unit	Content	Hours (45 +30)	Marks (70)
Ι		Gross premiums	11	20
	1	Gross premiums, Gross future loss random variable, Principle of equivalence	3	
	2	Determining gross premiums using the equivalence principle	2	
	3	Annual premium contracts	2	
	4	Premiums payable m times per year	2	
	5	Calculating gross premiums using simple criteria other than the equivalence principle	2	
	Unit 1 Unit 2 Unit 3 Unit 4	ns from References: : 20.1, 20.2 &20.3 [Ref 1] : 20.3.2 [Ref 1] : 20.3.5 [Ref 1] : 20.3.7 [Ref 1] : 20.4 [Ref 1]		
II		Gross premium reserves	13	20
	6	Gross premium reserves, Why hold reserves	2	
	7	Prospective reserves, Calculating gross premium prospective reserves,	3	
	8	Calculating prospective reserves that satisfy Probabilities	2	
	9	Retrospectivereserves,Retrospectiveaccumulations,GrosspremiumretrospectiveReserve	2	
	10	Equality of prospective and retrospective reserves	2	
	11	Net premium reserves for conventional without profit contracts.	2	
		ns from References:		
	Unit 6	: 21.0 &21.1 [Ref 1]		

		: 21.2&21.2.1 [Ref 1] : 21.2.2 [Ref 1]		
		: 21.3,21.3.1, 21.3.2 [Ref 1]		
	Unit 1	0: 21.4 [Ref 1]		
	Unit 1	1: 21.6 [Ref 1]	10	17
III	12	Mortality profit	12 2	15
		Mortality profit on a single policy	2	
	13	Mortality profit on a portfolio of policies		
	14	Allowing for death benefits payable immediately	2	
	15	Allowing for survival benefits annuities	2	
	16	Allowing for different premium or annuity payment frequencies	1	
	17	Calculation of mortality profit for policies involving two lives.	3	
	Unit 1	ns from References: 2: 24.1(24.1.1 to 24.1.4) [Ref 1] 3: 24.2 [Ref 1]		
	Unit 1	4: 24.3 [Ref 1] 5: 24.4 [Ref 1]		
		6: 24.5 [Ref 1] 7: 24.6 [Ref 1]		
IV	Unit I		0	15
	18	Competing risks	9 1	
	10	Health insurance contracts	2	
		Multiple state models		
	20	Valuing continuous cash-flows using multiple state models	2	
	21	Designing the multiple state model	2	
	22	Multiple decrement models, Multiple decrement tables	2	
	Sectio Unit 1 Unit 1 Unit 2 Unit 2		2	
V	Sectio Unit 1 Unit 1 Unit 2 Unit 2	tables ns from References: 8: 25.1 [Ref 1] 9: 25.2 [Ref 1] 0:25.2.2[Ref 1] 1: 25.2.3 [Ref 1] 2: 25.3&25.4[Ref 1]	2 30	
V	Sectio Unit 1 Unit 2 Unit 2 Unit 2 Unit 2 Do pra the giv teache Other	tables ns from References: 8: 25.1 [Ref 1] 9: 25.2 [Ref 1] 0:25.2.2[Ref 1] 1: 25.2.3 [Ref 1]		

2	Gross premium- Whole life
3	Gross premium- endowment
4	Annual premium contracts
5	Gross premium reserve
6	Prospective and retrospective reserve
7	Mortality profit
8	Multiple decrement tables
 -	

Books and References:

- 8. Institute of Actuaries Act Ed. Study materials CM1.
- 9. Neill, Alistair, Heinemann, (1977): Life contingencies.
- 10. Bowers, Newton Let al (1997): Actuarial mathematics, society of Actuaries, 2nd Ed
- 11. Jones, H.E & Long, D.L (2005): Principles of Insurance: Life, Health and annuities. LOMA
- 12. Dickson, D.C.M; Hardy M.R; Waters, H.R.-Actuarial Mathematics for life contingent risks: 2nd ed. Cambridge University Press (2013)
- 13. Neill, Alistair, Heinemann, (1977): Life contingencies.
- 14. Shailaja R. Deshmukh- Actuarial Statistics-an introduction using R, 3^{rd} Ed.

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	2	2	2	-	-	2	1	2	-	-	-
CO 2	3	3	-	2	1	-	3	1	2	2	-	-
CO 3	1	2	-	2	-	-	2	-	2	-	-	-
CO 4	3	2	2	1	-	-	3	-	2	3	-	-
CO 5	3	2	-	_	-	_	3	_	2	-	-	-
CO 6	1	2	2	-	3	3	2	2	1	-	2	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev Correlation

el	
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	\checkmark

FOUNDATION COURSES IN STATISTICS

SYLLABUS

Programme	B. Sc. Statistic	cs			
Course Code	STA1FM101				
Course Title	Quality Contro	ol			
Type of Course	MDC				
Semester	Ι				
Academic	100-199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours
		per week	per week	per week	
	3	3	-	-	45
Pre-requisites	HSE level Ma	thematics Co	urse		
Course	To make stude	ents aware of	Various Quali	ty or standards	s in Industrial
Summary	Production, D	etecting, Con	trolling and N	Aaintaining Qu	uality and
	Total Quality	Management			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain notion of Quality of products	U	С	Instructor-created exams / Quiz
CO2	Recall various meaning of Quality and critically evaluate ethical implications of statistical methods aligning with human values.	R	С	Quiz / Instructor-create d exams
CO3	Explain causes of variation and Statistical Control and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	Seminar Presentation / Group Tutorial Work/ Instructor-c reated exams
CO4	Construction of Control Charts and OC curves	Ар	С	Instructor-created exams / Home Assignments
CO5	Distinguish Process and Product Control	U	F	One Minute Reflection Writing assignments/ Instr uctor-created exams
CO6	Illustrate measures of central tendency using spread sheet.	Ар	Р	Viva Voce/ Instructor-c reated exams
# - Fa	emember (R), Understand (U), Apply (Ap ctual Knowledge(F) Conceptual Knowled vledge (M)			

Module	Unit	Content	Hrs (36+9)	Marks (50)
Ι		Understanding Quality and Sources of Variation	9	15
	1	Meaning of Quality. Various Aspects of Quality.		
	2	Causes of Variation, assessing within and between sample		
	3	variation using Statistical Measures		
	4	Concept of Statistical Quality Control, Process Control and Product Control		
	Sectio	ons from References:		
II		Quantitative and Qualitative Variables	9	15
	5	Variables and Attributes.		
	6	Concept of Control Charts for Process Control		
	7	Structure of a Control Chart		
	8	Assessment of Statistical control using control charts		
	Sectio	ons from References:		
III		Construction of Charts	9	10
	9	Construction of <i>X</i> (mean) chart		
	10	Construction of R (Range)chart		
	11	Construction of σ (Standard Deviation) chart		
	12	Construction of P (Proportion Defective) chart		
	13	Construction of np (Number of Defectives) chart		
	14	Construction of C (Number of Defects) chart.		
	Sectio	ons from References:		10
IV	1.5	Sampling Inspection Plan	9	10
	15	Acceptance Sampling Plan		
	16	Incoming Quality and Outgoing Quality		
	17	Acceptable Quality Level, Rejectable Quality Level, LTPD		
	18	AOQ, AOQL		
	19	Errors in Sampling Inspection Plan Producers and Consumers		
		Risk		
	Sectio	ons from References:		
V		Open Ended Module: Spread sheet	9	
	1	Exercises to compute Arithmetic Mean, Range, Standard Deviation for a set of data, Basic concepts of Probability		
	Sectio	ons from References:		
Books an				1

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	2	-	-	-	2	2	1	_	-	-	-
CO 2	2	_	-	-	-	3	2	2	-	-	-	3
CO 3	-	-	3	-	-	2	1	-			3	
CO 4	-	-	2	2	-	-	2		2	3		
CO 5	-	_	2	2	2	_	2	3	2	-	-	-
CO 6	3	2	-	-	-	2	3	-	-	3	-	-

Mapping of COs with PSOs and POs :

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- 18. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 19. Midterm Exam
- 20. Programming Assignments (20%)
- 21. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	BSc Statistics				
Course Code	STA1FM102				
Course Title	Fundamentals of St	atistics			
Type of Course	MDC				
Semester	Ι				
Academic	100 - 199				
Level					
Course Details	Credit	Lecture	Tutorial	Practical	Total
		per week	per week	per week	Hours
	3	3	-	-	45
Pre-requisites	Basic mathematica	l knowledge			
Course					
Summary	Students will learn		• •		
	measurement, and t	1	1	0	0
	using measures of		· 1	,	ll as
	exploring concepts	of skewness	s and kurtosi	s.	

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define statistics and its scope in various fields of study, including its role in decision-making.	U	С	Instructor-creat ed exams / Quiz
CO2	Construct tables and diagrams to organize and summarize data efficiently for analysis and analyze data to help entrepreneurial decisions using critical thinking skills.	Ар	С	Instructor-creat ed exams / Seminar Presentation
CO3	Create various types of diagrams such as bar graphs, pie charts, and histograms for visual representation of data and critically evaluate ethical implications of statistical methods aligning with human values.	Ар	F	Seminar Presentation / Group Tutorial Work/ Instructor-creat ed exams
CO4	Compute measures of central tendency including mean, median, and mode to identify typical or central values within a data set.	Ар	С	Instructor-creat ed exams / Home Assignments
CO5	Interpret partition values such as quartiles and percentiles to identify specific data points within a distribution.	U	F	One Minute Reflection Writing assignments/ Instructor-creat

				ed exams				
CO6	Illustrate measures of central tendency	Ар	Р	Viva Voce/				
	and dispersion using spread sheet.			Instructor-creat				
				ed exams				
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowledge (M)								

COURSE CONTENT

Module		Content	Hours (36+9)	Marks (50)
		8	10	
	1	Definition of Statistics	1	
_	2	Scope of Statistics	2	
1	3	Concepts of statistical population and sample	2	
	4	Collection of data	3	
	Sections Unit 1: 1 Unit 2: 2 Unit 3: 2 Unit 4: 2			
		12	15	
	5	Types of data	3	
	6	Scale of measurements	2	
2	7	Classification of data	2	
	8	Tabulation of data	2	
	9	Diagrammatic representation of data	3	
	Sections Unit 5: 2 Unit 6: 2 Unit 7: 2 Unit 8: 2 Unit 9: 2			
	-	11	15	
	10	Arithmetic Mean	2	
•	11	Geometric Mean	1	
3	12	Harmonic Mean	1	
	13	Median & Mode	2	

	14	Measures of Dispersion – Definition	1					
	15	Absolute Measures of Dispersion	4					
	Sections Unit 10: Unit 11: Unit 12: Unit 13: Unit 13: Unit 14: Unit 15:							
		Skewness & Kurtosis	5	10				
	16	Partition values	3					
4	17	Skewness	1					
	18	Kurtosis	1					
	Sections from References: Unit 16: 2.11 [Ref 1] Unit 17: 3.13 [Ref 1] Unit 18: 3.14[Ref 1]							
5	Open ended: practical problems Using Spreadsheet 9							
	1	Frequency distributions for organizing and summarizing data	3					
	2	Measures of Central Tendency	3					
	3	Measures of Dispersion	3					
	Sections from References: Unit 1: 2.1Ref [3] Unit 2: 2.2 Ref [3] Unit 3: 3.2 Ref [3]							
	Books and References:							
	 Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics., 11th edition, Sulthan Chand, New Delhi. 							
	 Prem. S. Mann (2010). Introductory Statistics, 7th edition, Wiley 							
	■ Mar 6 ^m e	 Mario F Triola, Elementary Statistics using Excel, (2018), 6th edition. 						

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	-	-	1	-	2	-	2	1	-	-	-	-
CO 2	2	2	-	-	-	2	2	2	-	-	-	3
CO 3	-	-	3	-	-	-	1	-	-	-	3	-
CO 4	2	2	3	-	3	2	2	-	2	3	I	-
CO 5	-	2	-	2	2	3	2	3	2	-	-	-
CO 6	3	2	-	-	-	3	3	-	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- 6. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 7. Midterm Exam
- 8. Programming Assignments (20%)
- 9. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	B. Sc. Statistics
Course Code	STA2FM103

Course Title	Managerial D	Managerial Decision Making					
Type of Course	MDC						
Semester	II						
Academic	100-199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	3	3	-	-	45		
Pre-requisites	HSE level Mathematics Course						
Course	To make students aware of importance of managerial decisions and						
Summary	the use of Stat	tistical theorie	es in developi	ng scientific d	lecisions		

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Explain various decision making environments in management	U	С	Instructor-created exams / Quiz/ Seminar presentation			
CO2	Discuss the outcome of any payoff	R	F	Practical Assignment / Instructor-create d exams			
CO3	Assessing the purpose of Inventory for smooth Business operations and critically evaluate ethical implications of statistical methods aligning with human values.	U	С	Seminar Presentation / Group Tutorial Work/ Instructor-c reated exams			
CO4	Explain the simulation of a real system	U	С	Instructor-created exams / Home Assignments			
CO5	Describe the role of game theory in business and analyze data to help entrepreneurial decisions using critical thinking skills	U	F	One Minute Reflection Writing assignments/ Instr uctor-created exams			
CO6	Define probability and discuss expected values.	R	F	Viva Voce/ Instructor-c reated exams			
# - Fa	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit	Content	Hrs	Marks
			(36+9)	(50)

Ι		9		
	1	Environment Uncertainty and Conflict		
	2	Decision Alternatives		
	3	States of Nature		
	4	Pay Off		
	5	Computation of Expected Monetary Value		
	Sectio	ons from References:		
II		Inventory	9	
	5	Inventory Management.		
	6	Need and necessity of Inventory		
	7	Parameters of Inventory management.		
	8	Economic Order Quantity with and without lead time		
	Sectio	ons from References:		
III		Simulation of Inventory	9	
	9	Simulation		
	10	Monte Carlo Method		
	11	Use of simulation in Inventory		
	12	Game theory		
	13	Strategy, Pay off, Pay off matrix,		
	14	Pure and Mixed strategies, Value of game		
	Sectio	ons from References:	0	
IV	1.7	Solving games	9	
	15	Minmax and Maxmin Criterions		
	16	Saddle Point and solution		
	17	Principle of Dominance		
	18	Solving 2x2 games		
	19	Graphical solution of 2xn and nx2 games		
	Sectio	ons from References:		
V		Open Ended Module	9	
	1	Basics of Matrices, Scalar and Vector multiplication, Concepts of		
	Section	Probability and Expected Value of Variables		
1		rences:		

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	_	2	2	3	3	-	3	-	2	2
CO 2	3	-	_	-	-	-	2	-	-	-	-	2
CO 3	-	-	2	-	-	2	2	2	-	-	3	-
CO 4	-	-	3	-	-	2	2	2	-	-	3	3
CO 5	-	-	3	-	-	2	1	-	-	2	3	2
CO 6	3	2	-	-	-	3	3	3	-	-	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- 6. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 7. Midterm Exam
- 8. Programming Assignments (20%)
- 9. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		✓
CO 6	\checkmark			

Programme	BSc Statistics
Course Code	STA2FM104

Course Title	Statistical sampling	Statistical sampling and probability theory					
Type of Course	MDC						
Semester	II						
Academic	100 - 199						
Level							
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	3	3	-	-	45		
Pre-requisites							
Course Summary	Students will learn a comprehensive understanding of fundamental concepts in statistics, including data, variables, attributes, and methods of data collection and explore various types of sampling methods and understand the basics of probability theory.						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and differentiate between data, variables, and attributes, and understand their role in statistical analysis.	U	С	Instructor-creat ed exams / Quiz
CO2	Demonstrate proficiency in preparing questionnaires for data collection, considering factors such as clarity, relevance, and reliability and critically evaluate ethical implications of statistical methods aligning with human values	U	F	Seminar Presentation / Instructor-cre ated exams
CO3	Identify and describe different types of sampling methods, including simple random sampling, stratified random sampling, systematic sampling, and cluster sampling and analyze data to help entrepreneurial decisions using critical thinking skills.	R	С	Seminar Presentation / Group Tutorial Work/ Instruct or-created exams
CO4	Define random experiment, sample space, and event, and understand their relevance in probability theory.	U	С	Instructor-creat ed exams / Home Assignments
CO5	Define probability and understand its interpretation as a measure of uncertainty.	U	F	One Minute Reflection Writing assignments/ I

				nstructor-create d exams				
CO6	Represent how to list different types of data using any software	Ap	Р	Viva Voce/Instruct or-created exams				
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

COURSE CONTENT

Μ	lodule	Content	Hours (36+9)	Marks (50)
		Basic Statistics	10	10
	1	Data	2	
_	2	Variables and Attributes	2	
1	3	Definition of Population and Sample	3	
	4	Preparation of questionnaire for data collection	3	
	Sections from References: Unit 1: 2.1 [Ref 2] Unit 2: 1.5[Ref 2] Unit 3: 1.3 [Ref 2] Unit 4: 1 [Ref 2]			
		Census and Sampling	6	10
	5	Census and Sampling	2	
2	6	Principal steps in a sample survey	2	
	7	Types of sampling	1	
	8	Sampling methods	1	
	Sections	from References:		
	Unit 5: 1	5.2,15.3,15.6 [Ref 3]		
	Unit 6:	15.8 [Ref 3]		
	Unit 7:1	5.10[Ref 3]		
	Unit 8:1	5.10[Ref 3]		
		Random Sampling Methods	9	15
3	9	simple random sampling with and without replacement	5	

	10	Stratified random sampling (concept only)	2		
	11	Systematic Sampling (concept only)	1		
	12	Cluster sampling (concept only)	1		
	Sections	from References:			
	Unit 9:1	5.11,15.11.1 [Ref 3]			
	Unit 10:	15.12,15.12.1 [Ref 3]			
	Unit 11:	15.13 [Ref 3]			
	Unit 12:	A2 [Ref 2]			
		Introduction to Probability	11	15	
	13	Random experiment	1		
	14	Sample space	1		
	15	Event	2		
4	16	Statistical regularity	3		
	17	Definition of Probability	2		
	18	Concept of conditional probability of two events	2		
	Sections Unit 13: Unit 14: Unit 15: Unit 15: Unit 16: Unit 17: Unit 18:				
5	Open er	nded - Practical problems using softwares	9		
	1	Data collection	3		
	2	Sample selection	3		
	3	Probability	3		
	 Books and References: 6. Gupta, S. C. and Kapoor, V. K. (2002). Fundamentals of Mathematical Statistics. , 11th edition, Sulthan Chand, New Delhi. 7. Prem. S. Mann (2010). Introductory Statistics, 7th edition, Wiley 8. Gupta, S. C. (2015). Fundamentals of Statistics, Himalaya Publishing House 				

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	-	-	-	3	3	3	-	-	_	-
CO 2	2	2	_	-	-	2	2	2	-	-	-	3
CO 3	-	2	3	2	2	3	1	3	2	3	3	-
CO 4	3	2	-	-	-	3	3	3	-	-	-	-
CO 5	-	-	-	-	-	3	2	3	-	-	-	-
CO 6	-	-	3	-	-	-	2	2	_	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- 10. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 11. Midterm Exam
- 12. Programming Assignments (20%)
- **13**. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	B. Sc. Statistics
Course Code	STA5FS101
Course Title	Statistical analysis using Python
Type of Course	SEC

Semester	V				
Academic Level	1 00-199				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	3	3	-	-	45
Pre-requisites	HSE level Ma	thematics Co	urse		
Course	To make students aware of Various Quality or standards in Industrial				
Summary	Production, Detecting, Controlling and Maintaining Quality and				
	Total Quality	Management			

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain the basics of Python programming language and its syntax.	U	F	Instructor-crea ted exams / Quiz
CO2	Identify common types of errors and their underlying causes such as incorrect syntax, invalid variable assignments, and type mismatches.	R	С	Instructor-crea ted exams / Home Assignments/ Seminar Presentation
CO3	Describe the funda mental data structures in Pandas and their rol e in data manipulation and analyzedata to help entrepreneurial decisions using critical thinking skills.	U	F	Instructor-crea ted exams / Home Assignments/ Seminar Presentation
CO4	Familiarize themselves with popular data visualization libraries in Python and critically evaluate ethical implications of statistical methods aligning with human values.	R	С	Instructor-crea ted exams / Quiz
CO5	Discuss the importance of random number generation in computational simulations	U	F	Instructor-crea ted exams / Quiz/

	and statistical analysis.			Viva-Voce			
CO6	Apply the basic concepts and principles of machine learning.	Ар	Р	Instructor-crea ted exams / Home Assignments/ Seminar Presentation			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Detailed Syllabus:

Module	Unit	Content	Hrs (48 +12)	Marks (70)
Ι		Introduction to Python Programming	12	
	1	Interactive Python Environment: Jupyter notebooks, basic syntax, interactive shell	2	
	2	Data Fundamentals: Variables, assignments, arithmetic operators, expressions	3	
	3	Program Readability: Comments in code, interpreting error messages	3	
	4	Modular Programming: Importing modules, control flow statements	2	
	5	Function Fundamentals: Built-in and user-defined functions, arguments, return values, formal vs. actual parameters, named arguments	2	
	Sectio	ns from References: 2, 3, 5, 6		
II	Data Manipulation with Pandas			
	5	Pandas Introduction: Data Series, DataFrames	4	
	6	Data Operations: Importing, manipulating, merging, analyzing, and exporting DataFrames	4	
	7	Descriptive Statistics: Exploratory data analysis techniques	2	
	Sectio	ons from References: 1, 3, 7, 11		
III		Data Visualization	8	
	9	Data Visualization Libraries: Matplotlib, Seaborn, Plotly, ggplot, Geoplotlib, Pandas (and potentially others)	2	
	10	Plot-I : Line plot, bar plot, pie chart, box plot, histogram, strip plot, swarm plot,	3	
	11	Plot-II: Scatter plot, heatmap, density plot, cumulative frequencies, error Bars	3	
	Sectio	ns from References: 1, 4, 9, 10		
IV	Ī	Statistical Data Analysis Using statsmodels	18	
	18	Random Number Generation	3	

	19	Correlation	2	
	20	Hypothesis Testing -I: One sample, two sample and paired t test	2	
	21	Hypothesis Testing -II: One way and Two way ANOVA	3	
	22	Hypothesis Testing -III: Non Parametric Tests	3	
		Linear Regression Modeling: Simple and multiple linear regression	3	
		Logistic Regression Models	2	
	Sectio	ons from References: 4, 9,10,11		
V		Open Ended Module:	12	
	1	Numerical Methods with NumPy: Efficient arrays and linear algebra	4	
		operations		
	2	Machine Learning Introduction: Fundamentals of machine learning with	4	
		scikit-learn		
	3	Web Data Scraping: Scraping web data using requests and BeautifulSoup	4	
	Sectio	ons from References: 7, 9, 11		

Books and References:

- 1. Embarak, D. O., Embarak, & Karkal. (2018). *Data analysis and visualization using python*. Berkeley, CA, USA: Apress.
- 2. Gowrishankar, S., & Veena, A. (2018). *Introduction to Python programming*. Chapman and Hall/CRC.
- 3. Guttag, J. V. (2016). *Introduction to computation and programming using Python: With application to understanding data*. MIT press.
- 4. Haslwanter, T. (2016). An introduction to statistics with python. With Applications in the Life Sciences; Springer International Publishing: Cham, Switzerland.
- 5. Lambert, K. A., & Osborne, M. (2015). Fundamentals of PYTHON. Cengage Learning, IE.
- 6. Lutz, M. (2013). *Learning python: Powerful object-oriented programming*. " O'Reilly Media, Inc.".
- 7. McKinney, W. (2012). *Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.* " O'Reilly Media, Inc.".
- 8. Severance, C. (2016). *Python for everybody: Exploring Data using python 3*. Charles Severance.
- 9. Tattar, P., Ojeda, T., Murphy, S. P., Bengfort, B., & Dasgupta, A. (2017). *Practical Data Science Cookbook*. Packt Publishing Ltd.
- 10. Unpingco, J. (2016). *Python for probability, statistics, and machine learning*. Cham, Switzerland: Springer International Publishing.
- 11. VanderPlas, J. (2016). *Python data science handbook: Essential tools for working with data.* " O'Reilly Media, Inc."

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	_	-	-	3	3	-	-	-	-	-
CO 2	3	2	_	-	-	3	3	-	-	-	-	-
CO 3	-	-	2	-	-	2	1	-	-	3	3	-
CO 4	2	-	2	-	-	-	2	_	-	3	-	2
CO 5	-	-	2	1	2	-	2	-	1	3	-	-
CO 6	2	2	-	-	-	2	3	-	-	3	-	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- 5. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 6. Midterm Exam
- 7. Programming Assignments (20%)
- 8. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6	\checkmark			

Programme	B. Sc. Statistic	cs							
Course Code	STA6FS102	STA6FS102							
Course Title	Basic research	n methodology	ý						
Type of Course	SEC								
Semester	VI								
Academic	1 00-199								
Level									
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	3	3	-	-	45				
Pre-requisites	HSE level Ma	HSE level Mathematics Course							
Course	To make students aware of research methodology.								
Summary									

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Identify gaps, contradictions and areas for further exploration within the existing body of literature.	R	F	Instructor-crea ted exams / Quiz
CO2	Ethically and accurately cite article references in accordance with academic integrity standards.	U	С	Instructor-crea ted exams / Home Assignments
CO3	Develop a coherent and logically structured thesis report that adheres to academic conventions and standards.	R	Р	Seminar Presentation / Group Tutorial Work
CO4	Construct text, equations, figures, tables and references in accordance with academic standards and publication guidelines and analyze data to help entrepreneurial decisions using critical thinking skills.	U	С	Instructor-crea ted exams / Home Assignments /Seminar Presentation
CO5	Ethically and responsibly apply numerical methods in research, aknowledging	Ар	F	Seminar Presentation /Quiz

	limitations and uncertainties.			
CO6	Identify appropriate case study designs and data collection methods for specific research questions and contexts.	R	Р	Seminar Presentation/ Group Tutorial Work

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Course Outcomes (CO):

Detailed Syllabus:

Modu le	Uni t	Content	Hr s (48 +12)	Mar ks (70)
Ι		Research in Statistics	12	15
	1	Concept of Research in Statistics-Importance and Need for Research Ethics	2	
	2	Selection of Topic for Research-Research schedules	3	
	3	Review of Literature and its Use in Designing a Research Work-	3	
	4	Mode of Literature Survey	2	
	5	Thesis Writing – Computer Application in Scientific Research	2	
	Sect	ions from References:		
II			12	15
	6	Scientific Word Processing with LaTeX	2	

	7	Article, References	2	
	8	Thesis Report and Slide Preparation	2	
	9 Statistical Programming with R: Arrays and Matrices-Lists		2	
	10	Data Frames-Grouping, Loops and Conditions	2	
	11	Probability Distributions and Statistical Models in R.	2	
	Sect	ions from References:		
III			15	25
	112	Simulation: Concepts and Advantages of Simulation-	2	
	13	Event Type Simulation- Random Variable Generation-U(0,1)	2	
	14	Exponential, Gamma and Normal Random Variables – Monte Carlo Integration.	3	
	15	The MCMC Principle,	3	
	16	Algorithms and its Variants	2	
	17	Bootstrap Methods.	3	
	Sect	ions from References:		
IV			9	15
	18	Computer Oriented Numerical Methods	2	
	19	Algorithms for Solving Algebraic Equations	2	
	20	Algorithms for Solving Transcendental Equations	1	
	21	Numerical Integration	2	
	22	Matrix operations.	2	
L		1	1	

	Sect	Sections from References:					
V		Open Ended Module:					
	1	Analysis of a case study	12				
	Sect	ions from References:					

Books and References:

- 7. Anderson, J., Durston, B.H., Pooole, M. (1970) Thesis and Assignment Writing. Wiley Eastern. Ltd., New Delhi.
- 8. Beveridege, B. (1979) The Art of Scientific Investigation. W.E. Norton & Co., New York. Braun, J., Duncan, W. and Murdock, J. (2008) A First Course in Statistical Programming with R. Cambridge University Press, London.
- 9. Chambers, J. (2008) Software for Data Analysis: Programming with R. Springer, New York.
- 10. Crewley, M.J. (2007) The R-.Book. John Wiley, New York.
- 11. Dalgaard, P.(2008) Introductory Statistics with R. Springer Science, New York.
- 12. Ghosh, J.K., Mitra, S.K. and Parthasarathy, K. R.(1992) Glilmpses of India's Statistical Heritage. Wiley Eastern Limited, New Delhi.
- Hald, A.(1998) A History of Mathematical Statistics from 1750 to 1930. John Wiley & Sons, New York.
- 14. Kantiswarup, S., Gupta P.K. and Man Mohan (2008) Operations Research. Sultan Chand & Sons, New Delhi.
- 15. Kothari, C. (2005) Research Methodology. New Age International. Publishers, New York.
- Lamport, L. (1999) LATEX: A Document Preparation System. Addison, nd Wesley, 2
- 17. Pannerselvan, R. (2006) Research Methodology. Prentice-Hall of India. Pvt., NewDelhi.
- 18. Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods. Springer Science, New York.
- 19. Venkataraman, M.K. (1998) Numerical Methods in Science and Engineering. The National Publishing Company, Chennai.

	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	2	3	_	-	-	2	2	3	-	-	-	-
CO 2	-	-	2	-	-	-	-	-	-	3	-	2
CO 3	-	2	-	3	2	3	1	2	3	-	-	-
CO 4	3	2	2	-	-	3	3	1	-	3	3	-
CO 5	2	-	2	-	-	-	1	-	-	3	-	3
CO 6	_	_	3	-	-	2	1	2	_	3	_	-

Correlation Levels:

Lev el	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- 4. Quiz / Assignment/ Quiz/ Discussion / Seminar
- 5. Midterm Exam
- 6. Programming Assignments (20%)
- 7. Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	\checkmark			\checkmark
CO 2	\checkmark			\checkmark
CO 3	\checkmark			\checkmark
CO 4		\checkmark		\checkmark
CO 5		\checkmark		\checkmark
CO 6			\checkmark	